期刊文献+
共找到25,784篇文章
< 1 2 250 >
每页显示 20 50 100
Designing Load-Bearing Bio-Inspired Materials for Simultaneous Static Properties and Dynamic Damping:Multi-Objective Optimization for Micro-Structure
1
作者 Bo Dong Yunfei Jia Wei Wang 《Chinese Journal of Mechanical Engineering》 2025年第2期247-261,共15页
Biological load-bearing materials,like the nacre in shells,have a unique staggered structure that supports their superior mechanical properties.Engineers have been encouraged to imitate it to create load-bearing bio-i... Biological load-bearing materials,like the nacre in shells,have a unique staggered structure that supports their superior mechanical properties.Engineers have been encouraged to imitate it to create load-bearing bio-inspired materials which have excellent properties not present in conventional composites.To create such materials with desirable mechanical properties,the optimum structural parameters combination must be selected.Moreover,the optimal design of bio-inspired composites needs to take into account the trade-offs between various mechanical properties.In this paper,multi-objective optimization models were developed using structural parameters as design variables and mechanical properties as optimization objectives,including stiffness,strength,toughness,and dynamic damping.Using the NSGA-II optimization algorithm,a set of optimal solutions were solved.Additionally,three different structures in natural nacre were introduced in order to utilize the better structure when design bio-inspired materials.The range of optimal solutions that obtained using results from previous research were examined and explained why this collection of optimal solution ranges is better.Also,optimal solutions were compared with the structural features and mechanical properties of real nacre and artificial biomimetic composites to validate our models.Finally,the optimum design strategies can be obtained for nacre-like composites.Our research methodically proposes an optimization method for achieving load-bearing bio-inspired materials with excellent properties and creates a set of optimal solutions from which designers can select the one that best suits their preferences,allowing the fabricated materials to demonstrate preferred performance. 展开更多
关键词 Load-bearing bio-inspired composites Staggered structure multi-objective optimization
在线阅读 下载PDF
Multi-objective optimal design of asymmetric base-isolated structures using NSGA-Ⅱ algorithm for improving torsional resistance
2
作者 Zhang Jiayu Qi Ai Yang Mianyue 《Earthquake Engineering and Engineering Vibration》 2025年第3期811-825,共15页
Finding an optimal isolator arrangement for asymmetric structures using traditional conceptual design methods that can significantly minimize torsional response while ensuring efficient horizontal seismic isolation is... Finding an optimal isolator arrangement for asymmetric structures using traditional conceptual design methods that can significantly minimize torsional response while ensuring efficient horizontal seismic isolation is cumbersome and inefficient.Thus,this work develops a multi-objective optimization method to enhance the torsional resistance of asymmetric base-isolated structures.The primary objective is to simultaneously minimize the interstory rotation of the superstructure,the rotation of the isolation layer,and the interstory displacement of the superstructure without exceeding the isolator displacement limits.A fast non-dominated sorting genetic algorithm(NSGA-Ⅱ)is employed to satisfy this optimization objective.Subsequently,the isolator arrangement,encompassing both positions and categories,is optimized according to this multi-objective optimization method.Additionally,an optimization design platform is developed to streamline the design operation.This platform integrates the input of optimization parameters,the output of optimization results,the finite element analysis,and the multi-objective optimization method proposed herein.Finally,the application of this multi-objective optimization method and its associated platform are demonstrated on two asymmetric base-isolated structures of varying heights and plan configurations.The results indicate that the optimal isolator arrangement derived from the optimization method can further improve the control over the lateral and torsional responses of asymmetric base-isolated structures compared to conventional conceptual design methods.Notably,the interstory rotation of the optimal base-isolated structure is significantly reduced,constituting only approximately 33.7%of that observed in the original base-isolated structure.The proposed platform facilitates the automatic generation of the optimal design scheme for the isolators of asymmetric base-isolated structures,offering valuable insights and guidance for the burgeoning field of intelligent civil engineering design. 展开更多
关键词 asymmetric base-isolated structures isolator arrangement multi-objective optimization NSGA-Ⅱalgorithm optimization design platform
在线阅读 下载PDF
Crashworthiness Design and Multi-Objective Optimization of Bionic Thin-Walled Hybrid Tube Structures
3
作者 Pingfan Li Jiumei Xiao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期999-1016,共18页
Thin-walled structures are widely used in cars due to their lightweight construction and energy-absorbing properties.However,issues such as high initial stress and lowenergy-absorbing efficiency arise.This study propo... Thin-walled structures are widely used in cars due to their lightweight construction and energy-absorbing properties.However,issues such as high initial stress and lowenergy-absorbing efficiency arise.This study proposes a novel energy-absorbing structure inwhich a straight tube is combinedwith a conical tube and a bamboo-inspired bulkhead structure is introduced.This configuration allows the conical tube to flip outward first and then fold together with the straight tube.This deformation mode absorbs more energy and less peak force than the conical tube sinking and flipping inward.Through finite element numerical simulation,the specific energy absorption capacity of the structure is increased by 26%compared to that of a regular circular cross-section tube.Finally,the impact resistance of the bionic straight tapered tube structure is further improved through multi-objective optimization,promoting the engineering application and lightweight design of hybrid cross-section tubes. 展开更多
关键词 CRASHWORTHINESS tube inversion multi-objective optimization energy absorption
在线阅读 下载PDF
A Multi-Objective Particle Swarm Optimization Algorithm Based on Decomposition and Multi-Selection Strategy
4
作者 Li Ma Cai Dai +1 位作者 Xingsi Xue Cheng Peng 《Computers, Materials & Continua》 SCIE EI 2025年第1期997-1026,共30页
The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition... The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition and multi-selection strategy is proposed to improve the search efficiency.First,two update strategies based on decomposition are used to update the evolving population and external archive,respectively.Second,a multiselection strategy is designed.The first strategy is for the subspace without a non-dominated solution.Among the neighbor particles,the particle with the smallest penalty-based boundary intersection value is selected as the global optimal solution and the particle far away fromthe search particle and the global optimal solution is selected as the personal optimal solution to enhance global search.The second strategy is for the subspace with a non-dominated solution.In the neighbor particles,two particles are randomly selected,one as the global optimal solution and the other as the personal optimal solution,to enhance local search.The third strategy is for Pareto optimal front(PF)discontinuity,which is identified by the cumulative number of iterations of the subspace without non-dominated solutions.In the subsequent iteration,a new probability distribution is used to select from the remaining subspaces to search.Third,an adaptive inertia weight update strategy based on the dominated degree is designed to further improve the search efficiency.Finally,the proposed algorithmis compared with fivemulti-objective particle swarm optimization algorithms and five multi-objective evolutionary algorithms on 22 test problems.The results show that the proposed algorithm has better performance. 展开更多
关键词 multi-objective optimization multi-objective particle swarm optimization DECOMPOSITION multi-selection strategy
在线阅读 下载PDF
Progress on Microstructure and Performance Optimization in H/MEAs Regulated by Single and Hierarchical Heterostructures
5
作者 Wang Bing Li Chunyan +2 位作者 Wang Xinhua Li Xiaocheng Kou Shengzhong 《稀有金属材料与工程》 北大核心 2025年第3期640-664,共25页
The development of high-performance structural and functional materials is vital in many industrial fields.High-and medium-entropy alloys(H/MEAs)with superior comprehensive properties owing to their specific microstru... The development of high-performance structural and functional materials is vital in many industrial fields.High-and medium-entropy alloys(H/MEAs)with superior comprehensive properties owing to their specific microstructures are promising candidates for structural materials.More importantly,multitudinous efforts have been made to regulate the microstructures and the properties of H/MEAs to further expand their industrial applications.The various heterostructures have enormous potential for the development of H/MEAs with outstanding performance.Herein,multiple heterogeneous structures with single and hierarchical heterogeneities were discussed in detail.Moreover,preparation methods for compositional inhomogeneity,bimodal structures,dualphase structures,lamella/layered structures,harmonic structures(core-shell),multiscale precipitates and heterostructures coupled with specific microstructures in H/MEAs were also systematically reviewed.The deformation mechanisms induced by the different heterostructures were thoroughly discussed to explore the relationship between the heterostructures and the optimized properties of H/MEAs.The contributions of the heterostructures and advanced microstructures to the H/MEAs were comprehensively elucidated to further improve the properties of the alloys.Finally,this review discussed the future challenges of high-performance H/MEAs for industrial applications and provides feasible methods for optimizing heterostructures to enhance the comprehensive properties of H/MEAs. 展开更多
关键词 heterogeneous structures H/MEAs HDI effect microstructure regulation performance optimization
原文传递
Performance Analysis and Multi-Objective Optimization of Functional Gradient Honeycomb Non-pneumatic Tires
6
作者 Haichao Zhou Haifeng Zhou +2 位作者 Haoze Ren Zhou Zheng Guolin Wang 《Chinese Journal of Mechanical Engineering》 2025年第3期412-431,共20页
The spoke as a key component has a significant impact on the performance of the non-pneumatic tire(NPT).The current research has focused on adjusting spoke structures to improve the single performance of NPT.Few studi... The spoke as a key component has a significant impact on the performance of the non-pneumatic tire(NPT).The current research has focused on adjusting spoke structures to improve the single performance of NPT.Few studies have been conducted to synergistically improve multi-performance by optimizing the spoke structure.Inspired by the concept of functionally gradient structures,this paper introduces a functionally gradient honeycomb NPT and its optimization method.Firstly,this paper completes the parameterization of the honeycomb spoke structure and establishes the numerical models of honeycomb NPTs with seven different gradients.Subsequently,the accuracy of the numerical models is verified using experimental methods.Then,the static and dynamic characteristics of these gradient honeycomb NPTs are thoroughly examined by using the finite element method.The findings highlight that the gradient structure of NPT-3 has superior performance.Building upon this,the study investigates the effects of key parameters,such as honeycomb spoke thickness and length,on load-carrying capacity,honeycomb spoke stress and mass.Finally,a multi-objective optimization method is proposed that uses a response surface model(RSM)and the Nondominated Sorting Genetic Algorithm-II(NSGA-II)to further optimize the functional gradient honeycomb NPTs.The optimized NPT-OP shows a 23.48%reduction in radial stiffness,8.95%reduction in maximum spoke stress and 16.86%reduction in spoke mass compared to the initial NPT-1.The damping characteristics of the NPT-OP have also been improved.The results offer a theoretical foundation and technical methodology for the structural design and optimization of gradient honeycomb NPTs. 展开更多
关键词 Non-pneumatic tires Honeycomb structure Gradient structure multi-objective optimization
在线阅读 下载PDF
Multi-Objective Hybrid Sailfish Optimization Algorithm for Planetary Gearbox and Mechanical Engineering Design Optimization Problems
7
作者 Miloš Sedak Maja Rosic Božidar Rosic 《Computer Modeling in Engineering & Sciences》 2025年第2期2111-2145,共35页
This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Op... This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain. 展开更多
关键词 multi-objective optimization planetary gearbox gear efficiency sailfish optimization differential evolution hybrid algorithms
在线阅读 下载PDF
Multi-objective optimization of top-level arrangement for flight test
8
作者 WANG Yunong BI Wenhao +2 位作者 FAN Qiucen XU Shuangfei ZHANG An 《Journal of Systems Engineering and Electronics》 2025年第3期714-724,共11页
The lack of systematic and scientific top-level arrangement in the field of civil aircraft flight test leads to the problems of long duration and high cost.Based on the flight test activity,mathematical models of flig... The lack of systematic and scientific top-level arrangement in the field of civil aircraft flight test leads to the problems of long duration and high cost.Based on the flight test activity,mathematical models of flight test duration and cost are established to set up the framework of flight test process.The top-level arrangement for flight test is optimized by multi-objective algorithm to reduce the duration and cost of flight test.In order to verify the necessity and validity of the mathematical models and the optimization algorithm of top-level arrangement,real flight test data is used to make an example calculation.Results show that the multi-objective optimization results of the top-level flight arrangement are better than the initial arrangement data,which can shorten the duration,reduce the cost,and improve the efficiency of flight test. 展开更多
关键词 flight test top-level arrangement flight test optimization multi-objective optimization
在线阅读 下载PDF
Dynamic Multi-Objective Gannet Optimization(DMGO):An Adaptive Algorithm for Efficient Data Replication in Cloud Systems
9
作者 P.William Ved Prakash Mishra +3 位作者 Osamah Ibrahim Khalaf Arvind Mukundan Yogeesh N Riya Karmakar 《Computers, Materials & Continua》 2025年第9期5133-5156,共24页
Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple dat... Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance. 展开更多
关键词 Cloud computing data replication dynamic optimization multi-objective optimization gannet optimization algorithm adaptive algorithms resource efficiency SCALABILITY latency reduction energy-efficient computing
在线阅读 下载PDF
Optimization and Scheduling of Green Power System Consumption Based on Multi-Device Coordination and Multi-Objective Optimization
10
作者 Liang Tang Hongwei Wang +2 位作者 Xinyuan Zhu Jiying Liu Kaiyue Li 《Energy Engineering》 2025年第6期2257-2289,共33页
The intermittency and volatility of wind and photovoltaic power generation exacerbate issues such as wind and solar curtailment,hindering the efficient utilization of renewable energy and the low-carbon development of... The intermittency and volatility of wind and photovoltaic power generation exacerbate issues such as wind and solar curtailment,hindering the efficient utilization of renewable energy and the low-carbon development of energy systems.To enhance the consumption capacity of green power,the green power system consumption optimization scheduling model(GPS-COSM)is proposed,which comprehensively integrates green power system,electric boiler,combined heat and power unit,thermal energy storage,and electrical energy storage.The optimization objectives are to minimize operating cost,minimize carbon emission,and maximize the consumption of wind and solar curtailment.The multi-objective particle swarm optimization algorithm is employed to solve the model,and a fuzzy membership function is introduced to evaluate the satisfaction level of the Pareto optimal solution set,thereby selecting the optimal compromise solution to achieve a dynamic balance among economic efficiency,environmental friendliness,and energy utilization efficiency.Three typical operating modes are designed for comparative analysis.The results demonstrate that the mode involving the coordinated operation of electric boiler,thermal energy storage,and electrical energy storage performs the best in terms of economic efficiency,environmental friendliness,and renewable energy utilization efficiency,achieving the wind and solar curtailment consumption rate of 99.58%.The application of electric boiler significantly enhances the direct accommodation capacity of the green power system.Thermal energy storage optimizes intertemporal regulation,while electrical energy storage strengthens the system’s dynamic regulation capability.The coordinated optimization of multiple devices significantly reduces reliance on fossil fuels. 展开更多
关键词 multi-objective optimization scheduling model multi-objective particle swarm optimization algorithm consumption capacity of green power wind and solar curtailment coordinated optimization of multiple devices
在线阅读 下载PDF
Multi-Objective Optimization of Swirling Impinging Air Jets with Genetic Algorithm and Weighted Sum Method
11
作者 Sudipta Debnath Zahir Uddin Ahmed +3 位作者 Muhammad Ikhlaq Md.Tanvir Khan Avneet Kaur Kuljeet Singh Grewal 《Frontiers in Heat and Mass Transfer》 2025年第1期71-94,共24页
Impinging jet arrays are extensively used in numerous industrial operations,including the cooling of electronics,turbine blades,and other high-heat flux systems because of their superior heat transfer capabilities.Opt... Impinging jet arrays are extensively used in numerous industrial operations,including the cooling of electronics,turbine blades,and other high-heat flux systems because of their superior heat transfer capabilities.Optimizing the design and operating parameters of such systems is essential to enhance cooling efficiency and achieve uniform pressure distribution,which can lead to improved system performance and energy savings.This paper presents two multi-objective optimization methodologies for a turbulent air jet impingement cooling system.The governing equations are resolved employing the commercial computational fluid dynamics(CFD)software ANSYS Fluent v17.The study focuses on four controlling parameters:Reynolds number(Re),swirl number(S),jet-to-jet separation distance(Z/D),and impingement height(H/D).The effects of these parameters on heat transfer and impingement pressure distribution are investigated.Non-dominated Sorting Genetic Algorithm(NSGA-II)and Weighted Sum Method(WSM)are employed to optimize the controlling parameters for maximum cooling performance.The aim is to identify optimal design parameters and system configurations that enhance heat transfer efficiency while achieving a uniform impingement pressure distribution.These findings have practical implications for applications requiring efficient cooling.The optimized design achieved a 12.28%increase in convective heat transfer efficiency with a local Nusselt number of 113.05 compared to 100.69 in the reference design.Enhanced convective cooling and heat flux were observed in the optimized configuration,particularly in areas of direct jet impingement.Additionally,the optimized design maintained lower wall temperatures,demonstrating more effective thermal dissipation. 展开更多
关键词 Jet impingement multi-objective optimization pareto front NSGA-Ⅱ WSM
在线阅读 下载PDF
CCHP-Type Micro-Grid Scheduling Optimization Based on Improved Multi-Objective Grey Wolf Optimizer
12
作者 Yu Zhang Sheng Wang +1 位作者 Fanming Zeng Yijie Lin 《Energy Engineering》 2025年第3期1137-1151,共15页
With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm impro... With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm improvement.To reduce the operational costs of micro-grid systems and the energy abandonment rate of renewable energy,while simultaneously enhancing user satisfaction on the demand side,this paper introduces an improvedmultiobjective Grey Wolf Optimizer based on Cauchy variation.The proposed approach incorporates a Cauchy variation strategy during the optimizer’s search phase to expand its exploration range and minimize the likelihood of becoming trapped in local optima.At the same time,adoptingmultiple energy storage methods to improve the consumption rate of renewable energy.Subsequently,under different energy balance orders,themulti-objective particle swarmalgorithm,multi-objective grey wolf optimizer,and Cauchy’s variant of the improvedmulti-objective grey wolf optimizer are used for example simulation,solving the Pareto solution set of the model and comparing.The analysis of the results reveals that,compared to the original optimizer,the improved optimizer decreases the daily cost by approximately 100 yuan,and reduces the energy abandonment rate to zero.Meanwhile,it enhances user satisfaction and ensures the stable operation of the micro-grid. 展开更多
关键词 multi-objective optimization algorithm hybrid energy storage MICRO-GRID CCHP
在线阅读 下载PDF
Collaborative Decomposition Multi-Objective Improved Elephant Clan Optimization Based on Penalty-Based and Normal Boundary Intersection
13
作者 Mengjiao Wei Wenyu Liu 《Computers, Materials & Continua》 2025年第5期2505-2523,共19页
In recent years,decomposition-based evolutionary algorithms have become popular algorithms for solving multi-objective problems in real-life scenarios.In these algorithms,the reference vectors of the Penalty-Based bou... In recent years,decomposition-based evolutionary algorithms have become popular algorithms for solving multi-objective problems in real-life scenarios.In these algorithms,the reference vectors of the Penalty-Based boundary intersection(PBI)are distributed parallelly while those based on the normal boundary intersection(NBI)are distributed radially in a conical shape in the objective space.To improve the problem-solving effectiveness of multi-objective optimization algorithms in engineering applications,this paper addresses the improvement of the Collaborative Decomposition(CoD)method,a multi-objective decomposition technique that integrates PBI and NBI,and combines it with the Elephant Clan Optimization Algorithm,introducing the Collaborative Decomposition Multi-objective Improved Elephant Clan Optimization Algorithm(CoDMOIECO).Specifically,a novel subpopulation construction method with adaptive changes following the number of iterations and a novel individual merit ranking based onNBI and angle are proposed.,enabling the creation of subpopulations closely linked to weight vectors and the identification of diverse individuals within them.Additionally,new update strategies for the clan leader,male elephants,and juvenile elephants are introduced to boost individual exploitation capabilities and further enhance the algorithm’s convergence.Finally,a new CoD-based environmental selection method is proposed,introducing adaptive dynamically adjusted angle coefficients and individual angles on corresponding weight vectors,significantly improving both the convergence and distribution of the algorithm.Experimental comparisons on the ZDT,DTLZ,and WFG function sets with four benchmark multi-objective algorithms—MOEA/D,CAMOEA,VaEA,and MOEA/D-UR—demonstrate that CoDMOIECO achieves superior performance in both convergence and distribution. 展开更多
关键词 multi-objective optimization elephant clan optimization algorithm collaborative decomposition new individual selection mechanism diversity preservation
在线阅读 下载PDF
MOCBOA:Multi-Objective Chef-Based Optimization Algorithm Using Hybrid Dominance Relations for Solving Engineering Design Problems
14
作者 Nour Elhouda Chalabi Abdelouahab Attia +4 位作者 Abdulaziz S.Almazyad Ali Wagdy Mohamed Frank Werner Pradeep Jangir Mohammad Shokouhifar 《Computer Modeling in Engineering & Sciences》 2025年第4期967-1008,共42页
Multi-objective optimization is critical for problem-solving in engineering,economics,and AI.This study introduces the Multi-Objective Chef-Based Optimization Algorithm(MOCBOA),an upgraded version of the Chef-Based Op... Multi-objective optimization is critical for problem-solving in engineering,economics,and AI.This study introduces the Multi-Objective Chef-Based Optimization Algorithm(MOCBOA),an upgraded version of the Chef-Based Optimization Algorithm(CBOA)that addresses distinct objectives.Our approach is unique in systematically examining four dominance relations—Pareto,Epsilon,Cone-epsilon,and Strengthened dominance—to evaluate their influence on sustaining solution variety and driving convergence toward the Pareto front.Our comparison investigation,which was conducted on fifty test problems from the CEC 2021 benchmark and applied to areas such as chemical engineering,mechanical design,and power systems,reveals that the dominance approach used has a considerable impact on the key optimization measures such as the hypervolume metric.This paper provides a solid foundation for determining themost effective dominance approach and significant insights for both theoretical research and practical applications in multi-objective optimization. 展开更多
关键词 multi-objective optimization chef-based optimization algorithm(CBOA) pareto dominance epsilon dominance cone-epsilon dominance strengthened dominance
在线阅读 下载PDF
Structure-based optimization of isoaurostatin as novel PDE4 inhibitors with anti-fibrotic effects
15
作者 Yi-You Huang Xiang Luo +9 位作者 Kai Zhang Yulan Liang Furong Zhang Guochao Liao Shenghong Xie Pei-Luo Huang Siyu Hou Qian Zhou Yong Zou Hai-Bin Luo 《Chinese Chemical Letters》 2025年第8期344-349,共6页
Idiopathic pulmonary fibrosis(IPF)is a progressive lung disease and its incidence rate is rapidly rising.However,effective therapies for the treatment of IPF are still lacking.Phosphodiesterase 4(PDE4)inhibitors were ... Idiopathic pulmonary fibrosis(IPF)is a progressive lung disease and its incidence rate is rapidly rising.However,effective therapies for the treatment of IPF are still lacking.Phosphodiesterase 4(PDE4)inhibitors were reported to be potential anti-fibrotic agents.Herein,structure-based hit-to-lead optimization of natural isoaurostatin(8.98μmol/L)resulted in several potent inhibitors of PDE4 with half maximal inhibitory concentration(IC_(50))values ranging from 35 nmol/L to 126 nmol/L.Co-crystal structures revealed that isoaurostatin compounds exhibited different binding patterns from the classic PDE4 inhibitor rolipram and the analogues would favor to be Z configurations other than the corresponding E isomers.Finally,lead 2–9 showed remarkable in vitro/in vivo anti-fibrotic effects indicating its potential as a novel anti-IPF agent. 展开更多
关键词 PDE4 Isoaurone structural optimization Crystal structure IPF
原文传递
Kinetic modeling and multi-objective optimization of an industrial hydrocracking process with an improved SPEA2-PE algorithm
16
作者 Chen Fan Xindong Wang +1 位作者 Gaochao Li Jian Long 《Chinese Journal of Chemical Engineering》 2025年第4期130-146,共17页
Hydrocracking is one of the most important petroleum refining processes that converts heavy oils into gases,naphtha,diesel,and other products through cracking reactions.Multi-objective optimization algorithms can help... Hydrocracking is one of the most important petroleum refining processes that converts heavy oils into gases,naphtha,diesel,and other products through cracking reactions.Multi-objective optimization algorithms can help refining enterprises determine the optimal operating parameters to maximize product quality while ensuring product yield,or to increase product yield while reducing energy consumption.This paper presents a multi-objective optimization scheme for hydrocracking based on an improved SPEA2-PE algorithm,which combines path evolution operator and adaptive step strategy to accelerate the convergence speed and improve the computational accuracy of the algorithm.The reactor model used in this article is simulated based on a twenty-five lumped kinetic model.Through model and test function verification,the proposed optimization scheme exhibits significant advantages in the multiobjective optimization process of hydrocracking. 展开更多
关键词 HYDROCRACKING multi-objective optimization Improved SPEA2 Kinetic modeling
在线阅读 下载PDF
An Improved Chaotic Quantum Multi-Objective Harris Hawks Optimization Algorithm for Emergency Centers Site Selection Decision Problem
17
作者 Yuting Zhu Wenyu Zhang +3 位作者 Hainan Wang Junjie Hou Haining Wang Meng Wang 《Computers, Materials & Continua》 2025年第2期2177-2198,共22页
Addressing the complex issue of emergency resource distribution center site selection in uncertain environments, this study was conducted to comprehensively consider factors such as uncertainty parameters and the urge... Addressing the complex issue of emergency resource distribution center site selection in uncertain environments, this study was conducted to comprehensively consider factors such as uncertainty parameters and the urgency of demand at disaster-affected sites. Firstly, urgency cost, economic cost, and transportation distance cost were identified as key objectives. The study applied fuzzy theory integration to construct a triangular fuzzy multi-objective site selection decision model. Next, the defuzzification theory transformed the fuzzy decision model into a precise one. Subsequently, an improved Chaotic Quantum Multi-Objective Harris Hawks Optimization (CQ-MOHHO) algorithm was proposed to solve the model. The CQ-MOHHO algorithm was shown to rapidly produce high-quality Pareto front solutions and identify optimal site selection schemes for emergency resource distribution centers through case studies. This outcome verified the feasibility and efficacy of the site selection decision model and the CQ-MOHHO algorithm. To further assess CQ-MOHHO’s performance, Zitzler-Deb-Thiele (ZDT) test functions, commonly used in multi-objective optimization, were employed. Comparisons with Multi-Objective Harris Hawks Optimization (MOHHO), Non-dominated Sorting Genetic Algorithm II (NSGA-II), and Multi-Objective Grey Wolf Optimizer (MOGWO) using Generational Distance (GD), Hypervolume (HV), and Inverted Generational Distance (IGD) metrics showed that CQ-MOHHO achieved superior global search ability, faster convergence, and higher solution quality. The CQ-MOHHO algorithm efficiently achieved a balance between multiple objectives, providing decision-makers with satisfactory solutions and a valuable reference for researching and applying emergency site selection problems. 展开更多
关键词 Site selection triangular fuzzy theory chaotic quantum Harris Hawks optimization multi-objective optimization
在线阅读 下载PDF
Strength,Self-flowing,and Multi-objective Optimization of Cemented Paste Backfill Materials Base on RSM-DF
18
作者 LIU Chunkang WANG Hongjiang +2 位作者 WANG Hui SUN Jiaqi BAI Longjian 《Journal of Wuhan University of Technology(Materials Science)》 2025年第2期449-461,共13页
The multi-objective optimization of backfill effect based on response surface methodology and desirability function(RSM-DF)was conducted.Firstly,the test results show that the uniaxial compressive strength(UCS)increas... The multi-objective optimization of backfill effect based on response surface methodology and desirability function(RSM-DF)was conducted.Firstly,the test results show that the uniaxial compressive strength(UCS)increases with cement sand ratio(CSR),slurry concentration(SC),and curing age(CA),while flow resistance(FR)increases with SC and backfill flow rate(BFR),and decreases with CSR.Then the regression models of UCS and FR as response values were established through RSM.Multi-factor interaction found that CSR-CA impacted UCS most,while SC-BFR impacted FR most.By introducing the desirability function,the optimal backfill parameters were obtained based on RSM-DF(CSR is 1:6.25,SC is 69%,CA is 11.5 d,and BFR is 90 m^(3)/h),showing close results of Design Expert and high reliability for optimization.For a copper mine in China,RSM-DF optimization will reduce cement consumption by 4758 t per year,increase tailings consumption by about 6700 t,and reduce CO_(2)emission by about 4758 t.Thus,RSM-DF provides a new approach for backfill parameters optimization,which has important theoretical and practical values. 展开更多
关键词 cemented paste backfill response surface methodology desirability function multi-objective optimization
原文传递
Multi-Objective Optimization of Marine Winch Based on Surrogate Model and MOGA
19
作者 Chunhuan Jin Linsen Zhu +1 位作者 Quanliang Liu Ji Lin 《Computer Modeling in Engineering & Sciences》 2025年第5期1689-1711,共23页
This study proposes a multi-objective optimization framework for electric winches in fiber-reinforced plastic(FRP)fishing vessels to address critical limitations of conventional designs,including excessive weight,mate... This study proposes a multi-objective optimization framework for electric winches in fiber-reinforced plastic(FRP)fishing vessels to address critical limitations of conventional designs,including excessive weight,material inefficiency,and performance redundancy.By integrating surrogate modeling techniques with a multi-objective genetic algorithm(MOGA),we have developed a systematic approach that encompasses parametric modeling,finite element analysis under extreme operational conditions,and multi-fidelity performance evaluation.Through a 10-t electric winch case study,the methodology’s effectiveness is demonstrated via parametric characterization of structural integrity,stiffness behavior,and mass distribution.The comparative analysis identified optimal surrogate models for predicting key performance metrics,which enabled the construction of a robust multi-objective optimization model.The MOGA-derived Pareto solutions produced a design configuration achieving 7.86%mass reduction,2.01%safety factor improvement,and 23.97%deformation mitigation.Verification analysis confirmed the optimization scheme’s reliability in balancing conflicting design requirements.This research establishes a generalized framework for marine deck machinery modernization,particularly addressing the structural compatibility challenges in FRP vessel retrofitting.The proposed methodology demonstrates significant potential for facilitating sustainable upgrades of fishing vessel equipment through systematic performance optimization. 展开更多
关键词 Marine winch multi-objective optimization surrogate model
在线阅读 下载PDF
A novel optimization scheme for structure and balance of compound balanced beam pumping units using the PSO, GA, and GWO algorithms
20
作者 Jie Wang Quan-Ying Guo +3 位作者 Cheng-Long Fu Gang Dai Cheng-Yu Xia Li-Qin Qian 《Petroleum Science》 2025年第3期1340-1359,共20页
The beam pumping unit(BPU)remains the most stable and reliable equipment for crude oil lifting.Despite its simple four-link mechanism,the structural design of the BPU presents a constrained single-objective optimizati... The beam pumping unit(BPU)remains the most stable and reliable equipment for crude oil lifting.Despite its simple four-link mechanism,the structural design of the BPU presents a constrained single-objective optimization problem.Currently,a comprehensive framework for the structural design and optimization of compound balanced BPUs is lacking.Therefore,this study proposes a novel structural design scheme for BPUs,aiming to meet the practical needs of designers and operators by sequentially optimizing both the dynamic characteristics and balance properties of the BPUs.A dynamic model of compound balanced BPU was established based on D'Alembert's principle.The constraints for structural dimensions were formulated based on the actual operational requirements and design experience with BPUs.To optimize the structure,three algorithms were employed:the particle swarm optimization(PSO)algorithm,the genetic algorithm(GA),and the gray wolf optimization(GWO)algorithm.Each newly generated individuals are regulated by constraints to ensure the rationality of the outcomes.Furthermore,the integration of three algorithms ensures the increased likelihood of attaining the global optimal solution.The polished rod acceleration of the optimized structure is significantly reduced,and the dynamic characteristics of the up and down strokes are essentially symmetrical.Additionally,these three algorithms are also applied to the balance optimization of BPUs based on the measured dynamometer card.The calculation results demonstrate that the GWO-based optimization method exhibits excellent robustness in terms of structural optimization by enhancing the operational smoothness of the BPU,as well as in balance optimization by achieving energy conservation.By applying the optimization scheme proposed in this paper,the CYJW7-3-23HF type of BPU was designed,achieving a maximum polished rod acceleration of±0.675 m/s^(2) when operating at a stroke of 6 min^(−1).When deployed in two wells,the root-mean-square(RMS)torque was minimized,reaching values of 7.539 kN·m and 12.921 kN·m,respectively.The proposed design method not only contributes to the personalized customization but also improves the design efficiency of compound balanced BPUs. 展开更多
关键词 Compound balanced BPU Dynamic model structural optimization Balance optimization CONSTRAINTS
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部