期刊文献+
共找到25,068篇文章
< 1 2 250 >
每页显示 20 50 100
A Multi-Objective Particle Swarm Optimization Algorithm Based on Decomposition and Multi-Selection Strategy
1
作者 Li Ma Cai Dai +1 位作者 Xingsi Xue Cheng Peng 《Computers, Materials & Continua》 SCIE EI 2025年第1期997-1026,共30页
The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition... The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition and multi-selection strategy is proposed to improve the search efficiency.First,two update strategies based on decomposition are used to update the evolving population and external archive,respectively.Second,a multiselection strategy is designed.The first strategy is for the subspace without a non-dominated solution.Among the neighbor particles,the particle with the smallest penalty-based boundary intersection value is selected as the global optimal solution and the particle far away fromthe search particle and the global optimal solution is selected as the personal optimal solution to enhance global search.The second strategy is for the subspace with a non-dominated solution.In the neighbor particles,two particles are randomly selected,one as the global optimal solution and the other as the personal optimal solution,to enhance local search.The third strategy is for Pareto optimal front(PF)discontinuity,which is identified by the cumulative number of iterations of the subspace without non-dominated solutions.In the subsequent iteration,a new probability distribution is used to select from the remaining subspaces to search.Third,an adaptive inertia weight update strategy based on the dominated degree is designed to further improve the search efficiency.Finally,the proposed algorithmis compared with fivemulti-objective particle swarm optimization algorithms and five multi-objective evolutionary algorithms on 22 test problems.The results show that the proposed algorithm has better performance. 展开更多
关键词 multi-objective optimization multi-objective particle swarm optimization DECOMPOSITION multi-selection strategy
在线阅读 下载PDF
Optimization of the Hydrological Model Using Multi-objective Particle Swarm Optimization Algorithm 被引量:2
2
作者 黄晓敏 雷晓辉 +1 位作者 王宇晖 朱连勇 《Journal of Donghua University(English Edition)》 EI CAS 2011年第5期519-522,共4页
An application of multi-objective particle swarm optimization (MOPSO) algorithm for optimization of the hydrological model (HYMOD) is presented in this paper. MOPSO algorithm is used to find non-dominated solution... An application of multi-objective particle swarm optimization (MOPSO) algorithm for optimization of the hydrological model (HYMOD) is presented in this paper. MOPSO algorithm is used to find non-dominated solutions with two objectives: high flow Nash-Sutcliffe efficiency and low flow Nash- Sutcliffe efficiency. The two sets' coverage rate and Pareto front spacing metric are two criterions to analyze the performance of the algorithms. MOPSO algorithm surpasses multi-objective shuffled complex evolution metcopolis (MOSCEM_UA) algorithr~, in terms of the two sets' coverage rate. But when we come to Pareto front spacing rate, the non-dominated solutions of MOSCEM_ UA algorithm are better-distributed than that of MOPSO algorithm when the iteration is set to 40 000. In addition, there are obvious conflicts between the two objectives. But a compromise solution can be acquired by adopting the MOPSO algorithm. 展开更多
关键词 multi-objective particle swarm optimization (MOPSO) hydrological model (HYMOD) multi-objective optimization
在线阅读 下载PDF
A modified multi-objective particle swarm optimization approach and its application to the design of a deepwater composite riser 被引量:1
3
作者 Y.Zheng J.Chen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第2期275-284,共10页
A modified multi-objective particle swarm optimization method is proposed for obtaining Pareto-optimal solutions effectively. Different from traditional multiobjective particle swarm optimization methods, Kriging meta... A modified multi-objective particle swarm optimization method is proposed for obtaining Pareto-optimal solutions effectively. Different from traditional multiobjective particle swarm optimization methods, Kriging meta-models and the trapezoid index are introduced and integrated with the traditional one. Kriging meta-models are built to match expensive or black-box functions. By applying Kriging meta-models, function evaluation numbers are decreased and the boundary Pareto-optimal solutions are identified rapidly. For bi-objective optimization problems, the trapezoid index is calculated as the sum of the trapezoid’s area formed by the Pareto-optimal solutions and one objective axis. It can serve as a measure whether the Pareto-optimal solutions converge to the Pareto front. Illustrative examples indicate that to obtain Paretooptimal solutions, the method proposed needs fewer function evaluations than the traditional multi-objective particle swarm optimization method and the non-dominated sorting genetic algorithm II method, and both the accuracy and the computational efficiency are improved. The proposed method is also applied to the design of a deepwater composite riser example in which the structural performances are calculated by numerical analysis. The design aim was to enhance the tension strength and minimize the cost. Under the buckling constraint, the optimal trade-off of tensile strength and material volume is obtained. The results demonstrated that the proposed method can effec tively deal with multi-objective optimizations with black-box functions. 展开更多
关键词 multi-objective particle swarm optimization Kriging meta-model Trapezoid index Deepwater composite riser
在线阅读 下载PDF
Multi-objective particle swarm optimization by fusing multiple strategies 被引量:1
4
作者 XU Zhenxing ZHU Shuiran 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第3期284-299,共16页
To improve the convergence and distributivity of multi-objective particle swarm optimization,we propose a method for multi-objective particle swarm optimization by fusing multiple strategies(MOPSO-MS),which includes t... To improve the convergence and distributivity of multi-objective particle swarm optimization,we propose a method for multi-objective particle swarm optimization by fusing multiple strategies(MOPSO-MS),which includes three strategies.Firstly,the average crowding distance method is proposed,which takes into account the influence of individuals on the crowding distance and reduces the algorithm’s time complexity and computational cost,ensuring efficient external archive maintenance and improving the algorithm’s distribution.Secondly,the algorithm utilizes particle difference to guide adaptive inertia weights.In this way,the degree of disparity between a particle’s historical optimum and the population’s global optimum is used to determine the value of w.With different degrees of disparity,the size of w is adjusted nonlinearly,improving the algorithm’s convergence.Finally,the algorithm is designed to control the search direction by hierarchically selecting the globally optimal policy,which can avoid a single search direction and eliminate the lack of a random search direction,making the selection of the global optimal position more objective and comprehensive,and further improving the convergence of the algorithm.The MOPSO-MS is tested against seven other algorithms on the ZDT and DTLZ test functions,and the results show that the MOPSO-MS has significant advantages in terms of convergence and distributivity. 展开更多
关键词 multi-objective particle swarm optimization(MOPSO) spatially crowding congestion distance differential guidance weight hierarchical selection of global optimum
在线阅读 下载PDF
Research on Optimization of Freight Train ATO Based on Elite Competition Multi-Objective Particle Swarm Optimization 被引量:1
5
作者 Lingzhi Yi Renzhe Duan +3 位作者 Wang Li Yihao Wang Dake Zhang Bo Liu 《Energy and Power Engineering》 2021年第4期41-51,共11页
<div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics ... <div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics model of the freight train operation process is established based on the safety and the freight train dynamics model in the process of its operation. The algorithm of combining elite competition strategy with multi-objective particle swarm optimization technology is introduced, and the winning particles are obtained through the competition between two elite particles to guide the update of other particles, so as to balance the convergence and distribution of multi-objective particle swarm optimization. The performance comparison experimental results verify the superiority of the proposed algorithm. The simulation experiments of the actual line verify the feasibility of the model and the effectiveness of the proposed algorithm. </div> 展开更多
关键词 Freight Train Automatic Train Operation Dynamics Model Competitive multi-objective particle swarm optimization Algorithm (CMOPSO) multi-objective optimization
在线阅读 下载PDF
An Improved Multi-Objective Particle Swarm Optimization Routing on MANET
6
作者 G.Rajeshkumar M.Vinoth Kumar +3 位作者 K.Sailaja Kumar Surbhi Bhatia Arwa Mashat Pankaj Dadheech 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1187-1200,共14页
A Mobile Ad hoc Network(MANET)is a group of low-power con-sumption of wireless mobile nodes that configure a wireless network without the assistance of any existing infrastructure/centralized organization.The primary a... A Mobile Ad hoc Network(MANET)is a group of low-power con-sumption of wireless mobile nodes that configure a wireless network without the assistance of any existing infrastructure/centralized organization.The primary aim of MANETs is to extendflexibility into the self-directed,mobile,and wireless domain,in which a cluster of autonomous nodes forms a MANET routing system.An Intrusion Detection System(IDS)is a tool that examines a network for mal-icious behavior/policy violations.A network monitoring system is often used to report/gather any suspicious attacks/violations.An IDS is a software program or hardware system that monitors network/security traffic for malicious attacks,sending out alerts whenever it detects malicious nodes.The impact of Dynamic Source Routing(DSR)in MANETs challenging blackhole attack is investigated in this research article.The Cluster Trust Adaptive Acknowledgement(CTAA)method is used to identify unauthorised and malfunctioning nodes in a MANET environment.MANET system is active and provides successful delivery of a data packet,which implements Kalman Filters(KF)to anticipate node trustworthiness.Furthermore,KF is used to eliminate synchronisation errors that arise during the sending and receiving data.In order to provide an energy-efficient solution and to minimize network traffic,route optimization in MANET by using Multi-Objective Particle Swarm Optimization(MOPSO)technique to determine the optimal num-ber of clustered MANET along with energy dissipation in nodes.According to the researchfindings,the proposed CTAA-MPSO achieves a Packet Delivery Ratio(PDR)of 3.3%.In MANET,the PDR of CTAA-MPSO improves CTAA-PSO by 3.5%at 30%malware. 展开更多
关键词 MANET intrusion detection system CLUSTER kalmanfilter dynamic source routing multi-objective particle swarm optimization packet delivery ratio
在线阅读 下载PDF
Rotary unmanned aerial vehicles path planning in rough terrain based on multi-objective particle swarm optimization 被引量:26
7
作者 XU Zhen ZHANG Enze CHEN Qingwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第1期130-141,共12页
This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,le... This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,length and angle variable rate.First,a three-dimensional(3D)modeling method is proposed to reduce the computation burden of the dynamic models of R-UAVs.Considering the length,height and tuning angle of a path,the path planning of R-UAVs is described as a tri-objective optimization problem.Then,an improved multi-objective particle swarm optimization algorithm is developed.To render the algorithm more effective in dealing with this problem,a vibration function is introduced into the collided solutions to improve the algorithm efficiency.Meanwhile,the selection of the global best position is taken into account by the reference point method.Finally,the experimental environment is built with the help of the Google map and the 3D terrain generator World Machine.Experimental results under two different rough terrains from Guilin and Lanzhou of China demonstrate the capabilities of the proposed algorithm in finding Pareto optimal paths. 展开更多
关键词 unmanned aerial vehicle(UAV) path planning multiobjective optimization particle swarm optimization
在线阅读 下载PDF
Power system stabilizer design using hybrid multi-objective particle swarm optimization with chaos 被引量:9
8
作者 Mahdiyeh Eslami Hussain Shareef Azah Mohamed 《Journal of Central South University》 SCIE EI CAS 2011年第5期1579-1588,共10页
A novel technique for the optimal tuning of power system stabilizer (PSS) was proposed,by integrating the modified particle swarm optimization (MPSO) with the chaos (MPSOC).Firstly,a modification in the particle swarm... A novel technique for the optimal tuning of power system stabilizer (PSS) was proposed,by integrating the modified particle swarm optimization (MPSO) with the chaos (MPSOC).Firstly,a modification in the particle swarm optimization (PSO) was made by introducing passive congregation (PC).It helps each swarm member in receiving a multitude of information from other members and thus decreases the possibility of a failed attempt at detection or a meaningless search.Secondly,the MPSO and chaos were hybridized (MPSOC) to improve the global searching capability and prevent the premature convergence due to local minima.The robustness of the proposed PSS tuning technique was verified on a multi-machine power system under different operating conditions.The performance of the proposed MPSOC was compared to the MPSO,PSO and GA through eigenvalue analysis,nonlinear time-domain simulation and statistical tests.Eigenvalue analysis shows acceptable damping of the low-frequency modes and time domain simulations also show that the oscillations of synchronous machines can be rapidly damped for power systems with the proposed PSSs.The results show that the presented algorithm has a faster convergence rate with higher degree of accuracy than the GA,PSO and MPSO. 展开更多
关键词 passive congregation CHAOS power system stabilizer penalty function particle swarm optimization
在线阅读 下载PDF
An Improved Unsupervised Image Segmentation Method Based on Multi-Objective Particle Swarm Optimization Clustering Algorithm 被引量:3
9
作者 Zhe Liu Bao Xiang +2 位作者 Yuqing Song Hu Lu Qingfeng Liu 《Computers, Materials & Continua》 SCIE EI 2019年第2期451-461,共11页
Most image segmentation methods based on clustering algorithms use singleobjective function to implement image segmentation.To avoid the defect,this paper proposes a new image segmentation method based on a multi-obje... Most image segmentation methods based on clustering algorithms use singleobjective function to implement image segmentation.To avoid the defect,this paper proposes a new image segmentation method based on a multi-objective particle swarm optimization(PSO)clustering algorithm.This unsupervised algorithm not only offers a new similarity computing approach based on electromagnetic forces,but also obtains the proper number of clusters which is determined by scale-space theory.It is experimentally demonstrated that the applicability and effectiveness of the proposed multi-objective PSO clustering algorithm. 展开更多
关键词 multi-objective optimization particle swarm optimization electromagnetic forces scale-space theory
在线阅读 下载PDF
Operation Optimal Control of Urban Rail Train Based on Multi-Objective Particle Swarm Optimization 被引量:1
10
作者 Liang Jin Qinghui Meng Shuang Liang 《Computer Systems Science & Engineering》 SCIE EI 2022年第7期387-395,共9页
The energy consumption of train operation occupies a large proportion of the total consumption of railway transportation.In order to improve the oper-ating energy utilization rate of trains,a multi-objective particle ... The energy consumption of train operation occupies a large proportion of the total consumption of railway transportation.In order to improve the oper-ating energy utilization rate of trains,a multi-objective particle swarm optimiza-tion(MPSO)algorithm with energy consumption,punctuality and parking accuracy as the objective and safety as the constraint is built.To accelerate its the convergence process,the train operation progression is divided into several modes according to the train speed-distance curve.A human-computer interactive particle swarm optimization algorithm is proposed,which presents the optimized results after a certain number of iterations to the decision maker,and the satisfac-tory outcomes can be obtained after a limited number of adjustments.The multi-objective particle swarm optimization(MPSO)algorithm is used to optimize the train operation process.An algorithm based on the important relationship between the objective and the preference information of the given reference points is sug-gested to overcome the shortcomings of the existing algorithms.These methods significantly increase the computational complexity and convergence of the algo-rithm.An adaptive fuzzy logic system that can simultaneously utilize experience information andfield data information is proposed to adjust the consequences of off-line optimization in real time,thereby eliminating the influence of uncertainty on train operation.After optimization and adjustment,the whole running time has been increased by 0.5 s,the energy consumption has been reduced by 12%,the parking accuracy has been increased by 8%,and the comprehensive performance has been enhanced. 展开更多
关键词 particle swarm optimization multi-objective urban rail train optimal control
在线阅读 下载PDF
Optimal Location and Sizing of Distributed Generator via Improved Multi-Objective Particle Swarm Optimization in Active Distribution Network Considering Multi-Resource
11
作者 Guobin He Rui Su +5 位作者 Jinxin Yang Yuanping Huang Huanlin Chen Donghui Zhang Cangtao Yang Wenwen Li 《Energy Engineering》 EI 2023年第9期2133-2154,共22页
In the framework of vigorous promotion of low-carbon power system growth as well as economic globalization,multi-resource penetration in active distribution networks has been advancing fiercely.In particular,distribut... In the framework of vigorous promotion of low-carbon power system growth as well as economic globalization,multi-resource penetration in active distribution networks has been advancing fiercely.In particular,distributed generation(DG)based on renewable energy is critical for active distribution network operation enhancement.To comprehensively analyze the accessing impact of DG in distribution networks from various parts,this paper establishes an optimal DG location and sizing planning model based on active power losses,voltage profile,pollution emissions,and the economics of DG costs as well as meteorological conditions.Subsequently,multiobjective particle swarm optimization(MOPSO)is applied to obtain the optimal Pareto front.Besides,for the sake of avoiding the influence of the subjective setting of the weight coefficient,the decisionmethod based on amodified ideal point is applied to execute a Pareto front decision.Finally,simulation tests based on IEEE33 and IEEE69 nodes are designed.The experimental results show thatMOPSO can achieve wider and more uniformPareto front distribution.In the IEEE33 node test system,power loss,and voltage deviation decreased by 52.23%,and 38.89%,respectively,while taking the economy into account.In the IEEE69 test system,the three indexes decreased by 19.67%,and 58.96%,respectively. 展开更多
关键词 Active distribution network multi-resource penetration operation enhancement particle swarm optimization multi-objective optimization
在线阅读 下载PDF
Federated Multi-Label Feature Selection via Dual-Layer Hybrid Breeding Cooperative Particle Swarm Optimization with Manifold and Sparsity Regularization
12
作者 Songsong Zhang Huazhong Jin +5 位作者 Zhiwei Ye Jia Yang Jixin Zhang Dongfang Wu Xiao Zheng Dingfeng Song 《Computers, Materials & Continua》 2026年第1期1141-1159,共19页
Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant chal... Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant challenges in privacy-sensitive and distributed settings,often neglecting label dependencies and suffering from low computational efficiency.To address these issues,we introduce a novel framework,Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization(DHBCPSO-MSR).Leveraging the federated learning paradigm,Fed-MFSDHBCPSO allows clients to perform local feature selection(FS)using DHBCPSO-MSR.Locally selected feature subsets are encrypted with differential privacy(DP)and transmitted to a central server,where they are securely aggregated and refined through secure multi-party computation(SMPC)until global convergence is achieved.Within each client,DHBCPSO-MSR employs a dual-layer FS strategy.The inner layer constructs sample and label similarity graphs,generates Laplacian matrices to capture the manifold structure between samples and labels,and applies L2,1-norm regularization to sparsify the feature subset,yielding an optimized feature weight matrix.The outer layer uses a hybrid breeding cooperative particle swarm optimization algorithm to further refine the feature weight matrix and identify the optimal feature subset.The updated weight matrix is then fed back to the inner layer for further optimization.Comprehensive experiments on multiple real-world multi-label datasets demonstrate that Fed-MFSDHBCPSO consistently outperforms both centralized and federated baseline methods across several key evaluation metrics. 展开更多
关键词 Multi-label feature selection federated learning manifold regularization sparse constraints hybrid breeding optimization algorithm particle swarm optimizatio algorithm privacy protection
在线阅读 下载PDF
A Fuzzy Multi-Objective Framework for Energy Optimization and Reliable Routing in Wireless Sensor Networks via Particle Swarm Optimization
13
作者 Medhat A.Tawfeek Ibrahim Alrashdi +1 位作者 Madallah Alruwaili Fatma M.Talaat 《Computers, Materials & Continua》 2025年第5期2773-2792,共20页
Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectu... Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectural attention,routing protocols,location exploration,time exploration,etc.This research aims to optimize routing protocols and address the challenges arising from conflicting objectives in WSN environments,such as balancing energy consumption,ensuring routing reliability,distributing network load,and selecting the shortest path.Many optimization techniques have shown success in achieving one or two objectives but struggle to achieve the right balance between multiple conflicting objectives.To address this gap,this paper proposes an innovative approach that integrates Particle Swarm Optimization(PSO)with a fuzzy multi-objective framework.The proposed method uses fuzzy logic to effectively control multiple competing objectives to represent its major development beyond existing methods that only deal with one or two objectives.The search efficiency is improved by particle swarm optimization(PSO)which overcomes the large computational requirements that serve as a major drawback of existing methods.The PSO algorithm is adapted for WSNs to optimize routing paths based on fuzzy multi-objective fitness.The fuzzy logic framework uses predefined membership functions and rule-based reasoning to adjust routing decisions.These adjustments influence PSO’s velocity updates,ensuring continuous adaptation under varying network conditions.The proposed multi-objective PSO-fuzzy model is evaluated using NS-3 simulation.The results show that the proposed model is capable of improving the network lifetime by 15.2%–22.4%,increasing the stabilization time by 18.7%–25.5%,and increasing the residual energy by 8.9%–16.2% compared to the state-of-the-art techniques.The proposed model also achieves a 15%–24% reduction in load variance,demonstrating balanced routing and extended network lifetime.Furthermore,analysis using p-values obtained from multiple performance measures(p-values<0.05)showed that the proposed approach outperforms with a high level of confidence.The proposed multi-objective PSO-fuzzy model provides a robust and scalable solution to improve the performance of WSNs.It allows stable performance in networks with 100 to 300 nodes,under varying node densities,and across different base station placements.Computational complexity analysis has shown that the method fits well into large-scale WSNs and that the addition of fuzzy logic controls the power usage to make the system practical for real-world use. 展开更多
关键词 Wireless sensor networks particle swarm optimization fuzzy multi-objective framework routing stability
在线阅读 下载PDF
Adaptive candidate estimation-assisted multi-objective particle swarm optimization 被引量:7
14
作者 HAN HongGui ZHANG LinLin +1 位作者 HOU Ying QIAO JunFei 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第8期1685-1699,共15页
The selection of global best(Gbest) exerts a high influence on the searching performance of multi-objective particle swarm optimization algorithm(MOPSO). The candidates of MOPSO in external archive are always estimate... The selection of global best(Gbest) exerts a high influence on the searching performance of multi-objective particle swarm optimization algorithm(MOPSO). The candidates of MOPSO in external archive are always estimated to select Gbest. However,in most estimation methods, the candidates are considered as the Gbest in a fixed way, which is difficult to adapt to varying evolutionary requirements for balance between convergence and diversity of MOPSO. To deal with this problem, an adaptive candidate estimation-assisted MOPSO(ACE-MOPSO) is proposed in this paper. First, the evolutionary state information,including both the global dominance information and global distribution information of non-dominated solutions, is introduced to describe the evolutionary states to extract the evolutionary requirements. Second, an adaptive candidate estimation method,based on two evaluation distances, is developed to select the excellent leader for balancing convergence and diversity during the dynamic evolutionary process. Third, a leader mutation strategy, using the elite local search(ELS), is devised to select Gbest to improve the searching ability of ACE-MOPSO. Fourth, the convergence analysis is given to prove the theoretical validity of ACE-MOPSO. Finally, this proposed algorithm is compared with popular algorithms on twenty-four benchmark functions. The results demonstrate that ACE-MOPSO has advanced performance in both convergence and diversity. 展开更多
关键词 multi-objective particle swarm optimization evolutionary state information adaptive candidate estimation convergence and diversity convergence analysis
原文传递
Optimal placement of distributed generation units in distribution systems via an enhanced multi-objective particle swarm optimization algorithm 被引量:7
15
作者 Shan CHENG Min-you CHEN +1 位作者 Rong-jong WAI Fang-zong WANG 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2014年第4期300-311,共12页
This paper deals with the optimal placement of distributed generation(DG) units in distribution systems via an enhanced multi-objective particle swarm optimization(EMOPSO) algorithm. To pursue a better simulation of t... This paper deals with the optimal placement of distributed generation(DG) units in distribution systems via an enhanced multi-objective particle swarm optimization(EMOPSO) algorithm. To pursue a better simulation of the reality and provide the designer with diverse alternative options, a multi-objective optimization model with technical and operational constraints is constructed to minimize the total power loss and the voltage fluctuation of the power system simultaneously. To enhance the convergence of MOPSO, special techniques including a dynamic inertia weight and acceleration coefficients have been integrated as well as a mutation operator. Besides, to promote the diversity of Pareto-optimal solutions, an improved non-dominated crowding distance sorting technique has been introduced and applied to the selection of particles for the next iteration. After verifying its effectiveness and competitiveness with a set of well-known benchmark functions, the EMOPSO algorithm is employed to achieve the optimal placement of DG units in the IEEE 33-bus system. Simulation results indicate that the EMOPSO algorithm enables the identification of a set of Pareto-optimal solutions with good tradeoff between power loss and voltage stability. Compared with other representative methods, the present results reveal the advantages of optimizing capacities and locations of DG units simultaneously, and exemplify the validity of the EMOPSO algorithm applied for optimally placing DG units. 展开更多
关键词 Distributed generation multi-objective particle swarm optimization optimal placement Voltage stability index Power loss
原文传递
Multi-Objective Particle Swarm Optimization(MOPSO) for a Distributed Energy System Integrated with Energy Storage 被引量:15
16
作者 ZHANG Jian CHO Heejin +2 位作者 MAGO Pedro J. ZHANG Hongguang YANG Fubin 《Journal of Thermal Science》 SCIE EI CAS CSCD 2019年第6期1221-1235,共15页
Distributed energy systems are considered as a promising technology for sustainable development and have become a popular research topic in the areas of building energy systems. This work presents a case study of opti... Distributed energy systems are considered as a promising technology for sustainable development and have become a popular research topic in the areas of building energy systems. This work presents a case study of optimizing an integrated distributed energy system consisting of combined heat and power(CHP), photovoltaics(PV), and electric and/or thermal energy storage for a hospital and large hotel buildings located in Texas and California. First, simulation models for all subsystems, which are developed individually, are integrated together according to a control strategy designed to satisfy both the electric and thermal energy requirements of a building. Subsequently, a multi-objective particle swarm optimization(MOPSO) is employed to obtain an optimal design of each subsystem. The objectives of the optimization are to minimize the simple payback period(PBP) and maximize the reduction of carbon dioxide emissions(RCDE). Finally, the energy performance for the selected building types and locations are analyzed after the optimization. Results indicate that the proposed optimization method could be applied to determine an optimal design of distributed energy systems, which reaches a trade-off between the economic and environmental performance for different buildings. With the presented distributed energy system, a peak shaving in electricity of about 300 kW and a reduction in boiler fuel consumption of 610 kW could be attained for the hospital building located in California for a winter day. For the summer and transition seasons, electricity peak shaving of 800 kW and 600 kW could be achieved, respectively. 展开更多
关键词 multi-objective particle swarm optimization distributed energy system payback PERIOD CARBON dioxide EMISSION
原文传递
Surrogate-Assisted Particle Swarm Optimization Algorithm With Pareto Active Learning for Expensive Multi-Objective Optimization 被引量:15
17
作者 Zhiming Lv Linqing Wang +2 位作者 Zhongyang Han Jun Zhao Wei Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第3期838-849,共12页
For multi-objective optimization problems, particle swarm optimization(PSO) algorithm generally needs a large number of fitness evaluations to obtain the Pareto optimal solutions. However, it will become substantially... For multi-objective optimization problems, particle swarm optimization(PSO) algorithm generally needs a large number of fitness evaluations to obtain the Pareto optimal solutions. However, it will become substantially time-consuming when handling computationally expensive fitness functions. In order to save the computational cost, a surrogate-assisted PSO with Pareto active learning is proposed. In real physical space(the objective functions are computationally expensive), PSO is used as an optimizer, and its optimization results are used to construct the surrogate models. In virtual space, objective functions are replaced by the cheaper surrogate models, PSO is viewed as a sampler to produce the candidate solutions. To enhance the quality of candidate solutions, a hybrid mutation sampling method based on the simulated evolution is proposed, which combines the advantage of fast convergence of PSO and implements mutation to increase diversity. Furthermore, ε-Pareto active learning(ε-PAL)method is employed to pre-select candidate solutions to guide PSO in the real physical space. However, little work has considered the method of determining parameter ε. Therefore, a greedy search method is presented to determine the value ofεwhere the number of active sampling is employed as the evaluation criteria of classification cost. Experimental studies involving application on a number of benchmark test problems and parameter determination for multi-input multi-output least squares support vector machines(MLSSVM) are given, in which the results demonstrate promising performance of the proposed algorithm compared with other representative multi-objective particle swarm optimization(MOPSO) algorithms. 展开更多
关键词 MULTIOBJECTIVE optimization PARETO active learning particle swarm optimization (PSO) surrogate
在线阅读 下载PDF
Multi-objective reservoir operation using particle swarm optimization with adaptive random inertia weights 被引量:12
18
作者 Hai-tao Chen Wen-chuan Wang +1 位作者 Xiao-nan Chen Lin Qiu 《Water Science and Engineering》 EI CAS CSCD 2020年第2期136-144,共9页
Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algori... Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algorithm,to build a multi-objective optimization model for reservoir operation.Using the triangular probability density function,the inertia weight is randomly generated,and the probability density function is automatically adjusted to make the inertia weight generally greater in the initial stage of evolution,which is suitable for global searches.In the evolution process,the inertia weight gradually decreases,which is beneficial to local searches.The performance of the ARIWPSO algorithm was investigated with some classical test functions,and the results were compared with those of the genetic algorithm(GA),the conventional PSO,and other improved PSO methods.Then,the ARIW-PSO algorithm was applied to multi-objective optimal dispatch of the Panjiakou Reservoir and multi-objective flood control operation of a reservoir group on the Luanhe River in China,including the Panjiakou Reservoir,Daheiting Reservoir,and Taolinkou Reservoir.The validity of the multi-objective optimization model for multi-reservoir systems based on the ARIW-PSO algorithm was verified. 展开更多
关键词 particle swarm optimization Genetic algorithm Random inertia weight multi-objective reservoir operation Reservoir group Panjiakou Reservoir
在线阅读 下载PDF
Adaptive Multi-Objective Optimization of Bionic Shoulder Joint Based on Particle Swarm Optimization 被引量:5
19
作者 LIU Kai WU Yang +4 位作者 GE Zhishang WANG Yangwei XU Jiaqi LU Yonghua ZHAO Dongbiao 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第4期550-561,共12页
To get the movement mode and driving mechanism similar to human shoulder joint,a six degrees of freedom(DOF) serial-parallel bionic shoulder joint mechanism driven by pneumatic muscle actuators(PMAs)was designed.Howev... To get the movement mode and driving mechanism similar to human shoulder joint,a six degrees of freedom(DOF) serial-parallel bionic shoulder joint mechanism driven by pneumatic muscle actuators(PMAs)was designed.However,the structural parameters of the shoulder joint will affect various performances of the mechanism.To obtain the optimal structure parameters,the particle swarm optimization(PSO) was used.Besides,the mathematical expressions of indexes of rotation ranges,maximum bearing torque,discrete dexterity and muscle shrinkage of the bionic shoulder joint were established respectively to represent its many-sided characteristics.And the multi-objective optimization problem was transformed into a single-objective optimization problem by using the weighted-sum method.The normalization method and adaptive-weight method were used to determine each optimization index's weight coefficient;then the particle swarm optimization was used to optimize the integrated objective function of the bionic shoulder joint and the optimal solution was obtained.Compared with the average optimization generations and the optimal target values of many experiments,using adaptive-weight method to adjust weights of integrated objective function is better than using normalization method,which validates superiority of the adaptive-weight method. 展开更多
关键词 multi-objective optimization particle swarm optimization(PSO) pneumatic muscle actuator(PMA) bionic shoulder joint mechanism
原文传递
Multi-Objective Optimal Approach for Injection Molding Based on Surrogate Model and Particle Swarm Optimization Algorithm 被引量:5
20
作者 陈巍 周雄辉 +1 位作者 王会凤 王婉 《Journal of Shanghai Jiaotong university(Science)》 EI 2010年第1期88-93,共6页
An integrated optimization strategy based on Kriging model and multi-objective particle swarm optimization(PSO) algorithm was constructed.As a new surrogate model technology,Kriging model has better fitting precision ... An integrated optimization strategy based on Kriging model and multi-objective particle swarm optimization(PSO) algorithm was constructed.As a new surrogate model technology,Kriging model has better fitting precision for nonlinear problem.The Kriging model was adopted to replace computer aided engineering(CAE) simulation as fitness function of multi-objective PSO algorithm,and the computation cost can be reduced greatly.By introducing multi-objective handling mechanism of crowding distance and mutation operator to multiobjective PSO algorithm,the entire Pareto front can be approximated better.It is shown that the multi-objective optimization strategy can get higher solving accuracy and computation efficiency under small sample. 展开更多
关键词 injection molding multi-objective optimization particle swarm optimization(PSO) surrogate model Kriging model
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部