Multi-organ-on-a-chip(MOOC)technology represents a pivotal direction in the organ-on-a-chip field,seeking to emulate the complex interactions of multiple human organs in vitro through microfluidic systems.This technol...Multi-organ-on-a-chip(MOOC)technology represents a pivotal direction in the organ-on-a-chip field,seeking to emulate the complex interactions of multiple human organs in vitro through microfluidic systems.This technology overcomes the limitations of traditional single-organ models,providing a novel platform for investigating complex disease mechanisms and evaluating drug efficacy and toxicity.Although it demonstrates broad application prospects,its development still faces critical bottlenecks,including inadequate physiological coupling between organs,short functional maintenance durations,and limited real-time monitoring capabilities.Contemporary research is advancing along three key directions,including functional coupling,sensor integration,and full-process automation systems,to propel the technology toward enhanced levels of physiological relevance and predictive accuracy.展开更多
China is carving out a distinctive development path which features urban-rural integration.This approach has not only yielded tangible results domestically but also drawn the attention of other countries.
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently...Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.展开更多
The rapid growth of artificial intelligence has accelerated data generation,which increasingly exposes the limitations faced by traditional computational architectures,particularly in terms of energy consumption and d...The rapid growth of artificial intelligence has accelerated data generation,which increasingly exposes the limitations faced by traditional computational architectures,particularly in terms of energy consumption and data latency.In contrast,data-centric computing that integrates processing and storage has the potential of reducing latency and energy usage.Organic optoelectronic synaptic transistors have emerged as one type of promising devices to implement the data-centric com-puting paradigm owing to their superiority of flexibility,low cost,and large-area fabrication.However,sophisticated functions including vector-matrix multiplication that a single device can achieve are limited.Thus,the fabrication and utilization of organic optoelectronic synaptic transistor arrays(OOSTAs)are imperative.Here,we summarize the recent advances in OOSTAs.Various strategies for manufacturing OOSTAs are introduced,including coating and casting,physical vapor deposition,printing,and photolithography.Furthermore,innovative applications of the OOSTA system integration are discussed,including neuromor-phic visual systems and neuromorphic computing systems.At last,challenges and future perspectives of utilizing OOSTAs in real-world applications are discussed.展开更多
In this article,the multi-parameters Mittag-Leffler function is studied in detail.As a consequence,a series of novel results such as the integral representation,series representation and Mellin transform to the above ...In this article,the multi-parameters Mittag-Leffler function is studied in detail.As a consequence,a series of novel results such as the integral representation,series representation and Mellin transform to the above function,are obtained.Especially,we associate the multi-parameters Mittag-Leffler function with two special functions which are the generalized Wright hypergeometric and the Fox’s-H functions.Meanwhile,some interesting integral operators and derivative operators of this function,are also discussed.展开更多
Multi-parameter quantum estimation has attracted considerable attention due to its broad applications.Due to the complexity of quantum dynamics,existing research places significant emphasis on estimating parameters in...Multi-parameter quantum estimation has attracted considerable attention due to its broad applications.Due to the complexity of quantum dynamics,existing research places significant emphasis on estimating parameters in time-independent Hamiltonians.Here,our work makes an effort to explore multi-parameter estimation with time-dependent Hamiltonians.In particular,we focus on the discrimination of two close frequencies of a magnetic field by using a single qubit.We optimize the quantum controls by employing both traditional optimization methods and reinforcement learning to improve the precision for estimating the frequencies of the two magnetic fields.In addition to the estimation precision,we also evaluate the robustness of the optimization schemes against the shift of the control parameters.The results demonstrate that the hybrid reinforcement learning approach achieves the highest estimation precision,and exhibits superior robustness.Moreover,a fundamental challenge in multi-parameter quantum estimation stems from the incompatibility of the optimal control strategies for different parameters.We demonstrate that the hybrid control strategies derived through numerical optimization remain effective in enhancing the precision of multi-parameter estimation in spite of the incompatibilities,thereby mitigating incompatibilities between control strategies on the estimation precision.Finally,we investigate the trade-offs in estimation precision among different parameters for different scenarios,revealing the inherent challenges in balancing the optimization of multiple parameters simultaneously and providing insights into the fundamental distinction between quantum single-parameter estimation and multi-parameter estimation.展开更多
Battery safety has emerged as a critical challenge for achieving carbon neutrality,driven by the increasing frequency of thermal runaway incidents in electric vehicles(EVs)and stationary energy storage systems(ESSs).C...Battery safety has emerged as a critical challenge for achieving carbon neutrality,driven by the increasing frequency of thermal runaway incidents in electric vehicles(EVs)and stationary energy storage systems(ESSs).Conventional battery monitoring technologies struggle to track multiple physicochemical parameters in real time,hindering early hazard detection.Embedded optical fiber sensors have gained prominence as a transformative solution for next-generation smart battery sensing,owing to their micrometer size,multiplexing capability,and electromagnetic immunity.However,comprehensive reviews focusing on their advancements in operando multi-parameter monitoring remain scarce,despite their critical importance for ensuring battery safety.To address this gap,this review first introduces a classification and the fundamental principles of advanced battery-oriented optical fiber sensors.Subsequently,it summarizes recent developments in single-parameter battery monitoring using optical fiber sensors.Building on this foundation,this review presents the first comprehensive analysis of multifunctional optical fiber sensing platforms capable of simultaneously tracking temperature,strain,pressure,refractive index,and monitoring battery aging.Targeted strategies are proposed to facilitate the practical development of this technology,including optimization of sensor integration techniques,minimizing sensor invasiveness,resolving the cross-sensitivity of fiber Bragg grating(FBG)through structural innovation,enhancing techno-economics,and combining with artificial intelligence(AI).By aligning academic research with industry requirements,this review provides a methodological roadmap for developing robust optical sensing systems to ensure battery safety in decarbonization-driven applications.展开更多
Under the current medical education reform,the“clinical-research”model for TCM master’s degrees is a key approach to advancing the modernization of traditional Chinese medicine.With the core of“dual-track integrat...Under the current medical education reform,the“clinical-research”model for TCM master’s degrees is a key approach to advancing the modernization of traditional Chinese medicine.With the core of“dual-track integration,”this model aims to enhance both clinical practice and research abilities simultaneously.However,ten years of practice have shown that it still faces multiple challenges:an imbalance between clinical rotation time and research investment,deeply rooted attitudes that prioritize clinical work over research,insufficient TCM research resources and fragmented platforms,and poor coordination between policy and teaching design.These issues,particularly the methodological differences between TCM experience-based medicine and modern evidence-based medicine,further complicate the integration of clinical and research efforts.Therefore,there is an urgent need to promote the deep integration of research training into clinical practice through system design,value orientation,and evaluation systems,fostering a new ecological environment where clinical and research efforts thrive together.This will help cultivate TCM professionals with both strong clinical skills and innovative research capabilities,providing sustained momentum for the high-quality development of traditional Chinese medicine.展开更多
Based on waveform fitting,full waveform inversion(FWI)is an important inversion method with the ability to reconstruct multi-parameter models in high precision.However,the strong nonlinear equation used in FWI present...Based on waveform fitting,full waveform inversion(FWI)is an important inversion method with the ability to reconstruct multi-parameter models in high precision.However,the strong nonlinear equation used in FWI presents the following challenges,such as low convergence efficiency,high dependence on the initial model,and the energy imbalance in deep region of the inverted model.To solve these inherent problems,we develop a timedomain elastic FWI method based on gradient preconditioning with the following details:(1)the limited memory Broyden Fletcher Goldfarb Shanno method with faster convergence is adopted to im-prove the inversion stability;(2)a multi-scaled inversion strategy is used to alleviate the nonlinear inversion instead of falling into the local minimum;(3)in addition,the pseudo-Hessian preconditioned illumination operator is involved for preconditioning the parameter gradients to improve the illumination equilibrium degree of deep structures.Based on the programming implementation of the new method,a deep depression model with five diffractors is used for testing.Compared with the conventional elastic FWI method,the technique proposed by this study has better effectiveness and accuracy on the inversion effect and con-vergence,respectively.展开更多
Under sensorless control, the position estimation error in interior permanent magnet(PM) synchronous machines will lead to parameter identification errors and a rank-deficiency issue. This paper proposes a parameter i...Under sensorless control, the position estimation error in interior permanent magnet(PM) synchronous machines will lead to parameter identification errors and a rank-deficiency issue. This paper proposes a parameter identification model that is independent of position error by combining the dq-axis voltage equations. Then, a novel dual signal alternate injection method is proposed to address the rank-deficiency issue, i.e., during one injection period, a zero, positive, and negative d-axis current injection together with a rotor position offset injection, to simultaneously identify the multi-parameters, including stator resistance, dq-axis inductances, and PM flux linkage. The proposed method is verified by experiments at different dq-axis current conditions.展开更多
Silicon nitride photonics has emerged as a promising integrated optical platform due to its broad transparency window,low optical loss,and mature fabrication technology.However,the inherent centrosymmetric crystal str...Silicon nitride photonics has emerged as a promising integrated optical platform due to its broad transparency window,low optical loss,and mature fabrication technology.However,the inherent centrosymmetric crystal structure of silicon nitride fundamentally restricts its applications in second-order nonlinear optical processes.Monolayer transition metal dichalcogenides,particularly tungsten disulfide(WS_(2)),exhibit strong second-order nonlinear responses,making them ideal candidates for nonlinear photonic applications.Herein,we demonstrate a heterogeneously integrated platform combining silicon nitride waveguides with chemical vapor deposition(CVD)-grown monolayer WS_(2),enabling second harmonic generation.A specially designed silica cladding featuring gentle-slope profile on silicon nitride strip waveguides facilitates the integration of centimeter-scale WS_(2)film with photonic circuits.This approach provides a robust solution for incorporating second-order nonlinearity into silicon nitride photonic systems.The demonstrated platform holds significant potential for advancing quantum networks,visible-light lasers,and integrated optical modulation/detection systems.展开更多
Against the backdrop of digital-intelligence technologies profoundly reshaping the construction industry and industry-education integration becoming a core direction for vocational education reform,the traditional cur...Against the backdrop of digital-intelligence technologies profoundly reshaping the construction industry and industry-education integration becoming a core direction for vocational education reform,the traditional curriculum system of the engineering cost major in higher vocational colleges faces the dual dilemma of“technical disconnection from the industry and teaching detachment from practice.”This paper takes the engineering cost major at Chongqing Energy Vocational College as the research subject,systematically analyzing the background and significance of curriculum system construction from the“dual-collaboration”perspective of industry-education integration and digital-intelligence integration.It clarifies four construction principles:“symbiotic integration of digital-intelligence and major,precise alignment with enterprise needs,integration of courses,positions,competitions,and certificates,and dynamic optimization.”Subsequently,it proposes three construction paths:a modular curriculum framework design of“digital-intelligence foundation-professional core-practical innovation-ideological and political integration,”collaborative development of curriculum resources by schools and enterprises,and an integrated assessment and evaluation system of“courses,positions,competitions,and certificates.”The study aims to provide practical references for cultivating compound technical and skilled talents in the engineering cost major of higher vocational colleges to meet the demands of the digital-intelligence era,thereby facilitating the digital transformation and upgrading of the construction industry.展开更多
Against the backdrop of intensified global cultural collisions and ideological competition,deeply integrating excellent traditional Chinese culture(ETCC)into university ideological and political courses(IPCs)has becom...Against the backdrop of intensified global cultural collisions and ideological competition,deeply integrating excellent traditional Chinese culture(ETCC)into university ideological and political courses(IPCs)has become an imperative of our times.Guided by General Secretary Xi Jinping’s methodology of“Two Integrations,”this paper examines the pathways for this integration from three dimensions:value,theory,and practice.The value dimension emphasizes fostering moral conviction and strengthening the spiritual foundation to meet needs such as safeguarding cultural security,preserving the spiritual lineage,and constructing a spiritual framework.The theoretical dimension reveals the mutually constitutive breakthroughs between Marxism and traditional Chinese dialectical thinking,encompassing methodological complementarity,logical coherence of values,and discursive system innovation.The practical dimension involves constructing a comprehensive educational ecosystem by localizing teaching content,modernizing traditional resources,and fostering inter-platform collaborative education,thereby internalizing the value of traditional culture.These three dimensions synergize and co-constitute each other,collectively providing methodological support and practical paradigms for cultivating cultural confidence among youth and forging a new generation capable of shouldering the mission of national rejuvenation.展开更多
This study examines the “V + Dào” construction as a state change event through the lens of the Event Integration Hypothesis. It focuses on how these constructions represent state changes, exploring distinctions...This study examines the “V + Dào” construction as a state change event through the lens of the Event Integration Hypothesis. It focuses on how these constructions represent state changes, exploring distinctions between “change” and “stasis”. Using a corpus-based approach, the analysis covers the semantic and syntactic features of “V + Dào” constructions and their event integration patterns. The findings highlight the distribution of agency, animacy, and support relations in state change events, emphasizing the complex interaction of internal and external event integrations and their correlation with the conceptual primitives of change and transition. This study offers insights into the lexicalization and grammaticalization processes of the “V + Dào” construction, and potentially the broader verb-complement constructions in Mandarin.展开更多
The 13-node quadrilateral and 39-node hexahedral cubic serendipity elements produce nodally integrated positive-definite lumped heat capacity matrices in higher-order finite element analysis.However,these elements dis...The 13-node quadrilateral and 39-node hexahedral cubic serendipity elements produce nodally integrated positive-definite lumped heat capacity matrices in higher-order finite element analysis.However,these elements display severe convergence deterioration in explicit transient heat conduction analysis with lumped heat ca-pacity matrices.This convergence decay is due to the violation of variational integration consistency by the standard Galerkin formulation with lumped heat capacity matrices.This issue is resolved by introducing the boundary-enhanced Galerkin weak form that incorporates the elemental boundary contribution in the discrete finite element formulation.Subsequently,it is theoretically proven that a direct nodal integration identically fulfills the variational integration consistency in the context of the boundary-enhanced Galerkin weak form.The proposed variationally consistent nodal integration therefore enables optimal convergence for explicit transient heat conduction analysis with lumped heat capacity matrices.The efficacy of the proposed variationally con-sistent nodal integration formulation for the 13-node quadrilateral and 39-node hexahedral cubic elements is thoroughly demonstrated via numerical examples.展开更多
Mason Reset(MR),a groundbreaking invention by Clesson E.Mason in 1930 that later became a part of“the universal approach to process control instrumentation”,is revisited in this paper and is shown to consists of thr...Mason Reset(MR),a groundbreaking invention by Clesson E.Mason in 1930 that later became a part of“the universal approach to process control instrumentation”,is revisited in this paper and is shown to consists of three actions:fast(errorcorrection),medium(negative feedback for expanded proportional band)and slow(reset for zero steady-state error).The focus of the paper is on the reset action,generated from a positive feedback loop,and its underlying principles with profound implications to our understanding and practice of automatic control,both basic and advanced.For example,we note that reset control and integral control,contrary to common belief,differ fundamentally in design principle and in practicality.Such difference comes to a head in the event of integrator windup:while reset windup is a problem of actuator saturation,the integrator windup is a runaway situation due to controller instability.In fact,there is no advantage gained in replacing MR with an integrator.In other words,one should not integrate the error directly as in standard PID,since doing so makes the closed-loop system internally unstable.With MR-based control formulated in this paper,there is no such threat of instability and,therefore,no need for any anti-windup mechanisms.Furthermore,the integral control is made scalable in this framework as a tradeoff between the steady-state accuracy and the controller stability.This leads to a novel MR-based control design,scalable in gain and in time to accommodate various process characteristics and design specifications.Simple in construction and transparent in principle,this MR-based control,as a basic framework of design,is readily deployable in scale.展开更多
China and ASEAN have emerged as close partners in the digital economy,with extensive cooperation in key areas such as digital infrastructure,5G technology,artificial intelligence,and big data.The comprehensive impleme...China and ASEAN have emerged as close partners in the digital economy,with extensive cooperation in key areas such as digital infrastructure,5G technology,artificial intelligence,and big data.The comprehensive implementation of the Regional Comprehensive Economic Partnership(RCEP)has provided institutional guarantees and regulatory benefits for China-ASEAN digital economic collaboration.This framework has enhanced the marginal effects of their digital economies,unlocked the potential of the digital market,and facilitated digital transformation and regional socio-economic development.Nevertheless,challenges remain,including the incomplete harmonization of trade rules and standards among ASEAN member states,uneven development of digital infrastructure,and the increasingly complex landscape of digital economic cooperation.To address these issues,future efforts should focus on creating a more conducive digital environment,accelerating the construction of digital infrastructure,fostering industrial innovation and complementary development,and promoting cross-sectoral collaboration in digital services.展开更多
The integration of education,technology,and talent is a strategic institutional arrangement for China to build a high-quality education system and achieve innovation-driven development in the new era.As the main platf...The integration of education,technology,and talent is a strategic institutional arrangement for China to build a high-quality education system and achieve innovation-driven development in the new era.As the main platform for cultivating technical and skilled talents,vocational education faces dilemmas such as ambiguous role positioning,conflicting role expectations,and insufficient role capabilities when it comes to the coupling of the three functions of“education-technology-talent”.Based on the analytical framework of role theory and structural functionalism,this paper proposes three paths:clarifying role positioning through the integration of vocational and general education,reconstructing role expectations through the integration of science and education,and enhancing role capabilities through the integration of industry and education.These paths provide theoretical references and practical guidance for optimizing the function of vocational education in the collaborative innovation system.展开更多
As a crucial pivot for national strategic development,the university relocation project in Xiong’an New Area undertakes the mission of optimizing capital functions and promoting regional coordinated development.Takin...As a crucial pivot for national strategic development,the university relocation project in Xiong’an New Area undertakes the mission of optimizing capital functions and promoting regional coordinated development.Taking the Xi-ong’an Campus of China University of Geosciences(Beijing)as a case study,this paper explores the collaborative pa-thways between universities and cities in terms of functional complementarity,resource sharing,and ecological symbiosis from the perspective of campus functional layout and spatial optimization.By integrating four core concepts—green ecology,intelligent technology,cultural inheritance,and traffic optimization—it proposes a design strategy of“breaking boundaries and multi-dimensional linkage,”aiming to construct a new spatial paradigm of urban-university integration and provide theoretical support and practical references for the development of higher education and urbanization in Xiong’an New Area.展开更多
基金supported by the Shenzhen Medical Research Fund(Grant No.A2303049)Guangdong Basic and Applied Basic Research(Grant No.2023A1515010647)+1 种基金National Natural Science Foundation of China(Grant No.22004135)Shenzhen Science and Technology Program(Grant No.RCBS20210706092409020,GXWD20201231165807008,20200824162253002).
文摘Multi-organ-on-a-chip(MOOC)technology represents a pivotal direction in the organ-on-a-chip field,seeking to emulate the complex interactions of multiple human organs in vitro through microfluidic systems.This technology overcomes the limitations of traditional single-organ models,providing a novel platform for investigating complex disease mechanisms and evaluating drug efficacy and toxicity.Although it demonstrates broad application prospects,its development still faces critical bottlenecks,including inadequate physiological coupling between organs,short functional maintenance durations,and limited real-time monitoring capabilities.Contemporary research is advancing along three key directions,including functional coupling,sensor integration,and full-process automation systems,to propel the technology toward enhanced levels of physiological relevance and predictive accuracy.
文摘China is carving out a distinctive development path which features urban-rural integration.This approach has not only yielded tangible results domestically but also drawn the attention of other countries.
基金National Natural Science Foundation of China(11971211,12171388).
文摘Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.
基金supported by the National Key Research and Development Program of China(2021YFA1101303)the National Natural Science Foundation of China(62374115)the Innovation Program of Shanghai Municipal Education Commission(2021-01-07-00-07-E00096).
文摘The rapid growth of artificial intelligence has accelerated data generation,which increasingly exposes the limitations faced by traditional computational architectures,particularly in terms of energy consumption and data latency.In contrast,data-centric computing that integrates processing and storage has the potential of reducing latency and energy usage.Organic optoelectronic synaptic transistors have emerged as one type of promising devices to implement the data-centric com-puting paradigm owing to their superiority of flexibility,low cost,and large-area fabrication.However,sophisticated functions including vector-matrix multiplication that a single device can achieve are limited.Thus,the fabrication and utilization of organic optoelectronic synaptic transistor arrays(OOSTAs)are imperative.Here,we summarize the recent advances in OOSTAs.Various strategies for manufacturing OOSTAs are introduced,including coating and casting,physical vapor deposition,printing,and photolithography.Furthermore,innovative applications of the OOSTA system integration are discussed,including neuromor-phic visual systems and neuromorphic computing systems.At last,challenges and future perspectives of utilizing OOSTAs in real-world applications are discussed.
基金Supported by The National Undergraduate Innovation Training Program(Grant No.202310290069Z).
文摘In this article,the multi-parameters Mittag-Leffler function is studied in detail.As a consequence,a series of novel results such as the integral representation,series representation and Mellin transform to the above function,are obtained.Especially,we associate the multi-parameters Mittag-Leffler function with two special functions which are the generalized Wright hypergeometric and the Fox’s-H functions.Meanwhile,some interesting integral operators and derivative operators of this function,are also discussed.
基金supported by the National Natural Science Foundation of China(Grant No.12075323)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0300702).
文摘Multi-parameter quantum estimation has attracted considerable attention due to its broad applications.Due to the complexity of quantum dynamics,existing research places significant emphasis on estimating parameters in time-independent Hamiltonians.Here,our work makes an effort to explore multi-parameter estimation with time-dependent Hamiltonians.In particular,we focus on the discrimination of two close frequencies of a magnetic field by using a single qubit.We optimize the quantum controls by employing both traditional optimization methods and reinforcement learning to improve the precision for estimating the frequencies of the two magnetic fields.In addition to the estimation precision,we also evaluate the robustness of the optimization schemes against the shift of the control parameters.The results demonstrate that the hybrid reinforcement learning approach achieves the highest estimation precision,and exhibits superior robustness.Moreover,a fundamental challenge in multi-parameter quantum estimation stems from the incompatibility of the optimal control strategies for different parameters.We demonstrate that the hybrid control strategies derived through numerical optimization remain effective in enhancing the precision of multi-parameter estimation in spite of the incompatibilities,thereby mitigating incompatibilities between control strategies on the estimation precision.Finally,we investigate the trade-offs in estimation precision among different parameters for different scenarios,revealing the inherent challenges in balancing the optimization of multiple parameters simultaneously and providing insights into the fundamental distinction between quantum single-parameter estimation and multi-parameter estimation.
基金the financial supports of the National Natural Science Foundation of China(No.52372200)a project supported by the State Key Laboratory of Mechanics and Control for Aerospace Structures(No.MCAS-S-0324G01)。
文摘Battery safety has emerged as a critical challenge for achieving carbon neutrality,driven by the increasing frequency of thermal runaway incidents in electric vehicles(EVs)and stationary energy storage systems(ESSs).Conventional battery monitoring technologies struggle to track multiple physicochemical parameters in real time,hindering early hazard detection.Embedded optical fiber sensors have gained prominence as a transformative solution for next-generation smart battery sensing,owing to their micrometer size,multiplexing capability,and electromagnetic immunity.However,comprehensive reviews focusing on their advancements in operando multi-parameter monitoring remain scarce,despite their critical importance for ensuring battery safety.To address this gap,this review first introduces a classification and the fundamental principles of advanced battery-oriented optical fiber sensors.Subsequently,it summarizes recent developments in single-parameter battery monitoring using optical fiber sensors.Building on this foundation,this review presents the first comprehensive analysis of multifunctional optical fiber sensing platforms capable of simultaneously tracking temperature,strain,pressure,refractive index,and monitoring battery aging.Targeted strategies are proposed to facilitate the practical development of this technology,including optimization of sensor integration techniques,minimizing sensor invasiveness,resolving the cross-sensitivity of fiber Bragg grating(FBG)through structural innovation,enhancing techno-economics,and combining with artificial intelligence(AI).By aligning academic research with industry requirements,this review provides a methodological roadmap for developing robust optical sensing systems to ensure battery safety in decarbonization-driven applications.
基金Yunnan Province High-level Science and Technology Talents and Innovation Team Selection Special Project。
文摘Under the current medical education reform,the“clinical-research”model for TCM master’s degrees is a key approach to advancing the modernization of traditional Chinese medicine.With the core of“dual-track integration,”this model aims to enhance both clinical practice and research abilities simultaneously.However,ten years of practice have shown that it still faces multiple challenges:an imbalance between clinical rotation time and research investment,deeply rooted attitudes that prioritize clinical work over research,insufficient TCM research resources and fragmented platforms,and poor coordination between policy and teaching design.These issues,particularly the methodological differences between TCM experience-based medicine and modern evidence-based medicine,further complicate the integration of clinical and research efforts.Therefore,there is an urgent need to promote the deep integration of research training into clinical practice through system design,value orientation,and evaluation systems,fostering a new ecological environment where clinical and research efforts thrive together.This will help cultivate TCM professionals with both strong clinical skills and innovative research capabilities,providing sustained momentum for the high-quality development of traditional Chinese medicine.
基金supported by the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(Grant No.2021QNLM020001)the National Key R&D Program of China(Grant No.2019YFC0605503C)+2 种基金the Major Scientific and Technological Projects of China National Petroleum Corporation(CNPC)(Grant No.ZD2019-183-003)the National Outstanding Youth Science Foundation(Grant No.41922028)the National Innovation Group Project(Grant No.41821002).
文摘Based on waveform fitting,full waveform inversion(FWI)is an important inversion method with the ability to reconstruct multi-parameter models in high precision.However,the strong nonlinear equation used in FWI presents the following challenges,such as low convergence efficiency,high dependence on the initial model,and the energy imbalance in deep region of the inverted model.To solve these inherent problems,we develop a timedomain elastic FWI method based on gradient preconditioning with the following details:(1)the limited memory Broyden Fletcher Goldfarb Shanno method with faster convergence is adopted to im-prove the inversion stability;(2)a multi-scaled inversion strategy is used to alleviate the nonlinear inversion instead of falling into the local minimum;(3)in addition,the pseudo-Hessian preconditioned illumination operator is involved for preconditioning the parameter gradients to improve the illumination equilibrium degree of deep structures.Based on the programming implementation of the new method,a deep depression model with five diffractors is used for testing.Compared with the conventional elastic FWI method,the technique proposed by this study has better effectiveness and accuracy on the inversion effect and con-vergence,respectively.
文摘Under sensorless control, the position estimation error in interior permanent magnet(PM) synchronous machines will lead to parameter identification errors and a rank-deficiency issue. This paper proposes a parameter identification model that is independent of position error by combining the dq-axis voltage equations. Then, a novel dual signal alternate injection method is proposed to address the rank-deficiency issue, i.e., during one injection period, a zero, positive, and negative d-axis current injection together with a rotor position offset injection, to simultaneously identify the multi-parameters, including stator resistance, dq-axis inductances, and PM flux linkage. The proposed method is verified by experiments at different dq-axis current conditions.
基金Project supported by the National Innovative Training Program for College Students of China(Grant No.2023069)the University Research and Innovation Project of the National University of Defense Technology。
文摘Silicon nitride photonics has emerged as a promising integrated optical platform due to its broad transparency window,low optical loss,and mature fabrication technology.However,the inherent centrosymmetric crystal structure of silicon nitride fundamentally restricts its applications in second-order nonlinear optical processes.Monolayer transition metal dichalcogenides,particularly tungsten disulfide(WS_(2)),exhibit strong second-order nonlinear responses,making them ideal candidates for nonlinear photonic applications.Herein,we demonstrate a heterogeneously integrated platform combining silicon nitride waveguides with chemical vapor deposition(CVD)-grown monolayer WS_(2),enabling second harmonic generation.A specially designed silica cladding featuring gentle-slope profile on silicon nitride strip waveguides facilitates the integration of centimeter-scale WS_(2)film with photonic circuits.This approach provides a robust solution for incorporating second-order nonlinearity into silicon nitride photonic systems.The demonstrated platform holds significant potential for advancing quantum networks,visible-light lasers,and integrated optical modulation/detection systems.
基金Chongqing Teaching Reform Research Project“Exploration of the Talent Cultivation Model for the Engineering Cost Major Based on Industry-Education Integration in the Digital Intelligence Era”(Z2241470)Scientific Research Project of Chongqing Vocational Education Association“Digital Intelligence Empowerment and Industry-Education Symbiosis:Constructing a New Talent Cultivation Model for Engineering Cost in Vocational Colleges”(2025ZJXH580108)。
文摘Against the backdrop of digital-intelligence technologies profoundly reshaping the construction industry and industry-education integration becoming a core direction for vocational education reform,the traditional curriculum system of the engineering cost major in higher vocational colleges faces the dual dilemma of“technical disconnection from the industry and teaching detachment from practice.”This paper takes the engineering cost major at Chongqing Energy Vocational College as the research subject,systematically analyzing the background and significance of curriculum system construction from the“dual-collaboration”perspective of industry-education integration and digital-intelligence integration.It clarifies four construction principles:“symbiotic integration of digital-intelligence and major,precise alignment with enterprise needs,integration of courses,positions,competitions,and certificates,and dynamic optimization.”Subsequently,it proposes three construction paths:a modular curriculum framework design of“digital-intelligence foundation-professional core-practical innovation-ideological and political integration,”collaborative development of curriculum resources by schools and enterprises,and an integrated assessment and evaluation system of“courses,positions,competitions,and certificates.”The study aims to provide practical references for cultivating compound technical and skilled talents in the engineering cost major of higher vocational colleges to meet the demands of the digital-intelligence era,thereby facilitating the digital transformation and upgrading of the construction industry.
基金Center for Sinicized Marxism and Traditional Culture,Sichuan University of Science&Engineering(Project No.:ZMCY202410)。
文摘Against the backdrop of intensified global cultural collisions and ideological competition,deeply integrating excellent traditional Chinese culture(ETCC)into university ideological and political courses(IPCs)has become an imperative of our times.Guided by General Secretary Xi Jinping’s methodology of“Two Integrations,”this paper examines the pathways for this integration from three dimensions:value,theory,and practice.The value dimension emphasizes fostering moral conviction and strengthening the spiritual foundation to meet needs such as safeguarding cultural security,preserving the spiritual lineage,and constructing a spiritual framework.The theoretical dimension reveals the mutually constitutive breakthroughs between Marxism and traditional Chinese dialectical thinking,encompassing methodological complementarity,logical coherence of values,and discursive system innovation.The practical dimension involves constructing a comprehensive educational ecosystem by localizing teaching content,modernizing traditional resources,and fostering inter-platform collaborative education,thereby internalizing the value of traditional culture.These three dimensions synergize and co-constitute each other,collectively providing methodological support and practical paradigms for cultivating cultural confidence among youth and forging a new generation capable of shouldering the mission of national rejuvenation.
文摘This study examines the “V + Dào” construction as a state change event through the lens of the Event Integration Hypothesis. It focuses on how these constructions represent state changes, exploring distinctions between “change” and “stasis”. Using a corpus-based approach, the analysis covers the semantic and syntactic features of “V + Dào” constructions and their event integration patterns. The findings highlight the distribution of agency, animacy, and support relations in state change events, emphasizing the complex interaction of internal and external event integrations and their correlation with the conceptual primitives of change and transition. This study offers insights into the lexicalization and grammaticalization processes of the “V + Dào” construction, and potentially the broader verb-complement constructions in Mandarin.
基金supported by the National Natural Science Foundation of China(Grant Nos.12372201 and 12072302).
文摘The 13-node quadrilateral and 39-node hexahedral cubic serendipity elements produce nodally integrated positive-definite lumped heat capacity matrices in higher-order finite element analysis.However,these elements display severe convergence deterioration in explicit transient heat conduction analysis with lumped heat ca-pacity matrices.This convergence decay is due to the violation of variational integration consistency by the standard Galerkin formulation with lumped heat capacity matrices.This issue is resolved by introducing the boundary-enhanced Galerkin weak form that incorporates the elemental boundary contribution in the discrete finite element formulation.Subsequently,it is theoretically proven that a direct nodal integration identically fulfills the variational integration consistency in the context of the boundary-enhanced Galerkin weak form.The proposed variationally consistent nodal integration therefore enables optimal convergence for explicit transient heat conduction analysis with lumped heat capacity matrices.The efficacy of the proposed variationally con-sistent nodal integration formulation for the 13-node quadrilateral and 39-node hexahedral cubic elements is thoroughly demonstrated via numerical examples.
文摘Mason Reset(MR),a groundbreaking invention by Clesson E.Mason in 1930 that later became a part of“the universal approach to process control instrumentation”,is revisited in this paper and is shown to consists of three actions:fast(errorcorrection),medium(negative feedback for expanded proportional band)and slow(reset for zero steady-state error).The focus of the paper is on the reset action,generated from a positive feedback loop,and its underlying principles with profound implications to our understanding and practice of automatic control,both basic and advanced.For example,we note that reset control and integral control,contrary to common belief,differ fundamentally in design principle and in practicality.Such difference comes to a head in the event of integrator windup:while reset windup is a problem of actuator saturation,the integrator windup is a runaway situation due to controller instability.In fact,there is no advantage gained in replacing MR with an integrator.In other words,one should not integrate the error directly as in standard PID,since doing so makes the closed-loop system internally unstable.With MR-based control formulated in this paper,there is no such threat of instability and,therefore,no need for any anti-windup mechanisms.Furthermore,the integral control is made scalable in this framework as a tradeoff between the steady-state accuracy and the controller stability.This leads to a novel MR-based control design,scalable in gain and in time to accommodate various process characteristics and design specifications.Simple in construction and transparent in principle,this MR-based control,as a basic framework of design,is readily deployable in scale.
文摘China and ASEAN have emerged as close partners in the digital economy,with extensive cooperation in key areas such as digital infrastructure,5G technology,artificial intelligence,and big data.The comprehensive implementation of the Regional Comprehensive Economic Partnership(RCEP)has provided institutional guarantees and regulatory benefits for China-ASEAN digital economic collaboration.This framework has enhanced the marginal effects of their digital economies,unlocked the potential of the digital market,and facilitated digital transformation and regional socio-economic development.Nevertheless,challenges remain,including the incomplete harmonization of trade rules and standards among ASEAN member states,uneven development of digital infrastructure,and the increasingly complex landscape of digital economic cooperation.To address these issues,future efforts should focus on creating a more conducive digital environment,accelerating the construction of digital infrastructure,fostering industrial innovation and complementary development,and promoting cross-sectoral collaboration in digital services.
文摘The integration of education,technology,and talent is a strategic institutional arrangement for China to build a high-quality education system and achieve innovation-driven development in the new era.As the main platform for cultivating technical and skilled talents,vocational education faces dilemmas such as ambiguous role positioning,conflicting role expectations,and insufficient role capabilities when it comes to the coupling of the three functions of“education-technology-talent”.Based on the analytical framework of role theory and structural functionalism,this paper proposes three paths:clarifying role positioning through the integration of vocational and general education,reconstructing role expectations through the integration of science and education,and enhancing role capabilities through the integration of industry and education.These paths provide theoretical references and practical guidance for optimizing the function of vocational education in the collaborative innovation system.
文摘As a crucial pivot for national strategic development,the university relocation project in Xiong’an New Area undertakes the mission of optimizing capital functions and promoting regional coordinated development.Taking the Xi-ong’an Campus of China University of Geosciences(Beijing)as a case study,this paper explores the collaborative pa-thways between universities and cities in terms of functional complementarity,resource sharing,and ecological symbiosis from the perspective of campus functional layout and spatial optimization.By integrating four core concepts—green ecology,intelligent technology,cultural inheritance,and traffic optimization—it proposes a design strategy of“breaking boundaries and multi-dimensional linkage,”aiming to construct a new spatial paradigm of urban-university integration and provide theoretical support and practical references for the development of higher education and urbanization in Xiong’an New Area.