Community detection is one of the most fundamental applications in understanding the structure of complicated networks.Furthermore,it is an important approach to identifying closely linked clusters of nodes that may r...Community detection is one of the most fundamental applications in understanding the structure of complicated networks.Furthermore,it is an important approach to identifying closely linked clusters of nodes that may represent underlying patterns and relationships.Networking structures are highly sensitive in social networks,requiring advanced techniques to accurately identify the structure of these communities.Most conventional algorithms for detecting communities perform inadequately with complicated networks.In addition,they miss out on accurately identifying clusters.Since single-objective optimization cannot always generate accurate and comprehensive results,as multi-objective optimization can.Therefore,we utilized two objective functions that enable strong connections between communities and weak connections between them.In this study,we utilized the intra function,which has proven effective in state-of-the-art research studies.We proposed a new inter-function that has demonstrated its effectiveness by making the objective of detecting external connections between communities is to make them more distinct and sparse.Furthermore,we proposed a Multi-Objective community strength enhancement algorithm(MOCSE).The proposed algorithm is based on the framework of the Multi-Objective Evolutionary Algorithm with Decomposition(MOEA/D),integrated with a new heuristic mutation strategy,community strength enhancement(CSE).The results demonstrate that the model is effective in accurately identifying community structures while also being computationally efficient.The performance measures used to evaluate the MOEA/D algorithm in our work are normalized mutual information(NMI)and modularity(Q).It was tested using five state-of-the-art algorithms on social networks,comprising real datasets(Zachary,Dolphin,Football,Krebs,SFI,Jazz,and Netscience),as well as twenty synthetic datasets.These results provide the robustness and practical value of the proposed algorithm in multi-objective community identification.展开更多
Vehicle Edge Computing(VEC)and Cloud Computing(CC)significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrain...Vehicle Edge Computing(VEC)and Cloud Computing(CC)significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrained onboard devices to nearby Roadside Unit(RSU),thereby achieving lower delay and energy consumption.However,due to the limited storage capacity and energy budget of RSUs,it is challenging to meet the demands of the highly dynamic Internet of Vehicles(IoV)environment.Therefore,determining reasonable service caching and computation offloading strategies is crucial.To address this,this paper proposes a joint service caching scheme for cloud-edge collaborative IoV computation offloading.By modeling the dynamic optimization problem using Markov Decision Processes(MDP),the scheme jointly optimizes task delay,energy consumption,load balancing,and privacy entropy to achieve better quality of service.Additionally,a dynamic adaptive multi-objective deep reinforcement learning algorithm is proposed.Each Double Deep Q-Network(DDQN)agent obtains rewards for different objectives based on distinct reward functions and dynamically updates the objective weights by learning the value changes between objectives using Radial Basis Function Networks(RBFN),thereby efficiently approximating the Pareto-optimal decisions for multiple objectives.Extensive experiments demonstrate that the proposed algorithm can better coordinate the three-tier computing resources of cloud,edge,and vehicles.Compared to existing algorithms,the proposed method reduces task delay and energy consumption by 10.64%and 5.1%,respectively.展开更多
The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition...The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition and multi-selection strategy is proposed to improve the search efficiency.First,two update strategies based on decomposition are used to update the evolving population and external archive,respectively.Second,a multiselection strategy is designed.The first strategy is for the subspace without a non-dominated solution.Among the neighbor particles,the particle with the smallest penalty-based boundary intersection value is selected as the global optimal solution and the particle far away fromthe search particle and the global optimal solution is selected as the personal optimal solution to enhance global search.The second strategy is for the subspace with a non-dominated solution.In the neighbor particles,two particles are randomly selected,one as the global optimal solution and the other as the personal optimal solution,to enhance local search.The third strategy is for Pareto optimal front(PF)discontinuity,which is identified by the cumulative number of iterations of the subspace without non-dominated solutions.In the subsequent iteration,a new probability distribution is used to select from the remaining subspaces to search.Third,an adaptive inertia weight update strategy based on the dominated degree is designed to further improve the search efficiency.Finally,the proposed algorithmis compared with fivemulti-objective particle swarm optimization algorithms and five multi-objective evolutionary algorithms on 22 test problems.The results show that the proposed algorithm has better performance.展开更多
This study deals with a robot manipulator for yarn bobbin handling in the cotton yarns lattice distortion modification system.The aim is to achieve an operation of yarn bobbin handling with minimal execution time,ener...This study deals with a robot manipulator for yarn bobbin handling in the cotton yarns lattice distortion modification system.The aim is to achieve an operation of yarn bobbin handling with minimal execution time,energy consumption and jerk in motion together.The placement of the robot,in relation to the yarn bobbin stations,is also optimized in conjunction of trajectory optimization.Three possible techniques for building the handling traj'ectory were considered:the quaternion spherical linear interpolation in Cartesian space,the quintic polynomial spline and quintic B-spline in joint space.The genetic algorithm(GA) was used to optimize the trajectories of the robot,with a penalty function to handle nonlinear constraints associated in the robot motion.Two simulations of the optimal trajectory in joint space and the placement of robot were carried out and the results obtained were presented and discussed.It is concluded that the quintic polynomial spline constructs a better trajectory in joint space and the proper placement of robot makes better performance.展开更多
To fit the complicated geographic conditions of the Three Gorges Reservoir area, a two-level multi-objective monitoring system was developed to monitor the atmosphere of the area. Statistical analysis of environmental...To fit the complicated geographic conditions of the Three Gorges Reservoir area, a two-level multi-objective monitoring system was developed to monitor the atmosphere of the area. Statistical analysis of environmental monitoring data and the macro control principle were employed to configure the upper layer. The lower layer was designed by the application of the thumb rule to a local terrain and specific point sources of pollution therein. The optimized two-level system comprises an upper layer of 16 monitoring stations distributed at places of diverse geographical, ecological, economical and social characteristics, and a lower layer of ]6 sub-machines at each monitoring station of the upper layer. This optimal outcome fits the complicated conditions of the Three Gorges Reservoir area, substantially cuts down the installation cost and the operation cost, and provides accurate monitoring data of atmosphere over the entire area with a high resolution.展开更多
A novel active steering system with force and displacement coupled control(the novel AFS system) was introduced,which has functions of both the active steering and electric power steering.Based on the model of the nov...A novel active steering system with force and displacement coupled control(the novel AFS system) was introduced,which has functions of both the active steering and electric power steering.Based on the model of the novel AFS system and the vehicle three-degree of freedom system,the concept and quantitative formulas of the novel AFS system steering performance were proposed.The steering road feel and steering portability were set as the optimizing targets with the steering stability and steering portability as the constraint conditions.According to the features of constrained optimization of multi-variable function,a multi-variable genetic algorithm for the system parameter optimization was designed.The simulation results show that based on parametric optimization of the multi-objective genetic algorithm,the novel AFS system can improve the steering road feel,steering portability and steering stability,thus the optimization method can provide a theoretical basis for the design and optimization of the novel AFS system.展开更多
This paper introduces the Surrogate-assisted Multi-objective Grey Wolf Optimizer(SMOGWO)as a novel methodology for addressing the complex problem of empty-heavy train allocation,with a focus on line utilization balanc...This paper introduces the Surrogate-assisted Multi-objective Grey Wolf Optimizer(SMOGWO)as a novel methodology for addressing the complex problem of empty-heavy train allocation,with a focus on line utilization balance.By integrating surrogate models to approximate the objective functions,SMOGWO significantly improves the efficiency and accuracy of the optimization process.The effectiveness of this approach is evaluated using the CEC2009 multi-objective test function suite,where SMOGWO achieves a superiority rate of 76.67%compared to other leading multi-objective algorithms.Furthermore,the practical applicability of SMOGWO is demonstrated through a case study on empty and heavy train allocation,which validates its ability to balance line capacity,minimize transportation costs,and optimize the technical combination of heavy trains.The research highlights SMOGWO's potential as a robust solution for optimization challenges in railway transportation,offering valuable contributions toward enhancing operational efficiency and promoting sustainable development in the sector.展开更多
In the independent electro-hydrogen system(IEHS)with hybrid energy storage(HESS),achieving optimal scheduling is crucial.Still,it presents a challenge due to the significant deviations in values ofmultiple optimizatio...In the independent electro-hydrogen system(IEHS)with hybrid energy storage(HESS),achieving optimal scheduling is crucial.Still,it presents a challenge due to the significant deviations in values ofmultiple optimization objective functions caused by their physical dimensions.These deviations seriously affect the scheduling process.A novel standardization fusion method has been established to address this issue by analyzing the variation process of each objective function’s values.The optimal scheduling results of IEHS with HESS indicate that the economy and overall energy loss can be improved 2–3 times under different optimization methods.The proposed method better balances all optimization objective functions and reduces the impact of their dimensionality.When the cost of BESS decreases by approximately 30%,its participation deepens by about 1 time.Moreover,if the price of the electrolyzer is less than 15¥/kWh or if the cost of the fuel cell drops below 4¥/kWh,their participation will increase substantially.This study aims to provide a more reasonable approach to solving multi-objective optimization problems.展开更多
This work proposes a novel approach for multi-type optimal placement of flexible AC transmission system(FACTS) devices so as to optimize multi-objective voltage stability problem. The current study discusses a way for...This work proposes a novel approach for multi-type optimal placement of flexible AC transmission system(FACTS) devices so as to optimize multi-objective voltage stability problem. The current study discusses a way for locating and setting of thyristor controlled series capacitor(TCSC) and static var compensator(SVC) using the multi-objective optimization approach named strength pareto multi-objective evolutionary algorithm(SPMOEA). Maximization of the static voltage stability margin(SVSM) and minimizations of real power losses(RPL) and load voltage deviation(LVD) are taken as the goals or three objective functions, when optimally locating multi-type FACTS devices. The performance and effectiveness of the proposed approach has been validated by the simulation results of the IEEE 30-bus and IEEE 118-bus test systems. The proposed approach is compared with non-dominated sorting particle swarm optimization(NSPSO) algorithm. This comparison confirms the usefulness of the multi-objective proposed technique that makes it promising for determination of combinatorial problems of FACTS devices location and setting in large scale power systems.展开更多
Multi-instance image generation remains a challenging task in the field of computer vision.While existing diffusionmodels demonstrate impressive fidelity in image generation,they often struggle with precisely controll...Multi-instance image generation remains a challenging task in the field of computer vision.While existing diffusionmodels demonstrate impressive fidelity in image generation,they often struggle with precisely controlling each object’s shape,pose,and size.Methods like layout-to-image and mask-to-image provide spatial guidance but frequently suffer from object shape distortion,overlaps,and poor consistency,particularly in complex scenes with multiple objects.To address these issues,we introduce PolyDiffusion,a contour-based diffusion framework that encodes each object’s contour as a boundary-coordinate sequence,decoupling object shapes and positions.This approach allows for better control over object geometry and spatial positioning,which is critical for achieving high-quality multiinstance generation.We formulate the training process as a multi-objective optimization problem,balancing three key objectives:a denoising diffusion loss to maintain overall image fidelity,a cross-attention contour alignment loss to ensure precise shape adherence,and a reward-guided denoising objective that minimizes the Fréchet distance to real images.In addition,the Object Space-Aware Attention module fuses contour tokens with visual features,while a prior-guided fusion mechanism utilizes inter-object spatial relationships and class semantics to enhance consistency across multiple objects.Experimental results on benchmark datasets such as COCO-Stuff and VOC-2012 demonstrate that PolyDiffusion significantly outperforms existing layout-to-image and mask-to-image methods,achieving notable improvements in both image quality and instance-level segmentation accuracy.The implementation of Poly Diffusion is available at https://github.com/YYYYYJS/PolyDiffusion(accessed on 06 August 2025).展开更多
In the last decade,space solar power satellites(SSPSs)have been conceived to support net-zero carbon emissions and have attracted considerable attention.Electric energy is transmitted to the ground via a microwave pow...In the last decade,space solar power satellites(SSPSs)have been conceived to support net-zero carbon emissions and have attracted considerable attention.Electric energy is transmitted to the ground via a microwave power beam,a technology known as microwave power transmission(MPT).Due to the vast transmission distance of tens of thousands of kilometers,the power transmitting antenna array must span up to 1 kilometer in diameter.At the same time,the size of the rectifying array on the ground should extend over a few kilometers.This makes the MPT system of SSPSs significantly larger than the existing aerospace engineering system.To design and operate a rational MPT system,comprehensive optimization is required.Taking the space MPT system engineering into consideration,a novel multi-objective optimization function is proposed and further analyzed.The multi-objective optimization problem is modeled mathematically.Beam collection efficiency(BCE)is the primary factor,followed by the thermal management capability.Some tapers,designed to solve the conflict between BCE and the thermal problem,are reviewed.In addition to these two factors,rectenna design complexity is included as a functional factor in the optimization objective.Weight coefficients are assigned to these factors to prioritize them.Radiating planar arrays with different aperture illumination fields are studied,and their performances are compared using the multi-objective optimization function.Transmitting array size,rectifying array size,transmission distance,and transmitted power remaine constant in various cases,ensuring fair comparisons.The analysis results show that the proposed optimization function is effective in optimizing and selecting the MPT system architecture.It is also noted that the multi-objective optimization function can be expanded to include other factors in the future.展开更多
Cloud computing has emerged as a vital platform for processing resource-intensive workloads in smart manu-facturing environments,enabling scalable and flexible access to remote data centers over the internet.In these ...Cloud computing has emerged as a vital platform for processing resource-intensive workloads in smart manu-facturing environments,enabling scalable and flexible access to remote data centers over the internet.In these environments,Virtual Machines(VMs)are employed to manage workloads,with their optimal placement on Physical Machines(PMs)being crucial for maximizing resource utilization.However,achieving high resource utilization in cloud data centers remains a challenge due to multiple conflicting objectives,particularly in scenarios involving inter-VM communication dependencies,which are common in smart manufacturing applications.This manuscript presents an AI-driven approach utilizing a modified Multi-Objective Particle Swarm Optimization(MOPSO)algorithm,enhanced with improved mutation and crossover operators,to efficiently place VMs.This approach aims to minimize the impact on networking devices during inter-VM communication while enhancing resource utilization.The proposed algorithm is benchmarked against other multi-objective algorithms,such as Multi-Objective Evolutionary Algorithm with Decomposition(MOEA/D),demonstrating its superiority in optimizing resource allocation in cloud-based environments for smart manufacturing.展开更多
Impinging jet arrays are extensively used in numerous industrial operations,including the cooling of electronics,turbine blades,and other high-heat flux systems because of their superior heat transfer capabilities.Opt...Impinging jet arrays are extensively used in numerous industrial operations,including the cooling of electronics,turbine blades,and other high-heat flux systems because of their superior heat transfer capabilities.Optimizing the design and operating parameters of such systems is essential to enhance cooling efficiency and achieve uniform pressure distribution,which can lead to improved system performance and energy savings.This paper presents two multi-objective optimization methodologies for a turbulent air jet impingement cooling system.The governing equations are resolved employing the commercial computational fluid dynamics(CFD)software ANSYS Fluent v17.The study focuses on four controlling parameters:Reynolds number(Re),swirl number(S),jet-to-jet separation distance(Z/D),and impingement height(H/D).The effects of these parameters on heat transfer and impingement pressure distribution are investigated.Non-dominated Sorting Genetic Algorithm(NSGA-II)and Weighted Sum Method(WSM)are employed to optimize the controlling parameters for maximum cooling performance.The aim is to identify optimal design parameters and system configurations that enhance heat transfer efficiency while achieving a uniform impingement pressure distribution.These findings have practical implications for applications requiring efficient cooling.The optimized design achieved a 12.28%increase in convective heat transfer efficiency with a local Nusselt number of 113.05 compared to 100.69 in the reference design.Enhanced convective cooling and heat flux were observed in the optimized configuration,particularly in areas of direct jet impingement.Additionally,the optimized design maintained lower wall temperatures,demonstrating more effective thermal dissipation.展开更多
With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm impro...With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm improvement.To reduce the operational costs of micro-grid systems and the energy abandonment rate of renewable energy,while simultaneously enhancing user satisfaction on the demand side,this paper introduces an improvedmultiobjective Grey Wolf Optimizer based on Cauchy variation.The proposed approach incorporates a Cauchy variation strategy during the optimizer’s search phase to expand its exploration range and minimize the likelihood of becoming trapped in local optima.At the same time,adoptingmultiple energy storage methods to improve the consumption rate of renewable energy.Subsequently,under different energy balance orders,themulti-objective particle swarmalgorithm,multi-objective grey wolf optimizer,and Cauchy’s variant of the improvedmulti-objective grey wolf optimizer are used for example simulation,solving the Pareto solution set of the model and comparing.The analysis of the results reveals that,compared to the original optimizer,the improved optimizer decreases the daily cost by approximately 100 yuan,and reduces the energy abandonment rate to zero.Meanwhile,it enhances user satisfaction and ensures the stable operation of the micro-grid.展开更多
This study proposes a multi-objective optimization framework for electric winches in fiber-reinforced plastic(FRP)fishing vessels to address critical limitations of conventional designs,including excessive weight,mate...This study proposes a multi-objective optimization framework for electric winches in fiber-reinforced plastic(FRP)fishing vessels to address critical limitations of conventional designs,including excessive weight,material inefficiency,and performance redundancy.By integrating surrogate modeling techniques with a multi-objective genetic algorithm(MOGA),we have developed a systematic approach that encompasses parametric modeling,finite element analysis under extreme operational conditions,and multi-fidelity performance evaluation.Through a 10-t electric winch case study,the methodology’s effectiveness is demonstrated via parametric characterization of structural integrity,stiffness behavior,and mass distribution.The comparative analysis identified optimal surrogate models for predicting key performance metrics,which enabled the construction of a robust multi-objective optimization model.The MOGA-derived Pareto solutions produced a design configuration achieving 7.86%mass reduction,2.01%safety factor improvement,and 23.97%deformation mitigation.Verification analysis confirmed the optimization scheme’s reliability in balancing conflicting design requirements.This research establishes a generalized framework for marine deck machinery modernization,particularly addressing the structural compatibility challenges in FRP vessel retrofitting.The proposed methodology demonstrates significant potential for facilitating sustainable upgrades of fishing vessel equipment through systematic performance optimization.展开更多
The spoke as a key component has a significant impact on the performance of the non-pneumatic tire(NPT).The current research has focused on adjusting spoke structures to improve the single performance of NPT.Few studi...The spoke as a key component has a significant impact on the performance of the non-pneumatic tire(NPT).The current research has focused on adjusting spoke structures to improve the single performance of NPT.Few studies have been conducted to synergistically improve multi-performance by optimizing the spoke structure.Inspired by the concept of functionally gradient structures,this paper introduces a functionally gradient honeycomb NPT and its optimization method.Firstly,this paper completes the parameterization of the honeycomb spoke structure and establishes the numerical models of honeycomb NPTs with seven different gradients.Subsequently,the accuracy of the numerical models is verified using experimental methods.Then,the static and dynamic characteristics of these gradient honeycomb NPTs are thoroughly examined by using the finite element method.The findings highlight that the gradient structure of NPT-3 has superior performance.Building upon this,the study investigates the effects of key parameters,such as honeycomb spoke thickness and length,on load-carrying capacity,honeycomb spoke stress and mass.Finally,a multi-objective optimization method is proposed that uses a response surface model(RSM)and the Nondominated Sorting Genetic Algorithm-II(NSGA-II)to further optimize the functional gradient honeycomb NPTs.The optimized NPT-OP shows a 23.48%reduction in radial stiffness,8.95%reduction in maximum spoke stress and 16.86%reduction in spoke mass compared to the initial NPT-1.The damping characteristics of the NPT-OP have also been improved.The results offer a theoretical foundation and technical methodology for the structural design and optimization of gradient honeycomb NPTs.展开更多
Hydrocracking is one of the most important petroleum refining processes that converts heavy oils into gases,naphtha,diesel,and other products through cracking reactions.Multi-objective optimization algorithms can help...Hydrocracking is one of the most important petroleum refining processes that converts heavy oils into gases,naphtha,diesel,and other products through cracking reactions.Multi-objective optimization algorithms can help refining enterprises determine the optimal operating parameters to maximize product quality while ensuring product yield,or to increase product yield while reducing energy consumption.This paper presents a multi-objective optimization scheme for hydrocracking based on an improved SPEA2-PE algorithm,which combines path evolution operator and adaptive step strategy to accelerate the convergence speed and improve the computational accuracy of the algorithm.The reactor model used in this article is simulated based on a twenty-five lumped kinetic model.Through model and test function verification,the proposed optimization scheme exhibits significant advantages in the multiobjective optimization process of hydrocracking.展开更多
Non-panoramic virtual reality(VR)provides users with immersive experiences involving strong interactivity,thus attracting growing research and development attention.However,the demand for high bandwidth and low latenc...Non-panoramic virtual reality(VR)provides users with immersive experiences involving strong interactivity,thus attracting growing research and development attention.However,the demand for high bandwidth and low latency in VR services presents greater challenges to existing networks.Inspired by mobile edge computing(MEC),VR users can offload rendering tasks to other devices.The main challenge of task offloading is to minimize latency and energy consumption.Yet,in non-panoramic VR scenarios,it is essential to consider the Quality of Perceptual Experience(QOPE)for users.Simultaneously,one must also take into account the diverse requirements of users in real-world scenarios.Therefore,this paper proposes a QOPE model to measure the visual quality of non-panoramic VR users and models the non-panoramic VR task offloading problem based on MEC as a constrained multi-objective optimization problem(CMOP)that minimizes latency and energy consumption while providing a satisfied QOPE.And we propose an evolutionary algorithm(EA),GNSGA-II,to solve the CMOP.Simulation results show that the algorithm can effectively find various trade-off solutions among the objectives,satisfying the requirements of different users.展开更多
The lack of systematic and scientific top-level arrangement in the field of civil aircraft flight test leads to the problems of long duration and high cost.Based on the flight test activity,mathematical models of flig...The lack of systematic and scientific top-level arrangement in the field of civil aircraft flight test leads to the problems of long duration and high cost.Based on the flight test activity,mathematical models of flight test duration and cost are established to set up the framework of flight test process.The top-level arrangement for flight test is optimized by multi-objective algorithm to reduce the duration and cost of flight test.In order to verify the necessity and validity of the mathematical models and the optimization algorithm of top-level arrangement,real flight test data is used to make an example calculation.Results show that the multi-objective optimization results of the top-level flight arrangement are better than the initial arrangement data,which can shorten the duration,reduce the cost,and improve the efficiency of flight test.展开更多
The ease of accessing a virtually unlimited pool of resources makes Infrastructure as a Service (IaaS) clouds an ideal platform for running data-intensive workflow applications comprising hundreds of computational tas...The ease of accessing a virtually unlimited pool of resources makes Infrastructure as a Service (IaaS) clouds an ideal platform for running data-intensive workflow applications comprising hundreds of computational tasks. However, executing scientific workflows in IaaS cloud environments poses significant challenges due to conflicting objectives, such as minimizing execution time (makespan) and reducing resource utilization costs. This study responds to the increasing need for efficient and adaptable optimization solutions in dynamic and complex environments, which are critical for meeting the evolving demands of modern users and applications. This study presents an innovative multi-objective approach for scheduling scientific workflows in IaaS cloud environments. The proposed algorithm, MOS-MWMC, aims to minimize total execution time (makespan) and resource utilization costs by leveraging key features of virtual machine instances, such as a high number of cores and fast local SSD storage. By integrating realistic simulations based on the WRENCH framework, the method effectively dimensions the cloud infrastructure and optimizes resource usage. Experimental results highlight the superiority of MOS-MWMC compared to benchmark algorithms HEFT and Max-Min. The Pareto fronts obtained for the CyberShake, Epigenomics, and Montage workflows demonstrate closer proximity to the optimal front, confirming the algorithm’s ability to balance conflicting objectives. This study contributes to optimizing scientific workflows in complex environments by providing solutions tailored to specific user needs while minimizing costs and execution times.展开更多
文摘Community detection is one of the most fundamental applications in understanding the structure of complicated networks.Furthermore,it is an important approach to identifying closely linked clusters of nodes that may represent underlying patterns and relationships.Networking structures are highly sensitive in social networks,requiring advanced techniques to accurately identify the structure of these communities.Most conventional algorithms for detecting communities perform inadequately with complicated networks.In addition,they miss out on accurately identifying clusters.Since single-objective optimization cannot always generate accurate and comprehensive results,as multi-objective optimization can.Therefore,we utilized two objective functions that enable strong connections between communities and weak connections between them.In this study,we utilized the intra function,which has proven effective in state-of-the-art research studies.We proposed a new inter-function that has demonstrated its effectiveness by making the objective of detecting external connections between communities is to make them more distinct and sparse.Furthermore,we proposed a Multi-Objective community strength enhancement algorithm(MOCSE).The proposed algorithm is based on the framework of the Multi-Objective Evolutionary Algorithm with Decomposition(MOEA/D),integrated with a new heuristic mutation strategy,community strength enhancement(CSE).The results demonstrate that the model is effective in accurately identifying community structures while also being computationally efficient.The performance measures used to evaluate the MOEA/D algorithm in our work are normalized mutual information(NMI)and modularity(Q).It was tested using five state-of-the-art algorithms on social networks,comprising real datasets(Zachary,Dolphin,Football,Krebs,SFI,Jazz,and Netscience),as well as twenty synthetic datasets.These results provide the robustness and practical value of the proposed algorithm in multi-objective community identification.
基金supported by Key Science and Technology Program of Henan Province,China(Grant Nos.242102210147,242102210027)Fujian Province Young and Middle aged Teacher Education Research Project(Science and Technology Category)(No.JZ240101)(Corresponding author:Dong Yuan).
文摘Vehicle Edge Computing(VEC)and Cloud Computing(CC)significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrained onboard devices to nearby Roadside Unit(RSU),thereby achieving lower delay and energy consumption.However,due to the limited storage capacity and energy budget of RSUs,it is challenging to meet the demands of the highly dynamic Internet of Vehicles(IoV)environment.Therefore,determining reasonable service caching and computation offloading strategies is crucial.To address this,this paper proposes a joint service caching scheme for cloud-edge collaborative IoV computation offloading.By modeling the dynamic optimization problem using Markov Decision Processes(MDP),the scheme jointly optimizes task delay,energy consumption,load balancing,and privacy entropy to achieve better quality of service.Additionally,a dynamic adaptive multi-objective deep reinforcement learning algorithm is proposed.Each Double Deep Q-Network(DDQN)agent obtains rewards for different objectives based on distinct reward functions and dynamically updates the objective weights by learning the value changes between objectives using Radial Basis Function Networks(RBFN),thereby efficiently approximating the Pareto-optimal decisions for multiple objectives.Extensive experiments demonstrate that the proposed algorithm can better coordinate the three-tier computing resources of cloud,edge,and vehicles.Compared to existing algorithms,the proposed method reduces task delay and energy consumption by 10.64%and 5.1%,respectively.
基金supported by National Natural Science Foundations of China(nos.12271326,62102304,61806120,61502290,61672334,61673251)China Postdoctoral Science Foundation(no.2015M582606)+2 种基金Industrial Research Project of Science and Technology in Shaanxi Province(nos.2015GY016,2017JQ6063)Fundamental Research Fund for the Central Universities(no.GK202003071)Natural Science Basic Research Plan in Shaanxi Province of China(no.2022JM-354).
文摘The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition and multi-selection strategy is proposed to improve the search efficiency.First,two update strategies based on decomposition are used to update the evolving population and external archive,respectively.Second,a multiselection strategy is designed.The first strategy is for the subspace without a non-dominated solution.Among the neighbor particles,the particle with the smallest penalty-based boundary intersection value is selected as the global optimal solution and the particle far away fromthe search particle and the global optimal solution is selected as the personal optimal solution to enhance global search.The second strategy is for the subspace with a non-dominated solution.In the neighbor particles,two particles are randomly selected,one as the global optimal solution and the other as the personal optimal solution,to enhance local search.The third strategy is for Pareto optimal front(PF)discontinuity,which is identified by the cumulative number of iterations of the subspace without non-dominated solutions.In the subsequent iteration,a new probability distribution is used to select from the remaining subspaces to search.Third,an adaptive inertia weight update strategy based on the dominated degree is designed to further improve the search efficiency.Finally,the proposed algorithmis compared with fivemulti-objective particle swarm optimization algorithms and five multi-objective evolutionary algorithms on 22 test problems.The results show that the proposed algorithm has better performance.
基金National Key Technology Support Program,China(No.2012BAF13B03)Program for Changjiang Scholars and Innovative Research Team in University,China(No.IRT1220)
文摘This study deals with a robot manipulator for yarn bobbin handling in the cotton yarns lattice distortion modification system.The aim is to achieve an operation of yarn bobbin handling with minimal execution time,energy consumption and jerk in motion together.The placement of the robot,in relation to the yarn bobbin stations,is also optimized in conjunction of trajectory optimization.Three possible techniques for building the handling traj'ectory were considered:the quaternion spherical linear interpolation in Cartesian space,the quintic polynomial spline and quintic B-spline in joint space.The genetic algorithm(GA) was used to optimize the trajectories of the robot,with a penalty function to handle nonlinear constraints associated in the robot motion.Two simulations of the optimal trajectory in joint space and the placement of robot were carried out and the results obtained were presented and discussed.It is concluded that the quintic polynomial spline constructs a better trajectory in joint space and the proper placement of robot makes better performance.
基金This work was based on a previous article presented in 1st Three Gorges Research Forum on Environment and Economy, TGRF2007, at Chongqing University, July 18-19, 2007.
文摘To fit the complicated geographic conditions of the Three Gorges Reservoir area, a two-level multi-objective monitoring system was developed to monitor the atmosphere of the area. Statistical analysis of environmental monitoring data and the macro control principle were employed to configure the upper layer. The lower layer was designed by the application of the thumb rule to a local terrain and specific point sources of pollution therein. The optimized two-level system comprises an upper layer of 16 monitoring stations distributed at places of diverse geographical, ecological, economical and social characteristics, and a lower layer of ]6 sub-machines at each monitoring station of the upper layer. This optimal outcome fits the complicated conditions of the Three Gorges Reservoir area, substantially cuts down the installation cost and the operation cost, and provides accurate monitoring data of atmosphere over the entire area with a high resolution.
基金Project(51005115) supported by the National Natural Science Foundation of ChinaProject(KF11201) supported by the Science Fund of State Key Laboratory of Automotive Safety and Energy,ChinaProject(201105) supported by the Visiting Scholar Foundation of the State Key Laboratory of Mechanical Transmission in Chongqing University,China
文摘A novel active steering system with force and displacement coupled control(the novel AFS system) was introduced,which has functions of both the active steering and electric power steering.Based on the model of the novel AFS system and the vehicle three-degree of freedom system,the concept and quantitative formulas of the novel AFS system steering performance were proposed.The steering road feel and steering portability were set as the optimizing targets with the steering stability and steering portability as the constraint conditions.According to the features of constrained optimization of multi-variable function,a multi-variable genetic algorithm for the system parameter optimization was designed.The simulation results show that based on parametric optimization of the multi-objective genetic algorithm,the novel AFS system can improve the steering road feel,steering portability and steering stability,thus the optimization method can provide a theoretical basis for the design and optimization of the novel AFS system.
基金supported by the National Natural Science Foundation of China(Project No.5217232152102391)+2 种基金Sichuan Province Science and Technology Innovation Talent Project(2024JDRC0020)China Shenhua Energy Company Limited Technology Project(GJNY-22-7/2300-K1220053)Key science and technology projects in the transportation industry of the Ministry of Transport(2022-ZD7-132).
文摘This paper introduces the Surrogate-assisted Multi-objective Grey Wolf Optimizer(SMOGWO)as a novel methodology for addressing the complex problem of empty-heavy train allocation,with a focus on line utilization balance.By integrating surrogate models to approximate the objective functions,SMOGWO significantly improves the efficiency and accuracy of the optimization process.The effectiveness of this approach is evaluated using the CEC2009 multi-objective test function suite,where SMOGWO achieves a superiority rate of 76.67%compared to other leading multi-objective algorithms.Furthermore,the practical applicability of SMOGWO is demonstrated through a case study on empty and heavy train allocation,which validates its ability to balance line capacity,minimize transportation costs,and optimize the technical combination of heavy trains.The research highlights SMOGWO's potential as a robust solution for optimization challenges in railway transportation,offering valuable contributions toward enhancing operational efficiency and promoting sustainable development in the sector.
基金sponsored by R&D Program of Beijing Municipal Education Commission(KM202410009013).
文摘In the independent electro-hydrogen system(IEHS)with hybrid energy storage(HESS),achieving optimal scheduling is crucial.Still,it presents a challenge due to the significant deviations in values ofmultiple optimization objective functions caused by their physical dimensions.These deviations seriously affect the scheduling process.A novel standardization fusion method has been established to address this issue by analyzing the variation process of each objective function’s values.The optimal scheduling results of IEHS with HESS indicate that the economy and overall energy loss can be improved 2–3 times under different optimization methods.The proposed method better balances all optimization objective functions and reduces the impact of their dimensionality.When the cost of BESS decreases by approximately 30%,its participation deepens by about 1 time.Moreover,if the price of the electrolyzer is less than 15¥/kWh or if the cost of the fuel cell drops below 4¥/kWh,their participation will increase substantially.This study aims to provide a more reasonable approach to solving multi-objective optimization problems.
文摘This work proposes a novel approach for multi-type optimal placement of flexible AC transmission system(FACTS) devices so as to optimize multi-objective voltage stability problem. The current study discusses a way for locating and setting of thyristor controlled series capacitor(TCSC) and static var compensator(SVC) using the multi-objective optimization approach named strength pareto multi-objective evolutionary algorithm(SPMOEA). Maximization of the static voltage stability margin(SVSM) and minimizations of real power losses(RPL) and load voltage deviation(LVD) are taken as the goals or three objective functions, when optimally locating multi-type FACTS devices. The performance and effectiveness of the proposed approach has been validated by the simulation results of the IEEE 30-bus and IEEE 118-bus test systems. The proposed approach is compared with non-dominated sorting particle swarm optimization(NSPSO) algorithm. This comparison confirms the usefulness of the multi-objective proposed technique that makes it promising for determination of combinatorial problems of FACTS devices location and setting in large scale power systems.
基金supported in part by the Scientific Research Fund of National Natural Science Foundation of China(Grant No.62372168)the Hunan Provincial Natural Science Foundation of China(Grant No.2023JJ30266)+2 种基金the Research Project on teaching reform in Hunan province(No.HNJG-2022-0791)the Hunan University of Science and Technology(No.2022-44-8)the National Social Science Funds of China(19BZX044).
文摘Multi-instance image generation remains a challenging task in the field of computer vision.While existing diffusionmodels demonstrate impressive fidelity in image generation,they often struggle with precisely controlling each object’s shape,pose,and size.Methods like layout-to-image and mask-to-image provide spatial guidance but frequently suffer from object shape distortion,overlaps,and poor consistency,particularly in complex scenes with multiple objects.To address these issues,we introduce PolyDiffusion,a contour-based diffusion framework that encodes each object’s contour as a boundary-coordinate sequence,decoupling object shapes and positions.This approach allows for better control over object geometry and spatial positioning,which is critical for achieving high-quality multiinstance generation.We formulate the training process as a multi-objective optimization problem,balancing three key objectives:a denoising diffusion loss to maintain overall image fidelity,a cross-attention contour alignment loss to ensure precise shape adherence,and a reward-guided denoising objective that minimizes the Fréchet distance to real images.In addition,the Object Space-Aware Attention module fuses contour tokens with visual features,while a prior-guided fusion mechanism utilizes inter-object spatial relationships and class semantics to enhance consistency across multiple objects.Experimental results on benchmark datasets such as COCO-Stuff and VOC-2012 demonstrate that PolyDiffusion significantly outperforms existing layout-to-image and mask-to-image methods,achieving notable improvements in both image quality and instance-level segmentation accuracy.The implementation of Poly Diffusion is available at https://github.com/YYYYYJS/PolyDiffusion(accessed on 06 August 2025).
文摘In the last decade,space solar power satellites(SSPSs)have been conceived to support net-zero carbon emissions and have attracted considerable attention.Electric energy is transmitted to the ground via a microwave power beam,a technology known as microwave power transmission(MPT).Due to the vast transmission distance of tens of thousands of kilometers,the power transmitting antenna array must span up to 1 kilometer in diameter.At the same time,the size of the rectifying array on the ground should extend over a few kilometers.This makes the MPT system of SSPSs significantly larger than the existing aerospace engineering system.To design and operate a rational MPT system,comprehensive optimization is required.Taking the space MPT system engineering into consideration,a novel multi-objective optimization function is proposed and further analyzed.The multi-objective optimization problem is modeled mathematically.Beam collection efficiency(BCE)is the primary factor,followed by the thermal management capability.Some tapers,designed to solve the conflict between BCE and the thermal problem,are reviewed.In addition to these two factors,rectenna design complexity is included as a functional factor in the optimization objective.Weight coefficients are assigned to these factors to prioritize them.Radiating planar arrays with different aperture illumination fields are studied,and their performances are compared using the multi-objective optimization function.Transmitting array size,rectifying array size,transmission distance,and transmitted power remaine constant in various cases,ensuring fair comparisons.The analysis results show that the proposed optimization function is effective in optimizing and selecting the MPT system architecture.It is also noted that the multi-objective optimization function can be expanded to include other factors in the future.
基金funded by Researchers Supporting Project Number(RSPD2025R 947),King Saud University,Riyadh,Saudi Arabia.
文摘Cloud computing has emerged as a vital platform for processing resource-intensive workloads in smart manu-facturing environments,enabling scalable and flexible access to remote data centers over the internet.In these environments,Virtual Machines(VMs)are employed to manage workloads,with their optimal placement on Physical Machines(PMs)being crucial for maximizing resource utilization.However,achieving high resource utilization in cloud data centers remains a challenge due to multiple conflicting objectives,particularly in scenarios involving inter-VM communication dependencies,which are common in smart manufacturing applications.This manuscript presents an AI-driven approach utilizing a modified Multi-Objective Particle Swarm Optimization(MOPSO)algorithm,enhanced with improved mutation and crossover operators,to efficiently place VMs.This approach aims to minimize the impact on networking devices during inter-VM communication while enhancing resource utilization.The proposed algorithm is benchmarked against other multi-objective algorithms,such as Multi-Objective Evolutionary Algorithm with Decomposition(MOEA/D),demonstrating its superiority in optimizing resource allocation in cloud-based environments for smart manufacturing.
文摘Impinging jet arrays are extensively used in numerous industrial operations,including the cooling of electronics,turbine blades,and other high-heat flux systems because of their superior heat transfer capabilities.Optimizing the design and operating parameters of such systems is essential to enhance cooling efficiency and achieve uniform pressure distribution,which can lead to improved system performance and energy savings.This paper presents two multi-objective optimization methodologies for a turbulent air jet impingement cooling system.The governing equations are resolved employing the commercial computational fluid dynamics(CFD)software ANSYS Fluent v17.The study focuses on four controlling parameters:Reynolds number(Re),swirl number(S),jet-to-jet separation distance(Z/D),and impingement height(H/D).The effects of these parameters on heat transfer and impingement pressure distribution are investigated.Non-dominated Sorting Genetic Algorithm(NSGA-II)and Weighted Sum Method(WSM)are employed to optimize the controlling parameters for maximum cooling performance.The aim is to identify optimal design parameters and system configurations that enhance heat transfer efficiency while achieving a uniform impingement pressure distribution.These findings have practical implications for applications requiring efficient cooling.The optimized design achieved a 12.28%increase in convective heat transfer efficiency with a local Nusselt number of 113.05 compared to 100.69 in the reference design.Enhanced convective cooling and heat flux were observed in the optimized configuration,particularly in areas of direct jet impingement.Additionally,the optimized design maintained lower wall temperatures,demonstrating more effective thermal dissipation.
基金supported by the Open Fund of Guangxi Key Laboratory of Building New Energy and Energy Conservation(Project Number:Guike Energy 17-J-21-3).
文摘With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm improvement.To reduce the operational costs of micro-grid systems and the energy abandonment rate of renewable energy,while simultaneously enhancing user satisfaction on the demand side,this paper introduces an improvedmultiobjective Grey Wolf Optimizer based on Cauchy variation.The proposed approach incorporates a Cauchy variation strategy during the optimizer’s search phase to expand its exploration range and minimize the likelihood of becoming trapped in local optima.At the same time,adoptingmultiple energy storage methods to improve the consumption rate of renewable energy.Subsequently,under different energy balance orders,themulti-objective particle swarmalgorithm,multi-objective grey wolf optimizer,and Cauchy’s variant of the improvedmulti-objective grey wolf optimizer are used for example simulation,solving the Pareto solution set of the model and comparing.The analysis of the results reveals that,compared to the original optimizer,the improved optimizer decreases the daily cost by approximately 100 yuan,and reduces the energy abandonment rate to zero.Meanwhile,it enhances user satisfaction and ensures the stable operation of the micro-grid.
基金supported by the Basic Public Welfare Research Program of Zhejiang Province(No.LGN22E050005).
文摘This study proposes a multi-objective optimization framework for electric winches in fiber-reinforced plastic(FRP)fishing vessels to address critical limitations of conventional designs,including excessive weight,material inefficiency,and performance redundancy.By integrating surrogate modeling techniques with a multi-objective genetic algorithm(MOGA),we have developed a systematic approach that encompasses parametric modeling,finite element analysis under extreme operational conditions,and multi-fidelity performance evaluation.Through a 10-t electric winch case study,the methodology’s effectiveness is demonstrated via parametric characterization of structural integrity,stiffness behavior,and mass distribution.The comparative analysis identified optimal surrogate models for predicting key performance metrics,which enabled the construction of a robust multi-objective optimization model.The MOGA-derived Pareto solutions produced a design configuration achieving 7.86%mass reduction,2.01%safety factor improvement,and 23.97%deformation mitigation.Verification analysis confirmed the optimization scheme’s reliability in balancing conflicting design requirements.This research establishes a generalized framework for marine deck machinery modernization,particularly addressing the structural compatibility challenges in FRP vessel retrofitting.The proposed methodology demonstrates significant potential for facilitating sustainable upgrades of fishing vessel equipment through systematic performance optimization.
基金Supported by National Natural Science Foundation of China(Grant Nos.52072156,52272366)Postdoctoral Foundation of China(Grant No.2020M682269).
文摘The spoke as a key component has a significant impact on the performance of the non-pneumatic tire(NPT).The current research has focused on adjusting spoke structures to improve the single performance of NPT.Few studies have been conducted to synergistically improve multi-performance by optimizing the spoke structure.Inspired by the concept of functionally gradient structures,this paper introduces a functionally gradient honeycomb NPT and its optimization method.Firstly,this paper completes the parameterization of the honeycomb spoke structure and establishes the numerical models of honeycomb NPTs with seven different gradients.Subsequently,the accuracy of the numerical models is verified using experimental methods.Then,the static and dynamic characteristics of these gradient honeycomb NPTs are thoroughly examined by using the finite element method.The findings highlight that the gradient structure of NPT-3 has superior performance.Building upon this,the study investigates the effects of key parameters,such as honeycomb spoke thickness and length,on load-carrying capacity,honeycomb spoke stress and mass.Finally,a multi-objective optimization method is proposed that uses a response surface model(RSM)and the Nondominated Sorting Genetic Algorithm-II(NSGA-II)to further optimize the functional gradient honeycomb NPTs.The optimized NPT-OP shows a 23.48%reduction in radial stiffness,8.95%reduction in maximum spoke stress and 16.86%reduction in spoke mass compared to the initial NPT-1.The damping characteristics of the NPT-OP have also been improved.The results offer a theoretical foundation and technical methodology for the structural design and optimization of gradient honeycomb NPTs.
基金supported by National Key Research and Development Program of China (2023YFB3307800)National Natural Science Foundation of China (Key Program: 62136003, 62373155)+1 种基金Major Science and Technology Project of Xinjiang (No. 2022A01006-4)the Fundamental Research Funds for the Central Universities。
文摘Hydrocracking is one of the most important petroleum refining processes that converts heavy oils into gases,naphtha,diesel,and other products through cracking reactions.Multi-objective optimization algorithms can help refining enterprises determine the optimal operating parameters to maximize product quality while ensuring product yield,or to increase product yield while reducing energy consumption.This paper presents a multi-objective optimization scheme for hydrocracking based on an improved SPEA2-PE algorithm,which combines path evolution operator and adaptive step strategy to accelerate the convergence speed and improve the computational accuracy of the algorithm.The reactor model used in this article is simulated based on a twenty-five lumped kinetic model.Through model and test function verification,the proposed optimization scheme exhibits significant advantages in the multiobjective optimization process of hydrocracking.
基金supported by National Natural Science Foundation of China(No.62101499)Science and National Key Research and Development Program of China(2019YFB1803200).
文摘Non-panoramic virtual reality(VR)provides users with immersive experiences involving strong interactivity,thus attracting growing research and development attention.However,the demand for high bandwidth and low latency in VR services presents greater challenges to existing networks.Inspired by mobile edge computing(MEC),VR users can offload rendering tasks to other devices.The main challenge of task offloading is to minimize latency and energy consumption.Yet,in non-panoramic VR scenarios,it is essential to consider the Quality of Perceptual Experience(QOPE)for users.Simultaneously,one must also take into account the diverse requirements of users in real-world scenarios.Therefore,this paper proposes a QOPE model to measure the visual quality of non-panoramic VR users and models the non-panoramic VR task offloading problem based on MEC as a constrained multi-objective optimization problem(CMOP)that minimizes latency and energy consumption while providing a satisfied QOPE.And we propose an evolutionary algorithm(EA),GNSGA-II,to solve the CMOP.Simulation results show that the algorithm can effectively find various trade-off solutions among the objectives,satisfying the requirements of different users.
基金supported by the National Natural Science Foundation of China(62073267,61903305)the Fundamental Research Funds for the Central Universities(HXGJXM202214).
文摘The lack of systematic and scientific top-level arrangement in the field of civil aircraft flight test leads to the problems of long duration and high cost.Based on the flight test activity,mathematical models of flight test duration and cost are established to set up the framework of flight test process.The top-level arrangement for flight test is optimized by multi-objective algorithm to reduce the duration and cost of flight test.In order to verify the necessity and validity of the mathematical models and the optimization algorithm of top-level arrangement,real flight test data is used to make an example calculation.Results show that the multi-objective optimization results of the top-level flight arrangement are better than the initial arrangement data,which can shorten the duration,reduce the cost,and improve the efficiency of flight test.
文摘The ease of accessing a virtually unlimited pool of resources makes Infrastructure as a Service (IaaS) clouds an ideal platform for running data-intensive workflow applications comprising hundreds of computational tasks. However, executing scientific workflows in IaaS cloud environments poses significant challenges due to conflicting objectives, such as minimizing execution time (makespan) and reducing resource utilization costs. This study responds to the increasing need for efficient and adaptable optimization solutions in dynamic and complex environments, which are critical for meeting the evolving demands of modern users and applications. This study presents an innovative multi-objective approach for scheduling scientific workflows in IaaS cloud environments. The proposed algorithm, MOS-MWMC, aims to minimize total execution time (makespan) and resource utilization costs by leveraging key features of virtual machine instances, such as a high number of cores and fast local SSD storage. By integrating realistic simulations based on the WRENCH framework, the method effectively dimensions the cloud infrastructure and optimizes resource usage. Experimental results highlight the superiority of MOS-MWMC compared to benchmark algorithms HEFT and Max-Min. The Pareto fronts obtained for the CyberShake, Epigenomics, and Montage workflows demonstrate closer proximity to the optimal front, confirming the algorithm’s ability to balance conflicting objectives. This study contributes to optimizing scientific workflows in complex environments by providing solutions tailored to specific user needs while minimizing costs and execution times.