期刊文献+
共找到14,040篇文章
< 1 2 250 >
每页显示 20 50 100
How Do Deep Learning Forecasting Models Perform for Surface Variables in the South China Sea Compared to Operational Oceanography Forecasting Systems?
1
作者 Ziqing ZU Jiangjiang XIA +6 位作者 Xueming ZHU Marie DREVILLON Huier MO Xiao LOU Qian ZHOU Yunfei ZHANG Qing YANG 《Advances in Atmospheric Sciences》 2025年第1期178-189,共12页
It is fundamental and useful to investigate how deep learning forecasting models(DLMs)perform compared to operational oceanography forecast systems(OFSs).However,few studies have intercompared their performances using... It is fundamental and useful to investigate how deep learning forecasting models(DLMs)perform compared to operational oceanography forecast systems(OFSs).However,few studies have intercompared their performances using an identical reference.In this study,three physically reasonable DLMs are implemented for the forecasting of the sea surface temperature(SST),sea level anomaly(SLA),and sea surface velocity in the South China Sea.The DLMs are validated against both the testing dataset and the“OceanPredict”Class 4 dataset.Results show that the DLMs'RMSEs against the latter increase by 44%,245%,302%,and 109%for SST,SLA,current speed,and direction,respectively,compared to those against the former.Therefore,different references have significant influences on the validation,and it is necessary to use an identical and independent reference to intercompare the DLMs and OFSs.Against the Class 4 dataset,the DLMs present significantly better performance for SLA than the OFSs,and slightly better performances for other variables.The error patterns of the DLMs and OFSs show a high degree of similarity,which is reasonable from the viewpoint of predictability,facilitating further applications of the DLMs.For extreme events,the DLMs and OFSs both present large but similar forecast errors for SLA and current speed,while the DLMs are likely to give larger errors for SST and current direction.This study provides an evaluation of the forecast skills of commonly used DLMs and provides an example to objectively intercompare different DLMs. 展开更多
关键词 forecast error deep learning forecasting model operational oceanography forecasting system VALIDATION intercomparison
在线阅读 下载PDF
Improving Model Chain Approaches for Probabilistic Solar Energy Forecasting through Post-processing and Machine Learning
2
作者 Nina HORAT Sina KLERINGS Sebastian LERCH 《Advances in Atmospheric Sciences》 2025年第2期297-312,共16页
Weather forecasts from numerical weather prediction models play a central role in solar energy forecasting,where a cascade of physics-based models is used in a model chain approach to convert forecasts of solar irradi... Weather forecasts from numerical weather prediction models play a central role in solar energy forecasting,where a cascade of physics-based models is used in a model chain approach to convert forecasts of solar irradiance to solar power production.Ensemble simulations from such weather models aim to quantify uncertainty in the future development of the weather,and can be used to propagate this uncertainty through the model chain to generate probabilistic solar energy predictions.However,ensemble prediction systems are known to exhibit systematic errors,and thus require post-processing to obtain accurate and reliable probabilistic forecasts.The overarching aim of our study is to systematically evaluate different strategies to apply post-processing in model chain approaches with a specific focus on solar energy:not applying any post-processing at all;post-processing only the irradiance predictions before the conversion;post-processing only the solar power predictions obtained from the model chain;or applying post-processing in both steps.In a case study based on a benchmark dataset for the Jacumba solar plant in the U.S.,we develop statistical and machine learning methods for postprocessing ensemble predictions of global horizontal irradiance(GHI)and solar power generation.Further,we propose a neural-network-based model for direct solar power forecasting that bypasses the model chain.Our results indicate that postprocessing substantially improves the solar power generation forecasts,in particular when post-processing is applied to the power predictions.The machine learning methods for post-processing slightly outperform the statistical methods,and the direct forecasting approach performs comparably to the post-processing strategies. 展开更多
关键词 solar forecasting POST-PROCESSING probabilistic forecasting machine learning model chain
在线阅读 下载PDF
Performance Analysis of Various Forecasting Models for Multi-Seasonal Global Horizontal Irradiance Forecasting Using the India Region Dataset
3
作者 Manoharan Madhiarasan 《Energy Engineering》 2025年第8期2993-3011,共19页
Accurate Global Horizontal Irradiance(GHI)forecasting has become vital for successfully integrating solar energy into the electrical grid because of the expanding demand for green power and the worldwide shift favouri... Accurate Global Horizontal Irradiance(GHI)forecasting has become vital for successfully integrating solar energy into the electrical grid because of the expanding demand for green power and the worldwide shift favouring green energy resources.Particularly considering the implications of the aggressive GHG emission targets,accurate GHI forecasting has become vital for developing,designing,and operational managing solar energy systems.This research presented the core concepts of modelling and performance analysis of the application of various forecasting models such as ARIMA(Autoregressive Integrated Moving Average),Elaman NN(Elman Neural Network),RBFN(Radial Basis Function Neural Network),SVM(Support Vector Machine),LSTM(Long Short-Term Memory),Persistent,BPN(Back Propagation Neural Network),MLP(Multilayer Perceptron Neural Network),RF(Random Forest),and XGBoost(eXtreme Gradient Boosting)for assessing multi-seasonal forecasting of GHI.Used the India region data to evaluate the models’performance and forecasting ability.Research using forecasting models for seasonal Global Horizontal Irradiance(GHI)forecasting in winter,spring,summer,monsoon,and autumn.Substantiated performance effectiveness through evaluation metrics,such as Mean Absolute Error(MAE),Root Mean Squared Error(RMSE),and R-squared(R^(2)),coded using Python programming.The performance experimentation analysis inferred that the most accurate forecasts in all the seasons compared to the other forecasting models the Random Forest and eXtreme Gradient Boosting,are the superior and competing models that yield Winter season-based forecasting XGBoost is the best forecasting model with MAE:1.6325,RMSE:4.8338,and R^(2):0.9998.Spring season-based forecasting XGBoost is the best forecasting model with MAE:2.599599,RMSE:5.58539,and R^(2):0.999784.Summer season-based forecasting RF is the best forecasting model with MAE:1.03843,RMSE:2.116325,and R^(2):0.999967.Monsoon season-based forecasting RF is the best forecasting model with MAE:0.892385,RMSE:2.417587,and R^(2):0.999942.Autumn season-based forecasting RF is the best forecasting model with MAE:0.810462,RMSE:1.928215,and R^(2):0.999958.Based on seasonal variations and computing constraints,the findings enable energy system operators to make helpful recommendations for choosing the most effective forecasting models. 展开更多
关键词 Machine learning model deep learning model statistical model SEASONAL solar energy Global Hori-zontal Irradiance forecasting
在线阅读 下载PDF
SP-RF-ARIMA:A sparse random forest and ARIMA hybrid model for electric load forecasting
4
作者 Kamran Hassanpouri Baesmat Farhad Shokoohi Zeinab Farrokhi 《Global Energy Interconnection》 2025年第3期486-496,共11页
Accurate Electric Load Forecasting(ELF)is crucial for optimizing production capacity,improving operational efficiency,and managing energy resources effectively.Moreover,precise ELF contributes to a smaller environment... Accurate Electric Load Forecasting(ELF)is crucial for optimizing production capacity,improving operational efficiency,and managing energy resources effectively.Moreover,precise ELF contributes to a smaller environmental footprint by reducing the risks of disruption,downtime,and waste.However,with increasingly complex energy consumption patterns driven by renewable energy integration and changing consumer behaviors,no single approach has emerged as universally effective.In response,this research presents a hybrid modeling framework that combines the strengths of Random Forest(RF)and Autoregressive Integrated Moving Average(ARIMA)models,enhanced with advanced feature selection—Minimum Redundancy Maximum Relevancy and Maximum Synergy(MRMRMS)method—to produce a sparse model.Additionally,the residual patterns are analyzed to enhance forecast accuracy.High-resolution weather data from Weather Underground and historical energy consumption data from PJM for Duke Energy Ohio and Kentucky(DEO&K)are used in this application.This methodology,termed SP-RF-ARIMA,is evaluated against existing approaches;it demonstrates more than 40%reduction in mean absolute error and root mean square error compared to the second-best method. 展开更多
关键词 optimizing production capacityimproving operational efficiencyand sparse random forest hybrid model electric load forecasting accurate electric load forecasting elf renewable energy integration ARIMA feature selection
在线阅读 下载PDF
AI-Driven Forecasting in Management Accounting: Model Construction and Implementation for Strategic Decision Support
5
作者 Lianhong Ye 《Proceedings of Business and Economic Studies》 2025年第1期60-66,共7页
In today’s rapidly evolving business environment,enterprises face unprecedented competitive pressures and complexities,necessitating efficient and precise strategic decision-making capabilities.Management accounting,... In today’s rapidly evolving business environment,enterprises face unprecedented competitive pressures and complexities,necessitating efficient and precise strategic decision-making capabilities.Management accounting,as the core of internal corporate management,plays a critical role in optimizing resource allocation,long-term planning,and formulating market competition strategies.This paper explores the application of Artificial Intelligence(AI)in management accounting,aiming to analyze the current state of AI in management accounting,examine its role in supporting external strategic decisions,and develop an AI-driven strategic forecasting and analysis model.The findings indicate that AI technology,through its advanced data processing and analytical capabilities,significantly enhances the efficiency and accuracy of management accounting,optimizes internal resource allocation,and strengthens enterprises’market competitiveness. 展开更多
关键词 AI and management accounting Strategic decision-making Strategic forecasting and analysis model
在线阅读 下载PDF
Research on the Application of Cash Flow Forecasting Models in Enterprise Investment and Financing Decisions
6
作者 Chenxu Wang 《Proceedings of Business and Economic Studies》 2025年第5期162-168,共7页
Cash flow is a core element for enterprises to maintain operations and development.Cash flow forecasting models,through systematic analysis of an enterprise’s historical cash flow data,trends in operating activities,... Cash flow is a core element for enterprises to maintain operations and development.Cash flow forecasting models,through systematic analysis of an enterprise’s historical cash flow data,trends in operating activities,and external environmental factors,scientifically predict the scale,direction,and fluctuation of cash flow within a certain period in the future.This article focuses on the application of cash flow forecasting models in enterprise investment and financing decisions,sorts out the types and core functions of the models,analyzes their specific roles in investment project screening,financing plan formulation,risk prevention and control,and fund allocation,points out the existing problems in current applications,and proposes optimization paths.Research shows that the scientific application of cash flow forecasting models can enhance the accuracy and rationality of enterprises’investment and financing decisions,and help enterprises achieve sustainable development. 展开更多
关键词 Cash flow forecasting model Enterprise investment decision-making Enterprise financing decisions Capital allocation Risk prevention and control
在线阅读 下载PDF
A new combined model for forecasting geomagnetic variation
7
作者 Chao Niu Yi-wei Wei +4 位作者 Hong-ru Li Xi-hai Li Xiao-niu Zeng Ji-hao Liu Ai-min Du 《Applied Geophysics》 2025年第3期600-610,891,892,共13页
Modeling and forecasting of the geomagnetic variation are important research topics concerning geomagnetic navigation and space environment monitoring.We propose a combined forecasting model using a dynamic recursive ... Modeling and forecasting of the geomagnetic variation are important research topics concerning geomagnetic navigation and space environment monitoring.We propose a combined forecasting model using a dynamic recursive neural network called echo state network(ESN),the method of complementary ensemble empirical mode decomposition(EEMD)and the complexity theory of sample entropy(SampEn).Firstly,we use EEMD-SampEn to decompose the geomagnetic variation time series into many series of geomagnetic variation subsequences whose complexity degrees are transparently different.Then,we use ESN to build a forecasting model for each subsequence,selecting the optimal model parameters.Finally,we use the real data collected from the geomagnetic observatory to conduct simulations.The results show that the forecasting value of the combined model can closely conform to the tendency of geomagnetic variation field,and is superior to the least square support vector machine(LSSVM)model.The mean absolute error of the model for three-hour forecasting is less than 1.40nT when Kp index is less than 3. 展开更多
关键词 Geomagnetic variation forecasting model Ensemble empirical mode decomposition(EEMD) Sample entropy(SampEn) Echo state network(ESN)
在线阅读 下载PDF
Evaluating vector winds over eastern China in 2022 predicted by the CMA-MESO model and ECMWF forecast 被引量:1
8
作者 Fang Huang Mingjian Zeng +4 位作者 Zhongfeng Xu Boni Wang Ming Sun Hangcheng Ge Shoukang Wu 《Atmospheric and Oceanic Science Letters》 2025年第4期41-47,共7页
Vector winds play a crucial role in weather and climate,as well as the effective utilization of wind energy resources.However,limited research has been conducted on treating the wind field as a vector field in the eva... Vector winds play a crucial role in weather and climate,as well as the effective utilization of wind energy resources.However,limited research has been conducted on treating the wind field as a vector field in the evaluation of numerical weather prediction models.In this study,the authors treat vector winds as a whole by employing a vector field evaluation method,and evaluate the mesoscale model of the China Meteorological Administration(CMA-MESO)and ECMWF forecast,with reference to ERA5 reanalysis,in terms of multiple aspects of vector winds over eastern China in 2022.The results show that the ECMWF forecast is superior to CMA-MESO in predicting the spatial distribution and intensity of 10-m vector winds.Both models overestimate the wind speed in East China,and CMA-MESO overestimates the wind speed to a greater extent.The forecasting skill of the vector wind field in both models decreases with increasing lead time.The forecasting skill of CMA-MESO fluctuates more and decreases faster than that of the ECMWF forecast.There is a significant negative correlation between the model vector wind forecasting skill and terrain height.This study provides a scientific evaluation of the local application of vector wind forecasts of the CMA-MESO model and ECMWF forecast. 展开更多
关键词 model evaluation Vector winds CMA-MESO ECMWF forecasting skill
在线阅读 下载PDF
Regional Storm Surge Forecast Method Based on a Neural Network and the Coupled ADCIRC-SWAN Model 被引量:1
9
作者 Yuan SUN Po HU +2 位作者 Shuiqing LI Dongxue MO Yijun HOU 《Advances in Atmospheric Sciences》 2025年第1期129-145,共17页
Timely and accurate forecasting of storm surges can effectively prevent typhoon storm surges from causing large economic losses and casualties in coastal areas.At present,numerical model forecasting consumes too many ... Timely and accurate forecasting of storm surges can effectively prevent typhoon storm surges from causing large economic losses and casualties in coastal areas.At present,numerical model forecasting consumes too many resources and takes too long to compute,while neural network forecasting lacks regional data to train regional forecasting models.In this study,we used the DUAL wind model to build typhoon wind fields,and constructed a typhoon database of 75 processes in the northern South China Sea using the coupled Advanced Circulation-Simulating Waves Nearshore(ADCIRC-SWAN)model.Then,a neural network with a Res-U-Net structure was trained using the typhoon database to forecast the typhoon processes in the validation dataset,and an excellent storm surge forecasting effect was achieved in the Pearl River Estuary region.The storm surge forecasting effect of stronger typhoons was improved by adding a branch structure and transfer learning. 展开更多
关键词 regional storm surge forecast coupled ADCIRC-SWAN model neural network Res-U-Net structure
在线阅读 下载PDF
Enhancing Deep Learning Soil Moisture Forecasting Models by Integrating Physics-based Models 被引量:1
10
作者 Lu LI Yongjiu DAI +5 位作者 Zhongwang WEI Wei SHANGGUAN Nan WEI Yonggen ZHANG Qingliang LI Xian-Xiang LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1326-1341,共16页
Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient... Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient representation of land-surface processes.In addition to PB models,deep learning(DL)models have been widely used in SM predictions recently.However,few pure DL models have notably high success rates due to lacking physical information.Thus,we developed hybrid models to effectively integrate the outputs of PB models into DL models to improve SM predictions.To this end,we first developed a hybrid model based on the attention mechanism to take advantage of PB models at each forecast time scale(attention model).We further built an ensemble model that combined the advantages of different hybrid schemes(ensemble model).We utilized SM forecasts from the Global Forecast System to enhance the convolutional long short-term memory(ConvLSTM)model for 1–16 days of SM predictions.The performances of the proposed hybrid models were investigated and compared with two existing hybrid models.The results showed that the attention model could leverage benefits of PB models and achieved the best predictability of drought events among the different hybrid models.Moreover,the ensemble model performed best among all hybrid models at all forecast time scales and different soil conditions.It is highlighted that the ensemble model outperformed the pure DL model over 79.5%of in situ stations for 16-day predictions.These findings suggest that our proposed hybrid models can adequately exploit the benefits of PB model outputs to aid DL models in making SM predictions. 展开更多
关键词 soil moisture forecasting hybrid model deep learning ConvLSTM attention mechanism
在线阅读 下载PDF
Using a Multi-Output Neural Network Model to Standardize Heterogeneous Fisheries Data
11
作者 XU Zhenqi LIU Yang WANG Jintao 《Journal of Ocean University of China》 2025年第5期1373-1385,I0667-I0676,共23页
Biological data in fishery ecology have complex structures and are highly heterogeneous.Catch per unit effort(CPUE)estimated from fishery-dependent data are often used to characterize abundance indices(AI)of fish spec... Biological data in fishery ecology have complex structures and are highly heterogeneous.Catch per unit effort(CPUE)estimated from fishery-dependent data are often used to characterize abundance indices(AI)of fish species,which is critical in fish stock assessment.However,additional considerations need to be undertaken to ensure robust estimation because of the latently complicated structures in fishery-dependent data.Here,we elaborated the process of constructing multi-output artificial neural network models to standardize CPUE for heterogeneous fishing operations and applied it to the skipjack tuna(Katsuwonus pelamis)in the western and central Pacific Ocean(WCPO).Seasonal,spatial,and environmental factors were input variables,and the CPUE of four types of skipjack tuna fisheries were set as output variables.The optimal structure for multi-output neural network was evaluated by systematic comparison in 100 runs hold-out cross-validation.The results showed that the final multi-output neural network model with high accuracy can predict the spatial and temporal trends of skipjack tuna abundance. 展开更多
关键词 western and central Pacific Ocean skipjack tuna BP neural network multi-output model CPUE standardization ENSO
在线阅读 下载PDF
Test and Evaluation of Relative Humidity Forecast in Each Competition Area of the "14 th National Winter Games" by Intelligent Forecasting Methods
12
作者 Sitong LIU Xuefeng YANG 《Meteorological and Environmental Research》 2025年第1期37-40,共4页
Based on ground observation data of relative humidity,the prediction performance of STNF and MIFS in each competition area during February 13-26,2024 was tested and evaluated by using two intelligent forecasting metho... Based on ground observation data of relative humidity,the prediction performance of STNF and MIFS in each competition area during February 13-26,2024 was tested and evaluated by using two intelligent forecasting methods(STNF and MIFS).The results show that STNF had better performance in forecasting relative humidity in high-altitude areas,and was suitable for fine forecasting under complex terrain.MIFS improved the short-term forecast of some low-altitude stations,but the long-term reliability was insufficient.STNF method performed better than MIFS during 0-24 h.As the prediction time extended to 24-72 h,the errors of both methods showed a systematic increase trend.STNF had higher precision,lower root mean square error and smaller mean error in most regions under the background of most weather systems,showing its superiority as a forecasting method of relative humidity.However,the precision of MIFS was slightly higher than that of STNF in Liangcheng without system background,revealing that MIFS may also be an effective option in some specific conditions. 展开更多
关键词 Intelligent forecast Relative humidity model test
在线阅读 下载PDF
Short-Term Electricity Load Forecasting Based on T-CFSFDP Clustering and Stacking-BiGRU-CBAM
13
作者 Mingliang Deng Zhao Zhang +1 位作者 Hongyan Zhou Xuebo Chen 《Computers, Materials & Continua》 2025年第7期1189-1202,共14页
To fully explore the potential features contained in power load data,an innovative short-term power load forecasting method that integrates data mining and deep learning techniques is proposed.Firstly,a density peak f... To fully explore the potential features contained in power load data,an innovative short-term power load forecasting method that integrates data mining and deep learning techniques is proposed.Firstly,a density peak fast search algorithm optimized by time series weighting factors is used to cluster and analyze load data,accurately dividing subsets of data into different categories.Secondly,introducing convolutional block attention mechanism into the bidirectional gated recurrent unit(BiGRU)structure significantly enhances its ability to extract key features.On this basis,in order to make the model more accurately adapt to the dynamic changes in power load data,subsets of different categories of data were used for BiGRU training based on attention mechanism,and extreme gradient boosting was selected as the meta model to effectively integrate multiple sets of historical training information.To further optimize the parameter configuration of the meta model,Bayesian optimization techniques are used to achieve automated adjustment of hyperparameters.Multiple sets of comparative experiments were designed,and the results showed that the average absolute error of the method in this paper was reduced by about 8.33%and 4.28%,respectively,compared with the single model and the combined model,and the determination coefficient reached the highest of 95.99,which proved that the proposed method has a better prediction effect. 展开更多
关键词 Load forecasting density clustering attention mechanism neural network model decomposition
在线阅读 下载PDF
Forecasting Solar Energy Production across Multiple Sites Using Deep Learning
14
作者 Samira Marhraoui Basma Saad +2 位作者 Hassan Silkan Said Laasri Asmaa El Hannani 《Energy Engineering》 2025年第7期2653-2672,共20页
Photovoltaic(PV)power forecasting is essential for balancing energy supply and demand in renewable energy systems.However,the performance of PV panels varies across different technologies due to differences in efficie... Photovoltaic(PV)power forecasting is essential for balancing energy supply and demand in renewable energy systems.However,the performance of PV panels varies across different technologies due to differences in efficiency and how they process solar radiation.This study evaluates the effectiveness of deep learning models in predicting PV power generation for three panel technologies:Hybrid-Si,Mono-Si,and Poly-Si,across three forecasting horizons:1-step,12-step,and 24-step.Among the tested models,the Convolutional Neural Network—Long Short-Term Memory(CNN-LSTM)architecture exhibited superior performance,particularly for the 24-step horizon,achieving R^(2)=0.9793 and MAE 0.0162 for the Poly-Si array,followed by Mono-Si(R^(2)=0.9768)and Hybrid-Si arrays(R^(2)=0.9769).These findings demonstrate that the CNN-LSTM model can provide accurate and reliable PV power predictions for all studied technologies.By identifying the most suitable predictive model for each panel technology,this study contributes to optimizing PV power forecasting and improving energy management strategies. 展开更多
关键词 CNN-LSTM deep learning models forecasting horizons PV energy prediction accuracy solar panel technologies
在线阅读 下载PDF
Integrating behavioral ecology into dengue vector risk forecasting
15
作者 Nathkapach Kaewpitoon Rattanapitoon Schawanya Kaewpitoon Rattanapitoon 《Asian Pacific Journal of Tropical Medicine》 2025年第8期380-382,共3页
To the Editor:We read with interest the article by Wang et al.,titled"Modeling the spread risk of dengue vector Aedes albopictus caused by environmental factors in Shanghai,China"[1].The use of ensemble ecol... To the Editor:We read with interest the article by Wang et al.,titled"Modeling the spread risk of dengue vector Aedes albopictus caused by environmental factors in Shanghai,China"[1].The use of ensemble ecological niche models to map Aedes albopictus distribution in urban Shanghai is both timely and methodologically sound.The identified drivers-vegetation index,temperature,and proximity to water-are well-known contributors to vector proliferation.However,one dimension remains notably underrepresented:human behavioral factors. 展开更多
关键词 forecasting behavioral ecology human behavior dengue vector risk ensemble ecological niche models environmental factors aedes albopictus
暂未订购
Advanced Time Series Forecasting for CO_(2) Emissions:Insights for Sustainable Climate Policies
16
作者 P.M.Hrithik Mohammed Osman Eltigani +3 位作者 Mohammad Shahfaraz Khan Imran Azad Amir Ahmad Dar Saqib Ul Sabha 《Journal of Environmental & Earth Sciences》 2025年第5期360-371,共12页
To address the global issue of climate change and create focused mitigation plans,accurate CO_(2)emissions forecasting is essential.Using CO_(2)emissions data from 1990 to 2023,this study assesses the predicting perfo... To address the global issue of climate change and create focused mitigation plans,accurate CO_(2)emissions forecasting is essential.Using CO_(2)emissions data from 1990 to 2023,this study assesses the predicting performance of five sophisticated models:Random Forest(RF),XGBoost,Support Vector Regression(SVR),Long Short-Term Memory networks(LSTM),and ARIMA To give a thorough evaluation of the models’performance,measures including Mean Absolute Error(MAE),Root Mean Square Error(RMSE),and Mean Absolute Percentage Error(MAPE)are used.To guarantee dependable model implementation,preprocessing procedures are carried out,such as feature engineering and stationarity tests.Machine learning models outperform ARIMA in identifying complex patterns and long-term associations,but ARIMA does better with data that exhibits strong linear trends.These results provide important information about how well the model fits various forecasting scenarios,which helps develop data-driven carbon reduction programs.Predictive modeling should be incorporated into sustainable climate policy to encourage the adoption of low-carbon technologies and proactive decisionmaking.Achieving long-term environmental sustainability requires strengthening carbon trading systems,encouraging clean energy investments,and enacting stronger emission laws.In line with international climate goals,suggestions for lowering CO_(2)emissions include switching to renewable energy,increasing energy efficiency,and putting afforestation initiatives into action. 展开更多
关键词 CO_(2)Emissions Time Series forecasting Climate Change Machine Learning models ARIMA Sustainability
在线阅读 下载PDF
Bidirectional LSTM-Based Energy Consumption Forecasting:Advancing AI-Driven Cloud Integration for Cognitive City Energy Management
17
作者 Sheik Mohideen Shah Meganathan Selvamani +4 位作者 Mahesh Thyluru Ramakrishna Surbhi Bhatia Khan Shakila Basheer Wajdan Al Malwi Mohammad Tabrez Quasim 《Computers, Materials & Continua》 2025年第5期2907-2926,共20页
Efficient energy management is a cornerstone of advancing cognitive cities,where AI,IoT,and cloud computing seamlessly integrate to meet escalating global energy demands.Within this context,the ability to forecast ele... Efficient energy management is a cornerstone of advancing cognitive cities,where AI,IoT,and cloud computing seamlessly integrate to meet escalating global energy demands.Within this context,the ability to forecast electricity consumption with precision is vital,particularly in residential settings where usage patterns are highly variable and complex.This study presents an innovative approach to energy consumption forecasting using a bidirectional Long Short-Term Memory(LSTM)network.Leveraging a dataset containing over twomillionmultivariate,time-series observations collected froma single household over nearly four years,ourmodel addresses the limitations of traditional time-series forecasting methods,which often struggle with temporal dependencies and non-linear relationships.The bidirectional LSTM architecture processes data in both forward and backward directions,capturing past and future contexts at each time step,whereas existing unidirectional LSTMs consider only a single temporal direction.This design,combined with dropout regularization,leads to a 20.6%reduction in RMSE and an 18.8%improvement in MAE over conventional unidirectional LSTMs,demonstrating a substantial enhancement in prediction accuracy and robustness.Compared to existing models—including SVM,Random Forest,MLP,ANN,and CNN—the proposed model achieves the lowest MAE of 0.0831 and RMSE of 0.2213 during testing,significantly outperforming these benchmarks.These results highlight the model’s superior ability to navigate the complexities of energy usage patterns,reinforcing its potential application in AI-driven IoT and cloud-enabled energy management systems for cognitive cities.By integrating advanced machine learning techniqueswith IoT and cloud infrastructure,this research contributes to the development of intelligent,sustainable urban environments. 展开更多
关键词 Deep learning bidirectional LSTM energy consumption forecasting time-series analysis predictive modeling machine learning in energy management
在线阅读 下载PDF
Application of interval type-2 TSK FLS method based on IGWO algorithm in short-term photovoltaic power forecasting
18
作者 LI Jun ZENG Yuxiang 《Journal of Measurement Science and Instrumentation》 2025年第2期258-271,共14页
For short-term PV power prediction,based on interval type-2 Takagi-Sugeno-Kang fuzzy logic systems(IT2 TSK FLS),combined with improved grey wolf optimizer(IGWO)algorithm,an IGWO-IT2 TSK FLS method was proposed.Compare... For short-term PV power prediction,based on interval type-2 Takagi-Sugeno-Kang fuzzy logic systems(IT2 TSK FLS),combined with improved grey wolf optimizer(IGWO)algorithm,an IGWO-IT2 TSK FLS method was proposed.Compared with the type-1 TSK fuzzy logic system method,interval type-2 fuzzy sets could simultaneously model both intra-personal uncertainty and inter-personal uncertainty based on the training of the existing error back propagation(BP)algorithm,and the IGWO algorithm was used for training the model premise and consequent parameters to further improve the predictive performance of the model.By improving the gray wolf optimization algorithm,the early convergence judgment mechanism,nonlinear cosine adjustment strategy,and Levy flight strategy were introduced to improve the convergence speed of the algorithm and avoid the problem of falling into local optimum.The interval type-2 TSK FLS method based on the IGWO algorithm was applied to the real-world photovoltaic power time series forecasting instance.Under the same conditions,it was also compared with different IT2 TSK FLS methods,such as type I TSK FLS method,BP algorithm,genetic algorithm,differential evolution,particle swarm optimization,biogeography optimization,gray wolf optimization,etc.Experimental results showed that the proposed method based on IGWO algorithm outperformed other methods in performance,showing its effectiveness and application potential. 展开更多
关键词 photovoltaic power interval type-2 fuzzy logic system grey wolf optimizer algorithm forecast performance of model
在线阅读 下载PDF
Forecasting the Future:How Artificial Intelligence Is Revolutionizing Global Energy Demand Prediction
19
作者 Farhang Mossavar-Rahmani Bahman Zohuri 《Journal of Energy and Power Engineering》 2025年第2期74-83,共10页
Accurate energy demand forecasting is crucial in today’s rapidly electrifying world with decentralized systems and integrated renewables.Traditional models struggle with the dynamic complexities,but AI(artificial int... Accurate energy demand forecasting is crucial in today’s rapidly electrifying world with decentralized systems and integrated renewables.Traditional models struggle with the dynamic complexities,but AI(artificial intelligence),particularly ML(machine learning)and DL(deep learning),offers transformative solutions.This article explores how AI enhances forecasting accuracy,enables real-time adaptability,and supports strategic energy management.It examines the synergy between AI,IoT(Internet of Things)devices,and smart grids in generating predictive and prescriptive insights.Through case studies,we analyze the benefits and challenges of deploying AI in this domain,including data quality,model explainability,and infrastructure needs.Ultimately,AI emerges as a key enabler for the resilient,data-driven energy systems required to meet modern society’s evolving demands and achieve a sustainable future. 展开更多
关键词 Energy demand forecasting AI ML smart grid time-series prediction DL models IOT renewable energy integration real-time energy analytics sustainable energy planning
在线阅读 下载PDF
Comparison among the UECM Model, and the Composite Model in Forecasting Malaysian Imports
20
作者 Mohamed A. H. Milad Hanan Moh. B. Duzan 《Open Journal of Statistics》 2024年第2期163-178,共16页
For more than a century, forecasting models have been crucial in a variety of fields. Models can offer the most accurate forecasting outcomes if error terms are normally distributed. Finding a good statistical model f... For more than a century, forecasting models have been crucial in a variety of fields. Models can offer the most accurate forecasting outcomes if error terms are normally distributed. Finding a good statistical model for time series predicting imports in Malaysia is the main target of this study. The decision made during this study mostly addresses the unrestricted error correction model (UECM), and composite model (Combined regression—ARIMA). The imports of Malaysia from the first quarter of 1991 to the third quarter of 2022 are employed in this study’s quarterly time series data. The forecasting outcomes of the current study demonstrated that the composite model offered more probabilistic data, which improved forecasting the volume of Malaysia’s imports. The composite model, and the UECM model in this study are linear models based on responses to Malaysia’s imports. Future studies might compare the performance of linear and nonlinear models in forecasting. 展开更多
关键词 Composite model UECM ARIMA forecasting MALAYSIA
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部