期刊文献+
共找到5,797篇文章
< 1 2 250 >
每页显示 20 50 100
Modulation of exchange bias in Py/IrMn films by surface acoustic waves
1
作者 Jie Dong Shuai Mi +8 位作者 Meihong Liu Huiliang Wu Jinxuan Shi Huifang Qiao Qian Zhao Teng-Fei Zhang Chenbo Zhao Jianbo Wang Qingfang Liu 《Chinese Physics B》 2025年第8期765-770,共6页
We investigate the surface acoustic wave(SAW)modulation of the exchange bias field(H_(EB))in Py/IrMn films deposited on LiNbO_(3)substrates.We measured the anisotropic magnetoresistance(AMR)of the multilayer film when... We investigate the surface acoustic wave(SAW)modulation of the exchange bias field(H_(EB))in Py/IrMn films deposited on LiNbO_(3)substrates.We measured the anisotropic magnetoresistance(AMR)of the multilayer film when continuous SAW or pulsed SAW were applied and obtained H_(EB).With continuous SAW,the H_(EB)decreases continuously with power.While in the case of pulsed SAW,the H_(EB)first decreases and then stabilizes.Compared to pulsed SAW,the thermal effects from the continuous SAW lead to the continuous decrease of H_(EB)at higher SAW power,which is verified by the measurement of H_(EB)at different temperatures and input currents.Furthermore,our results show that pulsed SAW can effectively avoid thermal effects.The decrease of H_(EB)at smaller power in both continuous and pulsed SAW is mainly due to the SAW-induced dynamic strain field,which leads to a small perturbation in the magnetic moment of the FM layer.Combined with the AMR values measured at different angles during the saturation field,we believe that the SAW-induced dynamic strain field causes a 15°angle between the magnetic moment and the easy axis.Our experiments provide a different approach to manipulating H_(EB),opening up a potential avenue for future manipulation of antiferromagnetic moments. 展开更多
关键词 exchange bias surface acoustic wave anisotropic magnetoresistance thermal effect
原文传递
Shallow Water Waves with Surface Tension by Laplace–Adomian Decomposition
2
作者 Oswaldo Gonzalez-Gaxiola Yakup Yildirim +1 位作者 Luminita Moraru Anjan Biswas 《Fluid Dynamics & Materials Processing》 2025年第9期2273-2287,共15页
This study presents a numerical investigation of shallow water wave dynamics with particular emphasis on the role of surface tension.In the absence of surface tension,shallow water waves are primarily driven by gravit... This study presents a numerical investigation of shallow water wave dynamics with particular emphasis on the role of surface tension.In the absence of surface tension,shallow water waves are primarily driven by gravity and are well described by the classical Boussinesq equation,which incorporates fourth-order dispersion.Under this framework,solitary and shock waves arise through the balance of nonlinearity and gravity-induced dispersion,producing waveforms whose propagation speed,amplitude,and width depend largely on depth and initial disturbance.The resulting dynamics are comparatively smoother,with solitary waves maintaining coherent structures and shock waves displaying gradual transitions.When surface tension is incorporated,however,the dynamics become significantly richer.Surface tension introduces additional sixth-order dispersive terms into the governing equation,extending the classical model to the sixth-order Boussinesq equation.This higher-order dispersion modifies the balance between nonlinearity and dispersion,leading to sharper solitary wave profiles,altered shock structures,and a stronger sensitivity of wave stability to parametric variations.Surface tension effects also change the scaling laws for wave amplitude and velocity,producing conditions where solitary waves can narrow while maintaining large amplitudes,or where shock fronts steepen more rapidly compared to the tension-free case.These differences highlight how capillary forces,though often neglected in macroscopic wave studies,play a fundamental role in shaping dynamics at smaller scales or in systems with strong fluid–interface interactions.The analysis in this work is carried out using the Laplace-Adomian Decomposition Method(LADM),chosen for its efficiency and accuracy in solving high-order nonlinear partial differential equations.The numerical scheme successfully recovers both solitary and shock wave solutions under the sixth-order model,with error analysis confirming remarkably low numerical deviations.These results underscore the robustness of the method while demonstrating the profound contrast between shallow water wave dynamics without and with surface tension. 展开更多
关键词 Boussinesq equation shallow water waves surface tension Laplace–Adomian Decomposition Method
在线阅读 下载PDF
Advance in Sea Surface Wind and Wave Retrieval from Synthetic Aperture Radar Image:An Overview
3
作者 HAO Mengyu HU Yuyi +3 位作者 SHAO Weizeng MIGLIACCIO Maurizio JIANG Xingwei WANG Zhenyuan 《Journal of Ocean University of China》 2025年第4期821-839,共19页
Synthetic aperture radar(SAR)aboard SEASAT was first launched in 1978.At the beginning of the 21st century,the Chinese remote sensing community recognized the urgent need to develop domestic SAR capabilities.Unlike sc... Synthetic aperture radar(SAR)aboard SEASAT was first launched in 1978.At the beginning of the 21st century,the Chinese remote sensing community recognized the urgent need to develop domestic SAR capabilities.Unlike scatterometers and al-timeters,space-borne SAR offers high-resolution images of the ocean,regardless of weather conditions or time of day.SAR imagery provides rich information about the sea surface,capturing complicated dynamic processes in the upper layers of the ocean,particular-ly in relation to tropical cyclones.Over the past four decades,the advantages of SAR have been increasingly recognized,leading to notable marine applications,especially in the development of algorithms for retrieving wind and wave data from SAR images.This study reviews the history,progress,and future outlook of SAR-based monitoring of sea surface wind and waves.In particular,the ap-plicability of various SAR wind and wave algorithms is systematically investigated,with a particular focus on their performance un-der extreme sea conditions. 展开更多
关键词 sea surface wind wave synthetic aperture radar tropical cyclone wave breaking
在线阅读 下载PDF
Magnetic resonance behavior modulation of Ba_(3)Co_(1.6−x)Zn_(x)Cu_(0.4)Fe_(24)O_(41)hexaferrites for microwave absorption and surface wave suppression
4
作者 Ruiyang Tan Liqiang Jin +3 位作者 Xuyao Wei Bo Wei Jintang Zhou Ping Chen 《Journal of Materials Science & Technology》 2025年第11期292-301,共10页
The intrinsic high magnetocrystalline anisotropy equivalent field can help the hexaferrites break through Snoek’s limit and increase the resonance frequency.This is advantageous for microwave absorption applications ... The intrinsic high magnetocrystalline anisotropy equivalent field can help the hexaferrites break through Snoek’s limit and increase the resonance frequency.This is advantageous for microwave absorption applications in the mid to low-frequency range of gigahertz.In this study,we prepared Z-type Ba_(3)Co_(1.6−x)Zn_(x)Cu_(0.4)Fe_(24)O_(41)hexaferrites using the sol-gel auto-combustion method.By changing the ratio of Co and Zn ions,the magnetocrystalline anisotropy of ferrite is further ma-nipulated,resulting in significant changes in their magnetic resonance frequency and intensity.Ba_(3)Zn_(1.6)Cu_(0.4)Fe_(24)O_(41)with high-frequency resonance achieved the lowest reflectivity of−72.18 dB at 15.56 GHz,while Ba_(3)Co_(1.5)Zn_(0.1)Cu_(0.4)Fe_(24)O_(41)with stronger loss obtained the widest bandwidth of 4.93 GHz(6.14-11.07).Additionally,we investigated surface wave suppression properties previously overlooked.Ba_(3)Co_(1.5)Zn_(0.1)Cu_(0.4)Fe_(24)O_(41)can achieve a larger attenuation at low frequency under low thickness,which has an excellent effect on reducing backscattering.This work provides a useful reference for the preparation and application of high-performance magnetic-loss materials. 展开更多
关键词 FERRITE PERMEABILITY Microwave absorption surface wave
原文传递
Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces
5
作者 Zhuo Wang Weikang Pan +7 位作者 Yu He Zhiyan Zhu Xiangyu Jin Muhan Liu Shaojie Ma Qiong He Shulin Sun Lei Zhou 《Opto-Electronic Science》 2025年第1期1-11,共11页
On-chip devices for generating pre-designed vectorial optical fields(VOFs)under surface wave(SW)excitations are highly desired in integrated photonics.However,conventional devices are usually of large footprints,low e... On-chip devices for generating pre-designed vectorial optical fields(VOFs)under surface wave(SW)excitations are highly desired in integrated photonics.However,conventional devices are usually of large footprints,low efficiencies,and limited wave-control capabilities.Here,we present a generic approach to design ultra-compact on-chip devices that can efficiently generate pre-designed VOFs under SW excitations,and experimentally verify the concept in terahertz(THz)regime.We first describe how to design SW-excitation metasurfaces for generating circularly polarized complex beams,and experimentally demonstrate two meta-devices to realize directional emission and focusing of THz waves with oppo-site circular polarizations,respectively.We then establish a systematic approach to construct an integrated device via merging two carefully designed metasurfaces,which,under SW excitations,can separately produce pre-designed far-field patterns with different circular polarizations and generate target VOF based on their interference.As a proof of con-cept,we demonstrate experimentally a meta-device that can generate a radially polarized Bessel beam under SW excita-tion at~0.4 THz.Experimental results agree well with full-wave simulations,collectively verifying the performance of our device.Our study paves the road to realizing highly integrated on-chip functional THz devices,which may find many ap-plications in biological sensing,communications,displays,image multiplexing,and beyond. 展开更多
关键词 surface waves vector beam multi-pixel metasurface TERAHERTZ ultrathin and high-efficiency
在线阅读 下载PDF
Electrically reconfigurable surface acoustic wave phase shifters based on ZnO TFTs on LiNbO_(3)substrate
6
作者 Yi Zhang Zilong Xiong +13 位作者 Lewei He Yang Jiang Chenkai Deng Fangzhou Du Kangyao Wen Chuying Tang Qiaoyu Hu Mujun Li Xiaohui Wang Wenhui Wang Han Wang Qing Wang Hongyu Yu Zhongrui Wang 《International Journal of Extreme Manufacturing》 2025年第3期493-503,共11页
Reconfigurable surface acoustic wave(SAW)phase shifters have garnered significant attention owing to their potential applications in emerging fields such as secure wireless communication,adaptable signal processing,an... Reconfigurable surface acoustic wave(SAW)phase shifters have garnered significant attention owing to their potential applications in emerging fields such as secure wireless communication,adaptable signal processing,and intelligent sensing systems.Among various modulation methods,employing gate voltage-controlled tuning methodologies that leverage acoustoelectric interactions has proven to be an efficient modulation approach that requires a low bias voltage.However,current acoustoelectric devices suffer from limited tunability,intricate heterogeneous structures,and complex manufacturing processes,all of which impede their practical applications.In this study,we present a novel material system for voltage-tunable SAW phase shifters.This system incorporates an atomic layer deposition ZnO thin-film transistors on LiNbO_(3)structure.This structure combines the benefits of LiNbO_(3)'s high electromechanical coupling coefficient(K^(2))and ZnO's superior conductivity adjustability.Besides,the device possesses a simplified structural configuration,which is easy to fabricate.Devices with different mesa lengths were fabricated and measured,and two of the different modes were compared.The results indicate that both the maximum phase shift and attenuation of the Rayleigh mode and longitudinal leaky SAW(LLSAW)increase proportionally with mesa length.Furthermore,LLSAW with larger effective electromechanical coupling coefficients(K_(eff)^(2))values exhibits greater phase velocity shifts and attenuation coefficients,with a maximum phase velocity tuning of 1.22%achieved.It is anticipated that the proposed devices will find utility in a variety of applications necessitating tunable acoustic components. 展开更多
关键词 phase shifters surface acoustic wave acoustoelectric effect ZnO thin-film transistors
在线阅读 下载PDF
Unveiling three-dimensional sea surface signatures caused by internal solitary waves:insights from the surface water ocean topography mission 被引量:1
7
作者 Xudong ZHANG Xiaofeng LI 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第3期709-714,共6页
Internal solitary waves(ISW),characterized by large amplitude and long propagation distance,are widespread in global oceans.While remote sensing images have played an essential role in studying ISWs,they mainly exploi... Internal solitary waves(ISW),characterized by large amplitude and long propagation distance,are widespread in global oceans.While remote sensing images have played an essential role in studying ISWs,they mainly exploit two-dimensional image information.However,with the launch of the surface water ocean topography(SWOT)satellite on December 16,2022,a unique opportunity has emerged to capture wide-swath three-dimensional ISW-induced sea surface information.In this study,we examine ISWs in the Andaman Sea using data from the Ka-band Radar Interferometer(KaRIN),a crucial sensor onboard SWOT.KaRIN not only provides backscattering satellite images but also employs synthetic aperture interferometry techniques to retrieve wide-swath two-dimensional sea surface height measurements.Our observations in the Andaman Sea revealed the presence of ISWs characterized by dark-bright strips and surface elevation solitons.The surface soliton has an amplitude of 0.32 m,resulting in an estimation of ISW amplitude of approximately 60 m.In contrast to traditional two-dimensional satellite images or nadir-looking altimetry data,the SWOT mission’s capability to capture threedimensional sea surface information represents a significant advancement.This breakthrough holds substantial promise for ISW studies,particularly in the context of ISW amplitude inversion. 展开更多
关键词 internal solitary wave(ISW) surface water ocean topography(SWOT) ALTIMETER
在线阅读 下载PDF
Contribution of Surface Waves to Sea Surface Temperatures in the Arctic Ocean
8
作者 WEI Meng SHAO Weizeng +3 位作者 SHEN Wei HU Yuyi ZHANG Yu ZUO Juncheng 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第5期1151-1162,共12页
The aim of our study was to examine the contribution of surface waves from WAVEWATCH-III(WW3)to the variation in sea surface temperature(SST)in the Arctic Ocean.The simulated significant wave height(SWH)were validated... The aim of our study was to examine the contribution of surface waves from WAVEWATCH-III(WW3)to the variation in sea surface temperature(SST)in the Arctic Ocean.The simulated significant wave height(SWH)were validated against the products from Haiyang-2B(HY-2B)in 2021,obtaining a root mean squared error(RMSE)of 0.45 with a correlation of 0.96 and scatter index of 0.18.The wave-induced effects,i.e.,wave breaking and mixing induced by nonbearing waves resulting in changes in radiation stress and Stokes drift,were calculated from WW3,ERA-5 wind,SST,and salinity data from the National Centers for Environmental Prediction and were taken as forcing fields in the Stony Brook Parallel Ocean Model.The results showed that an RMSE of 0.81℃ with wave-induced effects was less than the RMSE of 1.11℃ achieved without the wave term compared with the simulated SST with the measurements from Argos.Considering the four wave effects and sea ice freezing,the SST in the Arctic Ocean decreased by up to 1℃ in winter.Regression analysis revealed that the SWH was linear in SST(values without subtraction of waves)in summer and autumn,but this behavior was not observed in spring or winter due to the presence of sea ice.The interannual variation also presented a negative relationship between the difference in SST and SWH. 展开更多
关键词 sea surface wave sea surface temperature Arctic Ocean
在线阅读 下载PDF
Study of the ability of SWOT to detect sea surface height changes caused by internal solitary waves
9
作者 Hao Zhang Chenqing Fan +1 位作者 Lina Sun Junmin Meng 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第5期54-64,共11页
Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims t... Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims to preliminarily analyze the detection capabilities of the Ka-band radar interferometer(KaRIn)and Nadir altimeter(NALT),which are carried out by SWOT for internal solitary waves(ISWs),and to gather other remote sensing images to validate SWOT observations.KaRIn effectively detects ISW surface features and generates surface height variation maps reflecting the modulations induced by ISWs.However,its swath width does not completely cover the entire wave packet,and the resolution of L2/L3 level products(about 2 km)cannot be used to identify ISWs with smaller wavelengths.Additionally,significant wave height(SWH)images exhibit blocky structures that are not suitable for ISW studies;sea surface height anomaly(SSHA)images display systematic leftright banding.We optimize this imbalance using detrending methods;however,more precise treatment should commence with L1-level data.Quantitative analysis based on L3-level SSHA data indicates that the average SSHA variation induced by ISWs ranges from 10 cm to 20 cm.NALTs disturbed by ISWs record unusually elevated SWH and SSHA values,rendering the data unsuitable for analysis and necessitating targeted corrections in future retracking algorithms.For the normalized radar cross section,Ku-band and four-parameter maximum likelihood estimation retracking demonstrated greater sensitivity to minor changes in the sea surface,making them more suitable for ISW detection.In conclusion,SWOT demonstrates outstanding capabilities in ISW detection,significantly advancing research on the modulation of the sea surface by ISWs and remote sensing imaging mechanisms. 展开更多
关键词 internal solitary waves surface Water and Ocean Topography(SWOT) Ka-band radar interferometer(KaRIn) Nadir altimeter(NALT) sea surface height anomaly(SSHA) normalized radar cross section(NRCS)
在线阅读 下载PDF
Derivation of Cylindrical Internal-Surface Acoustic Waves and Their Small Gravity Effect
10
作者 Philipp G. Kornreich 《Journal of Modern Physics》 2024年第12期2193-2219,共27页
The properties of Cylindrical Internal-Surface Acoustic Waves (CISAW) propagating on the inside surface of a high purity fused quartz tubular fiber are derived from basic principles using a variational method. The CIS... The properties of Cylindrical Internal-Surface Acoustic Waves (CISAW) propagating on the inside surface of a high purity fused quartz tubular fiber are derived from basic principles using a variational method. The CISAW consist of Energy Momentum Packets (EMP) moving in a looping motion. The EMP have mass and are affected by gravity similar to a pendulum bob. The effect of gravity on CISAW is much larger than the effect of gravity in a light wave. Therefore, one can build much smaller CISAW Interferometer Gravity wave Observatories (CIGO) than the present km size Light Interferometer Gravity wave Observatories (LIGO). An array of CIGO can be used to detect gravity wave images. Since the wavelength of gravity waves is much larger than the expected spacing between CIGO array elements this would result in sub-wavelength images. It would be interesting to determine what new discoveries could be made using such an array. 展开更多
关键词 Elastic Constant Tensor Continuum Mechanics LAGRANGIAN wave Equation surface Acoustic waves Newtonian Gravity
在线阅读 下载PDF
On-chip metasurfaces unlock efficient vector terahertz beams
11
作者 Jitao Ji Tao Li Shining Zhu 《Opto-Electronic Advances》 2025年第7期1-3,共3页
An efficient on-chip platform for generating customizable vectorial optical fields is crucial and highly-pursued.While on-chip metasurfaces have opened up avenues for multi-functional coupling from on-chip surface wav... An efficient on-chip platform for generating customizable vectorial optical fields is crucial and highly-pursued.While on-chip metasurfaces have opened up avenues for multi-functional coupling from on-chip surface wave to free-space propagating wave,they typically encounter the trade-off between extraction efficiency and wavefront accuracy.Recently,Prof.Lei Zhou’s group pioneered a strategy employing geometric metal meta-atoms with low polarization conversion ratio to overcome this bottleneck and experimentally demonstrated generation of pre-designed terahertz vector beams with efficiency exceeding 90%.This approach establishes a generic,high-performance framework for advanced on-chip meta-devices. 展开更多
关键词 metasurface optical field manipulation surface wave vectorial optical field
在线阅读 下载PDF
Responses of the Stratospheric Arctic Vortex to Regional Sea Surface Temperature Changes
12
作者 Lingyu ZHOU Yan XIA +2 位作者 Fei XIE Chen ZHOU Chuanfeng ZHAO 《Advances in Atmospheric Sciences》 2025年第10期2083-2101,共19页
The stratospheric Arctic vortex(SAV)plays a critical role in forecasting cold winters in the northern midlatitudes.In this study,we systematically examined the responses of SAV intensity to regional sea surface temper... The stratospheric Arctic vortex(SAV)plays a critical role in forecasting cold winters in the northern midlatitudes.In this study,we systematically examined the responses of SAV intensity to regional sea surface temperature(SST)changes using idealized SST patch experiments with a climate model.Our findings reveal that the SAV intensity is most sensitive to SST variations in the tropics and northern midlatitudes during boreal winter(December-January-February).Specifically,warming in the tropical Pacific and Atlantic leads to a weakening of the SAV,while warming in the tropical Indian Ocean,northern midlatitude Atlantic,and northwestern Pacific strengthens the SAV.Notably,the most substantial SAV weakening(strengthening)is triggered by warming in the tropical western Pacific(tropical central Indian Ocean),with a maximum magnitude of approximately 2.23 K K^(-1)(-1.77 K K^(-1)).The SST warming in the tropics influences the tropical convections,which excite Rossby wave trains.These wave trains can interfere with the climatological waves in the mid-high latitudes,while the SST warming in the northern midlatitudes can influence tropospheric planetary wavenumber-1 and wavenumber-2 directly.The changes in tropospheric planetary waves modulate the upward propagation of wave activities and impact the SAV intensity.Additionally,the response of the SAV to tropical SST changes,especially over the Indian Ocean and subtropics,exhibits significant nonlinearity. 展开更多
关键词 stratospheric polar vortex sea surface temperature STRATOSPHERE planetary waves stratosphere-troposphere coupling
在线阅读 下载PDF
Numerical simulation of seismic waves in transversely isotropic media based on orthogonal body-fi tted grids
13
作者 Liu Zhi-qiang Li Gang-zhu +3 位作者 Huang Lei Niu Xing-guo Zhang Xiao-meng Gao Cheng 《Applied Geophysics》 2025年第2期408-421,558,共15页
In conventional fi nite diff erence numerical simulation of seismic waves,regular grids in Cartesian coordinates are used to divide the calculated region.When simulating seismic wave fi elds under an irregular surface... In conventional fi nite diff erence numerical simulation of seismic waves,regular grids in Cartesian coordinates are used to divide the calculated region.When simulating seismic wave fi elds under an irregular surface,such grids are unsuitable to realize the free boundary condition.They also easily generate false scattered waves at the corners of the grids owing to the approximation of the stepped grids.These issues affect the simulation accuracy.This study introduces an orthogonal body-fitted grid generation technique in computational fl uid dynamics for generating grids in transversely isotropic(TI)media under an irregular surface.The fi rst-order velocity-stress equation in curvilinear coordinates is calculated using the optimized nonstaggered grids finite difference method.The point oscillation generated by the nonstaggered grids difference is eliminated by selective filtering.The orthogonal body-fitted grids can accurately describe the irregular surface.Further,the orthogonality of the grids allows the implementation of free boundary conditions without complicated coordinate transformation and interpolation operations.Numerical examples show that the numerical solutions obtained by this method agree well with the analytical solutions.By comparing the simulation results of the proposed method with those of the regular grid difference method,the proposed method can eff ectively eliminate the false scattered waves caused by the stepped grids under the condition of the same grid spacing.Thus,the accuracy of the numerical simulation is improved.In addition,the simulation results of the three-layer TI media model on an irregular surface show that the proposed method is also suitable for complex models. 展开更多
关键词 irregular surface TI media false scattered wave orthogonal body-fitted grids finite difference method
在线阅读 下载PDF
Bandstructure Engineering by Surface Water Dosing on SrFe_(2)As_(2)
14
作者 Y.M.Zhang F.Wu +12 位作者 W.J.Shi Z.A.Xu S.C.Shi G.Y.He C.Chen H.F.Yang L.X.Yang Z.Liu W.Lu Y.Zhang Y.F.Guo Y.L.Chen Z.K.Liu 《Chinese Physics Letters》 2025年第10期238-262,共25页
Fe-based superconductors represent a fascinating class of materials,extensively studied for their complex interplay of superconductivity,magnetism,spin density waves,and nematicity,along with the interactions among th... Fe-based superconductors represent a fascinating class of materials,extensively studied for their complex interplay of superconductivity,magnetism,spin density waves,and nematicity,along with the interactions among these orders.An intriguing yet unexplained phenomenon observed in Fe-based superconductors is the emergence of superconductivity below 25K in the non-superconducting parent compound SrFe_(2)As_(2)following exposure to water at its surface.In this study,we employed in situ angle-resolved photoemission spectroscopy and low-energy electron diffraction to meticulously examine the electronic structure evolution of SrFe_(2)As_(2)upon in situ water dosing.Our findings indicate that water dosing markedly attenuates the spin density wave phase and surface Sr reconstruction while preserving the nematic order in SrFe_(2)As_(2).Furthermore,we detected an enhancement in the spectral weight of bands near the Fermi level.Our observations highlight the critical role of the intricate interplay among various orders induced by water dosing,which effectively modifies the band structure and favors the emergence of superconductivity in SrFe_(2)As_(2). 展开更多
关键词 nematic order emergence superconductivity spin density wave band structure surface water dosing SrFe electronic structure evolution SUPERCONDUCTIVITY
原文传递
Challenges and suggestions for high-speed boundary layer transition control using surface microstructure
15
作者 Jisen YUAN Shenghao YU Zhansen QIAN 《Chinese Journal of Aeronautics》 2025年第4期7-9,共3页
Due to the coexistence of compressibility,viscosity,and threedimensional effects,laminar flow is difficult to maintain for high-speed boundary layer on complex geometries.The unstable disturbance waves in the boundary... Due to the coexistence of compressibility,viscosity,and threedimensional effects,laminar flow is difficult to maintain for high-speed boundary layer on complex geometries.The unstable disturbance waves in the boundary layer are excited and rapidly increase during the receptivity process,so sufficiently large Reynolds stress causes the basic flow velocity profile to change,and the formation of turbulence is inevitable. 展开更多
关键词 high speed boundary layer large reynolds stress transition control surface microstructure unstable disturbance waves CHALLENGES suggestions boundary layer
原文传递
Spin-Momentum Locking Breakdown of Evanescent Electromagnetic Waves in a Metal-Gyromagnetic Interface
16
作者 Yidong Zheng Jianfeng Chen +1 位作者 Wenyao Liang Zhi-Yuan Li 《Chinese Physics Letters》 2025年第8期54-68,共15页
Spin-momentum locking is widely regarded as an inherent property of evanescent waves,where the transverse spin angular momentum is intrinsically tied to the wave's polarization.This principle is well established i... Spin-momentum locking is widely regarded as an inherent property of evanescent waves,where the transverse spin angular momentum is intrinsically tied to the wave's polarization.This principle is well established in systems such as surface plasmon polaritons,surface elastic waves,and other evanescent modes.Here,we theoretically unveil an anomalous breakdown of spin-momentum locking in evanescent electromagnetic waves at a metalgyromagnetic interface.We show that the hybrid polarization of the field induces two successive reversals of transverse spin near the interface—directly violating the conventional locking between spin and momentum.As a result,identical chiral sources placed at different heights above the interface excite evanescent waves propagating in opposite directions,defying standard expectations.This discovery challenges the presumed universality of spin-momentum locking and opens new degrees of freedom for controlling wave propagation in photonic and plasmonic systems. 展开更多
关键词 hybrid polarization field evanescent electromagnetic waves evanescent modesherewe transverse spin angular momentum metalgyromagnetic interfacewe spin momentum locking surface plasmon polaritonssurface evanescent waveswhere
原文传递
A multi-parameter method for sea surface wind speed retrieval from CYGNSS data
17
作者 Yong Wan Yaqi Guo +2 位作者 Weimin Huang Shuyan Lang Yongshou Dai 《Acta Oceanologica Sinica》 2025年第8期143-163,共21页
The successful launch of the Cyclone Global Navigation Satellite System(CYGNSS)has opened an unprecedented opportunity for rapid observation of Wind Speed(WS)across vast oceanic regions.However,considerable debate per... The successful launch of the Cyclone Global Navigation Satellite System(CYGNSS)has opened an unprecedented opportunity for rapid observation of Wind Speed(WS)across vast oceanic regions.However,considerable debate persists over the choice of input feature parameters for WS retrieval models based on CYGNSS data,and enhancing the accuracy of WS retrieval is a focal point of current research.To address the aforementioned problems,this study establishes a comprehensive CYGNSS wind speed retrieval feature parameter set through an in-depth analysis of CYGNSS data,thereby providing a reference and basis for selecting input features for WS retrieval models.Through this analysis,we identified three crucial observational features:the normalized bistatic radar cross section,leading edge slope,and signal-to-noise ratio.Using these features,we developed a WS retrieval model based on the geophysical model function for CYGNSS data.Furthermore,acknowledging the intrinsic interconnection between wind and wave dynamics,we incorporate significant wave height into the WS retrieval model to further improve the WS retrieval accuracy.Comparative assessments with datasets from the European Centre for Medium-Range Weather Forecasts,the Chinese-French Oceanography Satellite Scatterometer,and buoy WS data underscore the high accuracy of our model,demonstrating its utility as a valuable tool for research in ocean dynamics and marine environmental prediction. 展开更多
关键词 Cyclone Global Navigation Satellite System(CYGNSS) Geophysical Model Function(GMF) sea surface wind speed significant wave height
在线阅读 下载PDF
Effect of trigger system on experimental dispersion characteristics of active surface wave testing
18
作者 Lin Shibin Jeramy C.Ashlock +4 位作者 Zhu Liming Qin Zexiang Li Bo Zhu Xingji Zhai Changhai 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期311-318,共8页
A trigger system is typically employed in active seismic testing to trigger and synchronize multichannel surface wave data acquisition.The effect of the trigger system on the dispersion image of surface waves is empir... A trigger system is typically employed in active seismic testing to trigger and synchronize multichannel surface wave data acquisition.The effect of the trigger system on the dispersion image of surface waves is empirically known to be negligible,however,theoretical explanation regarding the effect of the trigger system is insufficient.This study systematically examines the theory for surface wave dispersion analysis and proves that the effect of the trigger system on a dispersion image is negligible via a solid theoretical explanation.Subsequently,based on the new theoretical explanation,an alternative method that uses only the relative phase difference between sensors to extract dispersion characteristics with better conceptual clarity is proposed.Two active surface wave testing cases are considered to validate the theory and method.The results indicate that(1)an accurate trigger system is not necessary for surface wave data acquisition,and(2)it is unnecessary to assume that the impact point is the generation point of the surface waves for the experimental dispersion analysis. 展开更多
关键词 site investigation surface waves data acquisition DISPERSION
在线阅读 下载PDF
Estimation of peak wave period from surface texture motion in videos
19
作者 Haipeng Yu Xiaoliang Chu Guang Yuan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第9期136-144,共9页
Wave information retrieval from videos captured by a single camera has been increasingly applied in marine observation.However,when the camera observes ocean waves at low grazing angles,the accurate extraction of wave... Wave information retrieval from videos captured by a single camera has been increasingly applied in marine observation.However,when the camera observes ocean waves at low grazing angles,the accurate extraction of wave information from videos will be affected by the interference of the fine ripples on the sea surface.To solve this problem,this study develops a method for estimating peak wave periods from videos captured at low grazing angles.The method extracts the motion of the sea surface texture from the video and obtains the peak wave period via the spectral analysis.The calculation results captured from real-world videos are compared with those obtained from X-band radar inversion and tracking buoy movement,with maximum deviations of 8%and 14%,respectively.The analysis of the results shows that the peak wave period of the method has good stability.In addition,this paper uses a pinhole camera model to convert the displacement of the texture from pixel height to actual height and performs moving average filtering on the displacement of the texture,thus conducting a preliminary exploration of the inversion of significant wave height.This study helps to extend the application of sea surface videos. 展开更多
关键词 low grazing angle sea surface texture VIDEO peak wave period significant wave height image matching
在线阅读 下载PDF
The viscous strip approach to simplify the calculation of the surface acoustic wave generated streaming
20
作者 F.JAZINI DORCHEH M.GHASSEMI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期711-724,共14页
In recent decades,the importance of surface acoustic waves,as a biocompatible tool to integrate with microfluidics,has been proven in various medical and biological applications.The numerical modeling of acoustic stre... In recent decades,the importance of surface acoustic waves,as a biocompatible tool to integrate with microfluidics,has been proven in various medical and biological applications.The numerical modeling of acoustic streaming caused by surface acoustic waves in microchannels requires the effect of viscosity to be considered in the equations which complicates the solution.In this paper,it is shown that the major contribution of viscosity and the horizontal component of actuation is concentrated in a narrow region alongside the actuation boundary.Since the inviscid equations are considerably easier to solve,a division into the viscous and inviscid domains would alleviate the computational load significantly.The particles'traces calculated by this approximation are excellently alongside their counterparts from the completely viscous model.It is also shown that the optimum thickness for the viscous strip is about 9-fold the acoustic boundary layer thickness for various flow patterns and amplitudes of actuation. 展开更多
关键词 surface acoustic wave MICROFLUIDICS numerical simulation particle tracing acoustic streaming
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部