This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously a...This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.展开更多
This work addresses the cut order planning(COP)problem for multi-color garment production,which is the first step in the clothing industry.First,a multi-objective optimization model of multicolor COP(MCOP)is establish...This work addresses the cut order planning(COP)problem for multi-color garment production,which is the first step in the clothing industry.First,a multi-objective optimization model of multicolor COP(MCOP)is established with production error and production cost as optimization objectives,combined with constraints such as the number of equipment and the number of layers.Second,a decoupled multi-objective optimization algorithm(DMOA)is proposed based on the linear programming decoupling strategy and non-dominated sorting in genetic algorithmsⅡ(NSGAII).The size-combination matrix and the fabric-layer matrix are decoupled to improve the accuracy of the algorithm.Meanwhile,an improved NSGAII algorithm is designed to obtain the optimal Pareto solution to the MCOP problem,thereby constructing a practical intelligent production optimization algorithm.Finally,the effectiveness and superiority of the proposed DMOA are verified through practical cases and comparative experiments,which can effectively optimize the production process for garment enterprises.展开更多
The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to an...The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to analyze the efficiency of the algorithm. In the simulation case of the water phantom, the algorithm is applied to an inverse planning process of intensity modulated radiation treatment (IMRT). The objective functions of planning target volume (PTV) and normal tissue (NT) are based on the average dose distribution. The obtained intensity profile shows that the hybrid multi-objective gradient algorithm saves the computational time and has good accuracy, thus meeting the requirements of practical applications.展开更多
To adapt to the uncertainty of new energy,increase new energy consumption,and reduce carbon emissions,a high-voltage distribution network energy storage planning model based on robustness-oriented planning and distrib...To adapt to the uncertainty of new energy,increase new energy consumption,and reduce carbon emissions,a high-voltage distribution network energy storage planning model based on robustness-oriented planning and distributed new energy consumption is proposed.Firstly,the spatio-temporal correlation of large-scale wind-photovoltaic energy is modeled based on the Vine Copula model,and the spatial correlation of the generated wind-photovoltaic power generation is corrected to get the spatio-temporal correlation of wind-photovoltaic power generation scenarios.Finally,considering the subsequent development of new energy on demand for high-voltage distribution network peaking margin and the economy of the system peaking,we propose the optimization model of high-voltage distribution network energy storage plant siting and capacity setting for source-storage cooperative peaking.The simulation results show that the proposed energy storage plant planning method can effectively alleviate the branch circuit blockage,promote new energy consumption,reduce the burden of the main grid peak shifting,and leave sufficient peak shifting margin for the subsequent development of a new energy distribution network while ensuring the economy.展开更多
Hydrocracking is one of the most important petroleum refining processes that converts heavy oils into gases,naphtha,diesel,and other products through cracking reactions.Multi-objective optimization algorithms can help...Hydrocracking is one of the most important petroleum refining processes that converts heavy oils into gases,naphtha,diesel,and other products through cracking reactions.Multi-objective optimization algorithms can help refining enterprises determine the optimal operating parameters to maximize product quality while ensuring product yield,or to increase product yield while reducing energy consumption.This paper presents a multi-objective optimization scheme for hydrocracking based on an improved SPEA2-PE algorithm,which combines path evolution operator and adaptive step strategy to accelerate the convergence speed and improve the computational accuracy of the algorithm.The reactor model used in this article is simulated based on a twenty-five lumped kinetic model.Through model and test function verification,the proposed optimization scheme exhibits significant advantages in the multiobjective optimization process of hydrocracking.展开更多
This study proposes a multi-objective optimization framework for electric winches in fiber-reinforced plastic(FRP)fishing vessels to address critical limitations of conventional designs,including excessive weight,mate...This study proposes a multi-objective optimization framework for electric winches in fiber-reinforced plastic(FRP)fishing vessels to address critical limitations of conventional designs,including excessive weight,material inefficiency,and performance redundancy.By integrating surrogate modeling techniques with a multi-objective genetic algorithm(MOGA),we have developed a systematic approach that encompasses parametric modeling,finite element analysis under extreme operational conditions,and multi-fidelity performance evaluation.Through a 10-t electric winch case study,the methodology’s effectiveness is demonstrated via parametric characterization of structural integrity,stiffness behavior,and mass distribution.The comparative analysis identified optimal surrogate models for predicting key performance metrics,which enabled the construction of a robust multi-objective optimization model.The MOGA-derived Pareto solutions produced a design configuration achieving 7.86%mass reduction,2.01%safety factor improvement,and 23.97%deformation mitigation.Verification analysis confirmed the optimization scheme’s reliability in balancing conflicting design requirements.This research establishes a generalized framework for marine deck machinery modernization,particularly addressing the structural compatibility challenges in FRP vessel retrofitting.The proposed methodology demonstrates significant potential for facilitating sustainable upgrades of fishing vessel equipment through systematic performance optimization.展开更多
The rapid and increasing growth in the volume and number of cyber threats from malware is not a real danger;the real threat lies in the obfuscation of these cyberattacks,as they constantly change their behavior,making...The rapid and increasing growth in the volume and number of cyber threats from malware is not a real danger;the real threat lies in the obfuscation of these cyberattacks,as they constantly change their behavior,making detection more difficult.Numerous researchers and developers have devoted considerable attention to this topic;however,the research field has not yet been fully saturated with high-quality studies that address these problems.For this reason,this paper presents a novel multi-objective Markov-enhanced adaptive whale optimization(MOMEAWO)cybersecurity model to improve the classification of binary and multi-class malware threats through the proposed MOMEAWO approach.The proposed MOMEAWO cybersecurity model aims to provide an innovative solution for analyzing,detecting,and classifying the behavior of obfuscated malware within their respective families.The proposed model includes three classification types:Binary classification and multi-class classification(e.g.,four families and 16 malware families).To evaluate the performance of this model,we used a recently published dataset called the Canadian Institute for Cybersecurity Malware Memory Analysis(CIC-MalMem-2022)that contains balanced data.The results show near-perfect accuracy in binary classification and high accuracy in multi-class classification compared with related work using the same dataset.展开更多
BACKGROUND Kidney transplantation is one of the most effective treatments for patients with end-stage renal disease.However,many regions face low deceased donor rates and limited ABO-compatible transplant availability...BACKGROUND Kidney transplantation is one of the most effective treatments for patients with end-stage renal disease.However,many regions face low deceased donor rates and limited ABO-compatible transplant availability,which increases reliance on living donors.These regional challenges necessitate the implementation of kidney paired donation(KPD)programs to overcome incompatibilities such as ABO mismatch or positive cross-matching,even when suitable and willing donors are available.AIM To evaluate the effectiveness of a single-center domino KPD model in both operational planning and clinical management processes and to assess its impact on clinical outcomes.METHODS Between April 2020 and January 2024,we retrospectively evaluated patients enrolled in our center’s domino kidney transplantation program.Donor-recipient pairs unable to proceed due to ABO incompatibility or positive cross-matching with their own living donors were included.Donors and recipients were assessed based on blood group compatibility,HLA tissue typing,and negative cross-match results.A specialized computer algorithm grouped patients into three-way,fourway,and five-way chains.All surgical procedures were performed on the same day at a single center.RESULTS A total of 169 kidney transplants were performed,forming 52 domino chains.These domino KPD transplants accounted for a notable proportion of our center’s overall transplant activity,which included both living donor kidney transplants and deceased donor transplants.Among these chains,the primary reasons for participation were ABO incompatibility(74%),positive cross-matching(10%),and the desire to improve HLA mismatch(16%).Improved HLA mismatch profiles and high graft survival(96%at 1 year,92%at 3 years)and patient survival(98%at 1 year,94%at 3 years)rates were observed,as well as low acute rejection episodes.CONCLUSION The single-center domino KPD model enhanced transplant opportunities for incompatible donor-recipient pairs while maintaining excellent clinical outcomes.By providing a framework that addresses regional challenges,improves operational efficiency,and optimizes clinical management,this model offers actionable insights to reduce waiting lists and improve patient outcomes.展开更多
During path planning, it is necessary to satisfy the requirements of multiple objectives. Multi-objective synthesis is based on the need of flight mission and subjectivity inclination of decision-maker. The decision-m...During path planning, it is necessary to satisfy the requirements of multiple objectives. Multi-objective synthesis is based on the need of flight mission and subjectivity inclination of decision-maker. The decision-maker, however, has illegibility for under- standing the requirements of multiple objectives and the subjectivity inclination. It is important to develop a reasonable cost performance index for describing the illegibility of the decision-maker in multi-objective path planning. Based on Voronoi dia- gram method for the path planning, this paper studies the synthesis method of the multi-objective cost performance index. Ac- cording to the application of the cost performance index to the path planning based on Voronoi diagram method, this paper ana- lyzes the cost performance index which has been referred to at present. The analysis shows the insufficiency of the cost per- formance index at present, i.e., it is difficult to synthesize sub-objective flmctions because of the great disparity of the sub-objective fimctions. Thus, a new approach is developed to optimize the cost performance index with the multi-objective fuzzy optimization strategy, and an improved performance index is established, which could coordinate the weight conflict of the sub-objective functions. Finally, the experimental result shows the effectiveness of the proposed approach.展开更多
Unmanned aerial vehicle(UAV)was introduced as a novel traffic device to collect road traffic information and its cruise route planning problem was considered.Firstly,a multi-objective optimization model was proposed a...Unmanned aerial vehicle(UAV)was introduced as a novel traffic device to collect road traffic information and its cruise route planning problem was considered.Firstly,a multi-objective optimization model was proposed aiming at minimizing the total cruise distance and the number of UAVs used,which used UAV maximum cruise distance,the number of UAVs available and time window of each monitored target as constraints.Then,a novel multi-objective evolutionary algorithm was proposed.Next,a case study with three time window scenarios was implemented.The results show that both the total cruise distance and the number of UAVs used continue to increase with the time window constraint becoming narrower.Compared with the initial optimal solutions,the optimal total cruise distance and the number of UAVs used fall by an average of 30.93% and 31.74%,respectively.Finally,some concerns using UAV to collect road traffic information were discussed.展开更多
Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-ob...Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-objective trajectory planning approach based on an improved elitist non-dominated sorting genetic algorithm(INSGA-II)is proposed.Trajectory function is planned with a new composite polynomial that by combining of quintic polynomials with cubic Bezier curves.Then,an INSGA-II,by introducing three genetic operators:ranking group selection(RGS),direction-based crossover(DBX)and adaptive precision-controllable mutation(APCM),is developed to optimize travelling time and torque fluctuation.Inverted generational distance,hypervolume and optimizer overhead are selected to evaluate the convergence,diversity and computational effort of algorithms.The optimal solution is determined via fuzzy comprehensive evaluation to obtain the optimal trajectory.Taking a serial-parallel hybrid manipulator as instance,the velocity and acceleration profiles obtained using this composite polynomial are compared with those obtained using a quintic B-spline method.The effectiveness and practicability of the proposed method are verified by simulation results.This research proposes a trajectory optimization method which can offer a better solution with efficiency and stability for a point-to-point task of robot manipulators.展开更多
In the past few decades, applications of geostationary orbit (GEO) satellites have attracted increasing attention, and with the development of optical technologies, GEO optical satellites have become popular worldwide...In the past few decades, applications of geostationary orbit (GEO) satellites have attracted increasing attention, and with the development of optical technologies, GEO optical satellites have become popular worldwide. This paper proposes a general working pattern for a GEO optical satellite, as well as a target observation mission planning model. After analyzing the requirements of users and satellite control agencies, two objectives are simultaneously considered: maximization of total profit and minimization of satellite attitude maneuver angle. An NSGA-II based multi-objective optimization algorithm is proposed, which contains some heuristic principles in the initialization phase and mutation operator, and is embedded with a traveling salesman problem (TSP) optimization. The validity and performance of the proposed method are verified by extensive numerical simulations that include several types of point target distributions.展开更多
The close proximity and the necessity of coordination between multiple high-voltage direct currents(HVDCs)raise the issue of grid partitioning in multi-infeed HVDC systems.A multi-objective partition strategy is propo...The close proximity and the necessity of coordination between multiple high-voltage direct currents(HVDCs)raise the issue of grid partitioning in multi-infeed HVDC systems.A multi-objective partition strategy is proposed in this paper.Several types of relationships to be coordinated and complemented are analyzed and formulated using quantitative indices.According to the graph theory,the HVDC partition is transformed into a graph-cut problem and solved via the spectral clustering algorithm.Finally,the proposed method is validated for a practical multi-HVDC grid,confirming its feasibility and effectiveness.展开更多
Under the demand of strategic air traffic flow management and the concept of trajectory based operations(TBO),the network-wide 4D flight trajectories planning(N4DFTP) problem has been investigated with the purpose...Under the demand of strategic air traffic flow management and the concept of trajectory based operations(TBO),the network-wide 4D flight trajectories planning(N4DFTP) problem has been investigated with the purpose of safely and efficiently allocating 4D trajectories(4DTs)(3D position and time) for all the flights in the whole airway network.Considering that the introduction of large-scale 4DTs inevitably increases the problem complexity,an efficient model for strategiclevel conflict management is developed in this paper.Specifically,a bi-objective N4 DFTP problem that aims to minimize both potential conflicts and the trajectory cost is formulated.In consideration of the large-scale,high-complexity,and multi-objective characteristics of the N4DFTP problem,a multi-objective multi-memetic algorithm(MOMMA) that incorporates an evolutionary global search framework together with three problem-specific local search operators is implemented.It is capable of rapidly and effectively allocating 4DTs via rerouting,target time controlling,and flight level changing.Additionally,to balance the ability of exploitation and exploration of the algorithm,a special hybridization scheme is adopted for the integration of local and global search.Empirical studies using real air traffic data in China with different network complexities show that the proposed MOMMA is effective to solve the N4 DFTP problem.The solutions achieved are competitive for elaborate decision support under a TBO environment.展开更多
Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a ki...Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a kind of multi-objective optimization problem.Being different from traditional ways of transforming the multi-objective optimization into a single objective optimization by weighting factors,this work applies an improved non-dominated sorting genetic algorithm Ⅱ(NSGA Ⅱ) to solve it directly by means of optimizing multi-objective functions simultaneously.In the improved NSGA Ⅱ,the chaos initialization and a crowding distance based population trimming method were introduced to overcome the prematurity of population,the penalty function was used in handling constraints,and the optimal solution was selected according to the method of fuzzy set theory.Simulation results of three different schemes designed according to various practical engineering requirements show that the improved NSGA Ⅱ can effectively obtain the Pareto optimal solution set under different weighting with outstanding convergence and stability,and provide a new train of thoughts to design homing trajectory of parafoil system.展开更多
To performance efficient searching for an operator-supervised mobile robot, a multiple objectives route planning approach is proposed considering timeliness and path cost. An improved fitness function for route planni...To performance efficient searching for an operator-supervised mobile robot, a multiple objectives route planning approach is proposed considering timeliness and path cost. An improved fitness function for route planning is proposed based on the multi-objective genetic algorithm (MOGA) for multiple objectives traveling salesman problem (MOTSP). Then, the path between two route nodes is generated based on the heuristic path planning method A *. A simplified timeliness function for route nodes is proposed to represent the timeliness of each node. Based on the proposed timeliness function, experiments are conducted using the proposed two-stage planning method. The experimental results show that the proposed MOGA with improved fitness function can perform the searching function well when the timeliness of the searching task needs to be taken into consideration.展开更多
This paper presents a multi-objective production planning model for a factory operating under a multi-product, and multi-period environment using the lexicographic (pre-emptive) procedure. The model objectives are to ...This paper presents a multi-objective production planning model for a factory operating under a multi-product, and multi-period environment using the lexicographic (pre-emptive) procedure. The model objectives are to maximize the profit, minimize the total cost, and maximize the Overall Service Level (OSL) of the customers. The system consists of three potential suppliers that serve the factory to serve three customers/distributors. The performance of the developed model is illustrated using a verification example. Discussion of the results proved the efficacy of the model. Also, the effect of the deviation percentages on the different objectives is discussed.展开更多
A new fuzzification method for multi-objective decision-making and selective sorting is proposed on the basis of the fuzzy consistent relation, and the specific algorithm is presented. The method is applied to the eva...A new fuzzification method for multi-objective decision-making and selective sorting is proposed on the basis of the fuzzy consistent relation, and the specific algorithm is presented. The method is applied to the evaluation of highway planning of Zhanjiang city. To decrease the subjectivity in the process of decision-making, the LOWA operator is introduced, and a discussion on how to select appropriate weights involved in multi-objective sorting is made. It is concluded that it is feasible to apply the fuzzy consistent relation to multi-objective decision-making analysis, and the improved fuzzication method is workable.展开更多
This paper presents a novel approach for electrical distribution network expansion planning using multi-objective particle swarm optimization (PSO). The optimization objectives are: investment and operation cost, ener...This paper presents a novel approach for electrical distribution network expansion planning using multi-objective particle swarm optimization (PSO). The optimization objectives are: investment and operation cost, energy losses cost, and power congestion cost. A two-phase multi-objective PSO algorithm is employed to solve this optimization problem, which can accelerate the convergence and guarantee the diversity of Pareto-optimal front set as well. The feasibility and effectiveness of both the proposed multi-objective planning approach and the improved multi-objective PSO have been verified by the 18-node typical system.展开更多
An increasing number of drivers are relying on digital map navigation systems in vehicles or mobile phones to select optimal driving routes in order to save time and improve safety. In the near future, digital map nav...An increasing number of drivers are relying on digital map navigation systems in vehicles or mobile phones to select optimal driving routes in order to save time and improve safety. In the near future, digital map navigation systems are expected to play more important roles in transportation systems. In order to extend current navigation systems to more applications, two fundamental problems must be resolved: the lane-level map model and lane-level route planning. This study proposes solutions to both problems. The current limitation of the lane-level map model is not its accuracy but its flexibility;this study proposes a novel seven-layer map structure, called as Tsinghua map model, which is able to support autonomous driving in a flexible and efficient way. For lane-level route planning, we propose a hierarchical route-searching algorithm to accelerate the planning process, even in the presence of complicated lane networks. In addition, we model the travel costs allocated for lane-level road networks by analyzing vehicle maneuvers in traversing lanes, changing lanes, and turning at intersections. Tests were performed on both a grid network and a real lane-level road network to demonstrate the validity and efficiency of the proposed algorithm.展开更多
文摘This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.
基金Supported by the Natural Science Foundation of Zhejiang Province(No.LQ22F030015).
文摘This work addresses the cut order planning(COP)problem for multi-color garment production,which is the first step in the clothing industry.First,a multi-objective optimization model of multicolor COP(MCOP)is established with production error and production cost as optimization objectives,combined with constraints such as the number of equipment and the number of layers.Second,a decoupled multi-objective optimization algorithm(DMOA)is proposed based on the linear programming decoupling strategy and non-dominated sorting in genetic algorithmsⅡ(NSGAII).The size-combination matrix and the fabric-layer matrix are decoupled to improve the accuracy of the algorithm.Meanwhile,an improved NSGAII algorithm is designed to obtain the optimal Pareto solution to the MCOP problem,thereby constructing a practical intelligent production optimization algorithm.Finally,the effectiveness and superiority of the proposed DMOA are verified through practical cases and comparative experiments,which can effectively optimize the production process for garment enterprises.
基金Supported by the National Basic Research Program of China ("973" Program)the National Natural Science Foundation of China (60872112, 10805012)+1 种基金the Natural Science Foundation of Zhejiang Province(Z207588)the College Science Research Project of Anhui Province (KJ2008B268)~~
文摘The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to analyze the efficiency of the algorithm. In the simulation case of the water phantom, the algorithm is applied to an inverse planning process of intensity modulated radiation treatment (IMRT). The objective functions of planning target volume (PTV) and normal tissue (NT) are based on the average dose distribution. The obtained intensity profile shows that the hybrid multi-objective gradient algorithm saves the computational time and has good accuracy, thus meeting the requirements of practical applications.
基金supported by State Grid Anhui Electric Power Co.,Ltd.Research Program(B3120923000C).
文摘To adapt to the uncertainty of new energy,increase new energy consumption,and reduce carbon emissions,a high-voltage distribution network energy storage planning model based on robustness-oriented planning and distributed new energy consumption is proposed.Firstly,the spatio-temporal correlation of large-scale wind-photovoltaic energy is modeled based on the Vine Copula model,and the spatial correlation of the generated wind-photovoltaic power generation is corrected to get the spatio-temporal correlation of wind-photovoltaic power generation scenarios.Finally,considering the subsequent development of new energy on demand for high-voltage distribution network peaking margin and the economy of the system peaking,we propose the optimization model of high-voltage distribution network energy storage plant siting and capacity setting for source-storage cooperative peaking.The simulation results show that the proposed energy storage plant planning method can effectively alleviate the branch circuit blockage,promote new energy consumption,reduce the burden of the main grid peak shifting,and leave sufficient peak shifting margin for the subsequent development of a new energy distribution network while ensuring the economy.
基金supported by National Key Research and Development Program of China (2023YFB3307800)National Natural Science Foundation of China (Key Program: 62136003, 62373155)+1 种基金Major Science and Technology Project of Xinjiang (No. 2022A01006-4)the Fundamental Research Funds for the Central Universities。
文摘Hydrocracking is one of the most important petroleum refining processes that converts heavy oils into gases,naphtha,diesel,and other products through cracking reactions.Multi-objective optimization algorithms can help refining enterprises determine the optimal operating parameters to maximize product quality while ensuring product yield,or to increase product yield while reducing energy consumption.This paper presents a multi-objective optimization scheme for hydrocracking based on an improved SPEA2-PE algorithm,which combines path evolution operator and adaptive step strategy to accelerate the convergence speed and improve the computational accuracy of the algorithm.The reactor model used in this article is simulated based on a twenty-five lumped kinetic model.Through model and test function verification,the proposed optimization scheme exhibits significant advantages in the multiobjective optimization process of hydrocracking.
基金supported by the Basic Public Welfare Research Program of Zhejiang Province(No.LGN22E050005).
文摘This study proposes a multi-objective optimization framework for electric winches in fiber-reinforced plastic(FRP)fishing vessels to address critical limitations of conventional designs,including excessive weight,material inefficiency,and performance redundancy.By integrating surrogate modeling techniques with a multi-objective genetic algorithm(MOGA),we have developed a systematic approach that encompasses parametric modeling,finite element analysis under extreme operational conditions,and multi-fidelity performance evaluation.Through a 10-t electric winch case study,the methodology’s effectiveness is demonstrated via parametric characterization of structural integrity,stiffness behavior,and mass distribution.The comparative analysis identified optimal surrogate models for predicting key performance metrics,which enabled the construction of a robust multi-objective optimization model.The MOGA-derived Pareto solutions produced a design configuration achieving 7.86%mass reduction,2.01%safety factor improvement,and 23.97%deformation mitigation.Verification analysis confirmed the optimization scheme’s reliability in balancing conflicting design requirements.This research establishes a generalized framework for marine deck machinery modernization,particularly addressing the structural compatibility challenges in FRP vessel retrofitting.The proposed methodology demonstrates significant potential for facilitating sustainable upgrades of fishing vessel equipment through systematic performance optimization.
文摘The rapid and increasing growth in the volume and number of cyber threats from malware is not a real danger;the real threat lies in the obfuscation of these cyberattacks,as they constantly change their behavior,making detection more difficult.Numerous researchers and developers have devoted considerable attention to this topic;however,the research field has not yet been fully saturated with high-quality studies that address these problems.For this reason,this paper presents a novel multi-objective Markov-enhanced adaptive whale optimization(MOMEAWO)cybersecurity model to improve the classification of binary and multi-class malware threats through the proposed MOMEAWO approach.The proposed MOMEAWO cybersecurity model aims to provide an innovative solution for analyzing,detecting,and classifying the behavior of obfuscated malware within their respective families.The proposed model includes three classification types:Binary classification and multi-class classification(e.g.,four families and 16 malware families).To evaluate the performance of this model,we used a recently published dataset called the Canadian Institute for Cybersecurity Malware Memory Analysis(CIC-MalMem-2022)that contains balanced data.The results show near-perfect accuracy in binary classification and high accuracy in multi-class classification compared with related work using the same dataset.
文摘BACKGROUND Kidney transplantation is one of the most effective treatments for patients with end-stage renal disease.However,many regions face low deceased donor rates and limited ABO-compatible transplant availability,which increases reliance on living donors.These regional challenges necessitate the implementation of kidney paired donation(KPD)programs to overcome incompatibilities such as ABO mismatch or positive cross-matching,even when suitable and willing donors are available.AIM To evaluate the effectiveness of a single-center domino KPD model in both operational planning and clinical management processes and to assess its impact on clinical outcomes.METHODS Between April 2020 and January 2024,we retrospectively evaluated patients enrolled in our center’s domino kidney transplantation program.Donor-recipient pairs unable to proceed due to ABO incompatibility or positive cross-matching with their own living donors were included.Donors and recipients were assessed based on blood group compatibility,HLA tissue typing,and negative cross-match results.A specialized computer algorithm grouped patients into three-way,fourway,and five-way chains.All surgical procedures were performed on the same day at a single center.RESULTS A total of 169 kidney transplants were performed,forming 52 domino chains.These domino KPD transplants accounted for a notable proportion of our center’s overall transplant activity,which included both living donor kidney transplants and deceased donor transplants.Among these chains,the primary reasons for participation were ABO incompatibility(74%),positive cross-matching(10%),and the desire to improve HLA mismatch(16%).Improved HLA mismatch profiles and high graft survival(96%at 1 year,92%at 3 years)and patient survival(98%at 1 year,94%at 3 years)rates were observed,as well as low acute rejection episodes.CONCLUSION The single-center domino KPD model enhanced transplant opportunities for incompatible donor-recipient pairs while maintaining excellent clinical outcomes.By providing a framework that addresses regional challenges,improves operational efficiency,and optimizes clinical management,this model offers actionable insights to reduce waiting lists and improve patient outcomes.
文摘During path planning, it is necessary to satisfy the requirements of multiple objectives. Multi-objective synthesis is based on the need of flight mission and subjectivity inclination of decision-maker. The decision-maker, however, has illegibility for under- standing the requirements of multiple objectives and the subjectivity inclination. It is important to develop a reasonable cost performance index for describing the illegibility of the decision-maker in multi-objective path planning. Based on Voronoi dia- gram method for the path planning, this paper studies the synthesis method of the multi-objective cost performance index. Ac- cording to the application of the cost performance index to the path planning based on Voronoi diagram method, this paper ana- lyzes the cost performance index which has been referred to at present. The analysis shows the insufficiency of the cost per- formance index at present, i.e., it is difficult to synthesize sub-objective flmctions because of the great disparity of the sub-objective fimctions. Thus, a new approach is developed to optimize the cost performance index with the multi-objective fuzzy optimization strategy, and an improved performance index is established, which could coordinate the weight conflict of the sub-objective functions. Finally, the experimental result shows the effectiveness of the proposed approach.
基金Project(2009AA11Z220)supported by the National High Technology Research and Development Program of China
文摘Unmanned aerial vehicle(UAV)was introduced as a novel traffic device to collect road traffic information and its cruise route planning problem was considered.Firstly,a multi-objective optimization model was proposed aiming at minimizing the total cruise distance and the number of UAVs used,which used UAV maximum cruise distance,the number of UAVs available and time window of each monitored target as constraints.Then,a novel multi-objective evolutionary algorithm was proposed.Next,a case study with three time window scenarios was implemented.The results show that both the total cruise distance and the number of UAVs used continue to increase with the time window constraint becoming narrower.Compared with the initial optimal solutions,the optimal total cruise distance and the number of UAVs used fall by an average of 30.93% and 31.74%,respectively.Finally,some concerns using UAV to collect road traffic information were discussed.
基金Supported by the Zhejiang Provincial Natural Science Foundation for Distinguished Young Scientists(Grant No.LR18E050003)the National Natural Science Foundation of China(Grant Nos.51975523,51905481)+2 种基金Natural Science Foundation of Zhejiang Province(Grant No.LY22E050012)the Students in Zhejiang Province Science and Technology Innovation Plan(Xinmiao Talents Program)(Grant No.2020R403054)the China Postdoctoral Science Foundation(Grant No.2020M671784)。
文摘Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-objective trajectory planning approach based on an improved elitist non-dominated sorting genetic algorithm(INSGA-II)is proposed.Trajectory function is planned with a new composite polynomial that by combining of quintic polynomials with cubic Bezier curves.Then,an INSGA-II,by introducing three genetic operators:ranking group selection(RGS),direction-based crossover(DBX)and adaptive precision-controllable mutation(APCM),is developed to optimize travelling time and torque fluctuation.Inverted generational distance,hypervolume and optimizer overhead are selected to evaluate the convergence,diversity and computational effort of algorithms.The optimal solution is determined via fuzzy comprehensive evaluation to obtain the optimal trajectory.Taking a serial-parallel hybrid manipulator as instance,the velocity and acceleration profiles obtained using this composite polynomial are compared with those obtained using a quintic B-spline method.The effectiveness and practicability of the proposed method are verified by simulation results.This research proposes a trajectory optimization method which can offer a better solution with efficiency and stability for a point-to-point task of robot manipulators.
基金supported by the National Natural Science Foundation of China(7150118061473301)
文摘In the past few decades, applications of geostationary orbit (GEO) satellites have attracted increasing attention, and with the development of optical technologies, GEO optical satellites have become popular worldwide. This paper proposes a general working pattern for a GEO optical satellite, as well as a target observation mission planning model. After analyzing the requirements of users and satellite control agencies, two objectives are simultaneously considered: maximization of total profit and minimization of satellite attitude maneuver angle. An NSGA-II based multi-objective optimization algorithm is proposed, which contains some heuristic principles in the initialization phase and mutation operator, and is embedded with a traveling salesman problem (TSP) optimization. The validity and performance of the proposed method are verified by extensive numerical simulations that include several types of point target distributions.
基金supported by the Science and Technology Project of State Grid Corporation of China:“Control Strategy Optimization Technology for Large-Scale Photovoltaic Power Generation on the Sending-end and Receiving-end of DC Power System”(4000-201934198A-0-0-00)
文摘The close proximity and the necessity of coordination between multiple high-voltage direct currents(HVDCs)raise the issue of grid partitioning in multi-infeed HVDC systems.A multi-objective partition strategy is proposed in this paper.Several types of relationships to be coordinated and complemented are analyzed and formulated using quantitative indices.According to the graph theory,the HVDC partition is transformed into a graph-cut problem and solved via the spectral clustering algorithm.Finally,the proposed method is validated for a practical multi-HVDC grid,confirming its feasibility and effectiveness.
基金co-supported by the National Science Foundation for Young Scientists of China(No.61401011)the National Key Technologies R&D Program of China(No.2015BAG15B01)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.61521091)
文摘Under the demand of strategic air traffic flow management and the concept of trajectory based operations(TBO),the network-wide 4D flight trajectories planning(N4DFTP) problem has been investigated with the purpose of safely and efficiently allocating 4D trajectories(4DTs)(3D position and time) for all the flights in the whole airway network.Considering that the introduction of large-scale 4DTs inevitably increases the problem complexity,an efficient model for strategiclevel conflict management is developed in this paper.Specifically,a bi-objective N4 DFTP problem that aims to minimize both potential conflicts and the trajectory cost is formulated.In consideration of the large-scale,high-complexity,and multi-objective characteristics of the N4DFTP problem,a multi-objective multi-memetic algorithm(MOMMA) that incorporates an evolutionary global search framework together with three problem-specific local search operators is implemented.It is capable of rapidly and effectively allocating 4DTs via rerouting,target time controlling,and flight level changing.Additionally,to balance the ability of exploitation and exploration of the algorithm,a special hybridization scheme is adopted for the integration of local and global search.Empirical studies using real air traffic data in China with different network complexities show that the proposed MOMMA is effective to solve the N4 DFTP problem.The solutions achieved are competitive for elaborate decision support under a TBO environment.
基金Project(61273138)supported by the National Natural Science Foundation of ChinaProject(14JCZDJC39300)supported by the Key Fund of Tianjin,China
文摘Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a kind of multi-objective optimization problem.Being different from traditional ways of transforming the multi-objective optimization into a single objective optimization by weighting factors,this work applies an improved non-dominated sorting genetic algorithm Ⅱ(NSGA Ⅱ) to solve it directly by means of optimizing multi-objective functions simultaneously.In the improved NSGA Ⅱ,the chaos initialization and a crowding distance based population trimming method were introduced to overcome the prematurity of population,the penalty function was used in handling constraints,and the optimal solution was selected according to the method of fuzzy set theory.Simulation results of three different schemes designed according to various practical engineering requirements show that the improved NSGA Ⅱ can effectively obtain the Pareto optimal solution set under different weighting with outstanding convergence and stability,and provide a new train of thoughts to design homing trajectory of parafoil system.
基金Supported by the National Natural Science Foundation of China(9112001591120010)
文摘To performance efficient searching for an operator-supervised mobile robot, a multiple objectives route planning approach is proposed considering timeliness and path cost. An improved fitness function for route planning is proposed based on the multi-objective genetic algorithm (MOGA) for multiple objectives traveling salesman problem (MOTSP). Then, the path between two route nodes is generated based on the heuristic path planning method A *. A simplified timeliness function for route nodes is proposed to represent the timeliness of each node. Based on the proposed timeliness function, experiments are conducted using the proposed two-stage planning method. The experimental results show that the proposed MOGA with improved fitness function can perform the searching function well when the timeliness of the searching task needs to be taken into consideration.
文摘This paper presents a multi-objective production planning model for a factory operating under a multi-product, and multi-period environment using the lexicographic (pre-emptive) procedure. The model objectives are to maximize the profit, minimize the total cost, and maximize the Overall Service Level (OSL) of the customers. The system consists of three potential suppliers that serve the factory to serve three customers/distributors. The performance of the developed model is illustrated using a verification example. Discussion of the results proved the efficacy of the model. Also, the effect of the deviation percentages on the different objectives is discussed.
基金SupportedbytheNationalNaturalScienceFoundationofChina (No .60 1 340 1 0 )
文摘A new fuzzification method for multi-objective decision-making and selective sorting is proposed on the basis of the fuzzy consistent relation, and the specific algorithm is presented. The method is applied to the evaluation of highway planning of Zhanjiang city. To decrease the subjectivity in the process of decision-making, the LOWA operator is introduced, and a discussion on how to select appropriate weights involved in multi-objective sorting is made. It is concluded that it is feasible to apply the fuzzy consistent relation to multi-objective decision-making analysis, and the improved fuzzication method is workable.
基金financial supports and the strategic platform for innovation&research provided by Danish national project iPower.
文摘This paper presents a novel approach for electrical distribution network expansion planning using multi-objective particle swarm optimization (PSO). The optimization objectives are: investment and operation cost, energy losses cost, and power congestion cost. A two-phase multi-objective PSO algorithm is employed to solve this optimization problem, which can accelerate the convergence and guarantee the diversity of Pareto-optimal front set as well. The feasibility and effectiveness of both the proposed multi-objective planning approach and the improved multi-objective PSO have been verified by the 18-node typical system.
基金the National Key Research and Development Program of China (2018YFB0105000)the National Natural Science Foundation of China (61773234 and U1864203)+2 种基金the Project of Tsinghua University and Toyota Joint Research Center for AI Technology of Automated Vehicle (TT2018-02)the International Science and Technology Cooperation Program of China (2016YFE0102200)the software developed in the Beijing Municipal Science and Technology Program (D171100005117001 and Z181100005918001).
文摘An increasing number of drivers are relying on digital map navigation systems in vehicles or mobile phones to select optimal driving routes in order to save time and improve safety. In the near future, digital map navigation systems are expected to play more important roles in transportation systems. In order to extend current navigation systems to more applications, two fundamental problems must be resolved: the lane-level map model and lane-level route planning. This study proposes solutions to both problems. The current limitation of the lane-level map model is not its accuracy but its flexibility;this study proposes a novel seven-layer map structure, called as Tsinghua map model, which is able to support autonomous driving in a flexible and efficient way. For lane-level route planning, we propose a hierarchical route-searching algorithm to accelerate the planning process, even in the presence of complicated lane networks. In addition, we model the travel costs allocated for lane-level road networks by analyzing vehicle maneuvers in traversing lanes, changing lanes, and turning at intersections. Tests were performed on both a grid network and a real lane-level road network to demonstrate the validity and efficiency of the proposed algorithm.