The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can caus...The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.展开更多
In tunnel construction,tunnel boring machine(TBM)tunnelling typically relies on manual experience with sub-optimal control parameters,which can easily lead to inefficiency and high costs.This study proposed an intelli...In tunnel construction,tunnel boring machine(TBM)tunnelling typically relies on manual experience with sub-optimal control parameters,which can easily lead to inefficiency and high costs.This study proposed an intelligent decision-making method for TBM tunnelling control parameters based on multiobjective optimization(MOO).First,the effective TBM operation dataset is obtained through data preprocessing of the Songhua River(YS)tunnel project in China.Next,the proposed method begins with developing machine learning models for predicting TBM tunnelling performance parameters(i.e.total thrust and cutterhead torque),rock mass classification,and hazard risks(i.e.tunnel collapse and shield jamming).Then,considering three optimal objectives,(i.e.,penetration rate,rock-breaking energy consumption,and cutterhead hob wear),the MOO framework and corresponding mathematical expression are established.The Pareto optimal front is solved using DE-NSGA-II algorithm.Finally,the optimal control parameters(i.e.,advance rate and cutterhead rotation speed)are obtained by the satisfactory solution determination criterion,which can balance construction safety and efficiency with satisfaction.Furthermore,the proposed method is validated through 50 cases of TBM tunnelling,showing promising potential of application.展开更多
Accurate determination of rock mass parameters is essential for ensuring the accuracy of numericalsimulations. Displacement back-analysis is the most widely used method;however, the reliability of thecurrent approache...Accurate determination of rock mass parameters is essential for ensuring the accuracy of numericalsimulations. Displacement back-analysis is the most widely used method;however, the reliability of thecurrent approaches remains unsatisfactory. Therefore, in this paper, a multistage rock mass parameterback-analysis method, that considers the construction process and displacement losses is proposed andimplemented through the coupling of numerical simulation, auto-machine learning (AutoML), andmulti-objective optimization algorithms (MOOAs). First, a parametric modeling platform for mechanizedtwin tunnels is developed, generating a dataset through extensive numerical simulations. Next, theAutoML method is utilized to establish a surrogate model linking rock parameters and displacements.The tunnel construction process is divided into multiple stages, transforming the rock mass parameterback-analysis into a multi-objective optimization problem, for which multi-objective optimization algorithmsare introduced to obtain the rock mass parameters. The newly proposed rock mass parameterback-analysis method is validated in a mechanized twin tunnel project, and its accuracy and effectivenessare demonstrated. Compared with traditional single-stage back-analysis methods, the proposedmodel decreases the average absolute percentage error from 12.73% to 4.34%, significantly improving theaccuracy of the back-analysis. Moreover, although the accuracy of back analysis significantly increaseswith the number of construction stages considered, the back analysis time is acceptable. This studyprovides a new method for displacement back analysis that is efficient and accurate, thereby paving theway for precise parameter determination in numerical simulations.展开更多
Hepatocellular carcinoma presents with three distinct immune phenotypes,including immune-desert,immune-excluded,and immune-inflamed,indicating various treatment responses and prognostic outcomes.The clinical applicati...Hepatocellular carcinoma presents with three distinct immune phenotypes,including immune-desert,immune-excluded,and immune-inflamed,indicating various treatment responses and prognostic outcomes.The clinical application of multi-omics parameters is still restricted by the expensive and less accessible assays,although they accurately reflect immune status.A comprehensive evaluation framework based on“easy-to-obtain”multi-model clinical parameters is urgently required,incorporating clinical features to establish baseline patient profiles and disease staging;routine blood tests assessing systemic metabolic and functional status;immune cell subsets quantifying subcluster dynamics;imaging features delineating tumor morphology,spatial configuration,and perilesional anatomical relationships;immunohistochemical markers positioning qualitative and quantitative detection of tumor antigens from the cellular and molecular level.This integrated phenomic approach aims to improve prognostic stratification and clinical decision-making in hepatocellular carcinoma management conveniently and practically.展开更多
Multi-objective optimization has been increasingly applied in engineering where optimal decisions need to be made in the presence of trade-offs between two or more objectives. Minimizing the volume of shrinkage porosi...Multi-objective optimization has been increasingly applied in engineering where optimal decisions need to be made in the presence of trade-offs between two or more objectives. Minimizing the volume of shrinkage porosity, while reducing the secondary dendritic arm spacing of a wheel casting during low-pressure die casting(LPDC) process, was taken as an example of such problem. A commercial simulation software Pro CASTTM was applied to simulate the filling and solidification processes. Additionally, a program for integrating the optimization algorithm with numerical simulation was developed based on SiPESC. By setting pouring temperature and filling pressure as design variables, shrinkage porosity and secondary dendritic arm spacing as objective variables, the multi-objective optimization of minimum volume of shrinkage porosity and secondary dendritic arm spacing was achieved. The optimal combination of AZ91 D wheel casting was: pouring temperature 689 °C and filling pressure 6.5 kPa. The predicted values decreased from 4.1% to 2.1% for shrinkage porosity, and 88.5 μm to 81.2 μm for the secondary dendritic arm spacing. The optimal results proved the feasibility of the developed program in multi-objective optimization.展开更多
Q345D high-quality low-carbon steel has been extensively employed in structures with stringent weld- ing quality requirements. A multi-objective optimization of welding stress and deformation was presented to design r...Q345D high-quality low-carbon steel has been extensively employed in structures with stringent weld- ing quality requirements. A multi-objective optimization of welding stress and deformation was presented to design reasonable values of gas metal arc welding parameters and sequences of Q345D T-joints. The optimized factors included continuous variables (welding current (I), welding voltage (U) ahd welding speed (V)) and discrete variables (welding sequence (S) and welding direc- tion (D)). The concepts of the pointer and stack in Visual Basic (VB) and the interpolation method were introduced to optimize the variables. The optimization objectives included the different combina- tions of the angular distortion and transverse welding stress along the transverse and longitudinal dis- tributions. Based on the design of experiments (DOE) and the polynomial regression (PR) model, the finite element (FE) results of the T-joint were used to establish the mathematical models. The Pareto front and the compromise solutions were obtained by using a multi-objective particle swarm optimization (MOPSO) algorithm. The optimal results were validated by the corresponding results of the FE method, and the error between the FE results and the two-objective results as well as that be-tween the FE results and the three-objective optimization results were less than 17.2% and 21.5%, respectively. The influence and setting regularity of different factors were discussed according to the compromise solutions.展开更多
The optimum friction welding (FW) parameters of duplex stainless steel (DSS) UNS $32205 joint was determined. The experiment was carried out as the central composite array of 30 experiments. The selected input par...The optimum friction welding (FW) parameters of duplex stainless steel (DSS) UNS $32205 joint was determined. The experiment was carried out as the central composite array of 30 experiments. The selected input parameters were friction pressure (F), upset pressure (U), speed (S) and burn-off length (B), and responses were hardness and ultimate tensile strength. To achieve the quality of the welded joint, the ultimate tensile strength and hardness were maximized, and response surface methodology (RSM) was applied to create separate regression equations of tensile strength and hardness. Intelligent optimization technique such as genetic algorithm was used to predict the Pareto optimal solutions. Depending upon the application, preferred suitable welding parameters were selected. It was inferred that the changing hardness and tensile strength of the friction welded joint influenced the upset pressure, friction Pressure and speed of rotation.展开更多
In order to improve the strength and stiffness of shield cutterhead, the method of fuzzy mathematics theory in combination with the finite element analysis is adopted. An optimal design model of structural parameters ...In order to improve the strength and stiffness of shield cutterhead, the method of fuzzy mathematics theory in combination with the finite element analysis is adopted. An optimal design model of structural parameters for shield cutterhead is formulated,based on the complex engineering technical requirements. In the model, as the objective function of the model is a composite function of the strength and stiffness, the response surface method is applied to formulate the approximate function of objective function in order to reduce the solution scale of optimal problem. A multi-objective genetic algorithm is used to solve the cutterhead structure design problem and the change rule of the stress-strain with various structural parameters as well as their optimal values were researched under specific geological conditions. The results show that compared with original cutterhead structure scheme, the obtained optimal scheme of the cutterhead structure can greatly improve the strength and stiffness of the cutterhead, which can be seen from the reduction of its maximum equivalent stress by 21.2%, that of its maximum deformation by 0.75%, and that of its mass by 1.04%.展开更多
Submerged arc welding(SAW)is one of the main welding processes with high deposition rate and high welding quality.This welding method is extensively used in welding large-diameter gas transmission pipelines and high...Submerged arc welding(SAW)is one of the main welding processes with high deposition rate and high welding quality.This welding method is extensively used in welding large-diameter gas transmission pipelines and high-pressure vessels.In welding of such structures,the selection process parameters has great influence on the weld bead geometry and consequently affects the weld quality.Based on Fuzzy logic and NSGA-II(Non-dominated Sorting Genetic Algorithm-II)algorithm,a new approach was proposed for weld bead geometry prediction and for process parameters optimization.First,different welding parameters including welding voltage,current and speed were set to perform SAW under different conditions on API X65 steel plates.Next,the designed Fuzzy model was used for predicting the weld bead geometry and modeling of the process.The obtained mean percentage error of penetration depth,weld bead width and height from the proposed Fuzzy model was 6.06%,6.40% and 5.82%,respectively.The process parameters were then optimized to achieve the desired values of convexity and penetration indexes simultaneously using NSGA-II algorithm.As a result,a set of optimum vectors(each vector contains current,voltage and speed within their selected experimental domains)was presented for desirable values of convexity and penetration indexes in the ranges of(0.106,0.168)and(0.354,0.561)respectively,which was more applicable in real conditions.展开更多
The successful confinement of the arc by the flux band depends on the welding process parameters for achieving single-pass,multi-layer, and ultra-narrow gap welding. The sidewall fusion depth, the width of the heat-af...The successful confinement of the arc by the flux band depends on the welding process parameters for achieving single-pass,multi-layer, and ultra-narrow gap welding. The sidewall fusion depth, the width of the heat-affected zone, and the line energy are utilized as comprehensive indications of the quality of the welded joint. In order to achieve well fusion and reduce the heat input to the base metal.Three welding process characteristics were chosen as the primary determinants, including welding voltage, welding speed, and wire feeding speed. The metamodel of the welding quality index was built by the orthogonal experiments. The metamodel and NSGA-Ⅱ(Non-dominated sorting genetic algorithm Ⅱ) were combined to develop a multi-objective optimization model of ultra-narrow gap welding process parameters. The results showed that the optimized welding process parameters can increase the sidewall fusion depth, reduce the width of the heataffected zone and the line energy, and to some extent improve the overall quality of the ultra-narrow gap welding process.展开更多
In this paper, we present an algorithm to solve the inequality constrained multi-objective programming (MP) by using a penalty function with objective parameters and constraint penalty parameter. First, the penalty fu...In this paper, we present an algorithm to solve the inequality constrained multi-objective programming (MP) by using a penalty function with objective parameters and constraint penalty parameter. First, the penalty function with objective parameters and constraint penalty parameter for MP and the corresponding unconstraint penalty optimization problem (UPOP) is defined. Under some conditions, a Pareto efficient solution (or a weakly-efficient solution) to UPOP is proved to be a Pareto efficient solution (or a weakly-efficient solution) to MP. The penalty function is proved to be exact under a stable condition. Then, we design an algorithm to solve MP and prove its convergence. Finally, numerical examples show that the algorithm may help decision makers to find a satisfactory solution to MP.展开更多
This paper presents a modified method to solve multi-objective nonlinear programming problems with fuzzy parameters in its objective functions and these fuzzy parameters are characterized by fuzzy numbers. The modifie...This paper presents a modified method to solve multi-objective nonlinear programming problems with fuzzy parameters in its objective functions and these fuzzy parameters are characterized by fuzzy numbers. The modified method is based on normalized trade-off weights. The obtained stability set corresponding to α-Pareto optimal solution, using our method, is investigated. Moreover, an algorithm for obtaining any subset of the parametric space which has the same corresponding α-Pareto optimal solution is presented. Finally, a numerical example to illustrate our method is also given.展开更多
In order to explore the cutting rules, optimize the cutting parameters and improve cutting efficiency of tita- nium alloy, multiple sets of test parameters were schemed out by using the uniform design method. Test cut...In order to explore the cutting rules, optimize the cutting parameters and improve cutting efficiency of tita- nium alloy, multiple sets of test parameters were schemed out by using the uniform design method. Test cutting research of cutting forces and surface roughness with these parameters were conducted under the condition of 12 ℃ dry cutting and -50 ℃ cold blast machining, respectively. Through the regression analysis about the results of the test, a multiple linear regression model which was applicable for titanium alloy clean cutting on its surface roughhess and cutting force has been established. On this basis, a multi-objective optimization model aimed at suogace roughness, cutting force and cutting efficieney had been set up. And by means of the multi-objective data weighted method, successfully converted the multi-objective optimization model into a single-objective one. Verification tests were done under these cutting parameters, and the results are in good agreement with those calculated.展开更多
For dealing with the multi-objective optimization problems of parametric design for aircraft, a novel hybrid parallel multi-objective tabu search (HPMOTS) algorithm is used. First, a new multi-objective tabu search ...For dealing with the multi-objective optimization problems of parametric design for aircraft, a novel hybrid parallel multi-objective tabu search (HPMOTS) algorithm is used. First, a new multi-objective tabu search (MOTS) algorithm is proposed. Comparing with the traditional MOTS algorithm, this proposed algorithm adds some new methods such as the combination of MOTS algorithm and "Pareto solution", the strategy of "searching from many directions" and the reservation of good solutions. Second, this article also proposes the improved parallel multi-objective tabu search (PMOTS) algorithm. Finally, a new hybrid algorithm--HPMOTS algorithm which combines the PMOTS algorithm with the non-dominated sorting-based multi-objective genetic algorithm (NSGA) is presented. The computing results of these algorithms are compared with each other and it is shown that the optimal result can be obtained by the HPMOTS algorithm and the computing result of the PMOTS algorithm is better than that of MOTS algorithm.展开更多
The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition...The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition and multi-selection strategy is proposed to improve the search efficiency.First,two update strategies based on decomposition are used to update the evolving population and external archive,respectively.Second,a multiselection strategy is designed.The first strategy is for the subspace without a non-dominated solution.Among the neighbor particles,the particle with the smallest penalty-based boundary intersection value is selected as the global optimal solution and the particle far away fromthe search particle and the global optimal solution is selected as the personal optimal solution to enhance global search.The second strategy is for the subspace with a non-dominated solution.In the neighbor particles,two particles are randomly selected,one as the global optimal solution and the other as the personal optimal solution,to enhance local search.The third strategy is for Pareto optimal front(PF)discontinuity,which is identified by the cumulative number of iterations of the subspace without non-dominated solutions.In the subsequent iteration,a new probability distribution is used to select from the remaining subspaces to search.Third,an adaptive inertia weight update strategy based on the dominated degree is designed to further improve the search efficiency.Finally,the proposed algorithmis compared with fivemulti-objective particle swarm optimization algorithms and five multi-objective evolutionary algorithms on 22 test problems.The results show that the proposed algorithm has better performance.展开更多
With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm impro...With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm improvement.To reduce the operational costs of micro-grid systems and the energy abandonment rate of renewable energy,while simultaneously enhancing user satisfaction on the demand side,this paper introduces an improvedmultiobjective Grey Wolf Optimizer based on Cauchy variation.The proposed approach incorporates a Cauchy variation strategy during the optimizer’s search phase to expand its exploration range and minimize the likelihood of becoming trapped in local optima.At the same time,adoptingmultiple energy storage methods to improve the consumption rate of renewable energy.Subsequently,under different energy balance orders,themulti-objective particle swarmalgorithm,multi-objective grey wolf optimizer,and Cauchy’s variant of the improvedmulti-objective grey wolf optimizer are used for example simulation,solving the Pareto solution set of the model and comparing.The analysis of the results reveals that,compared to the original optimizer,the improved optimizer decreases the daily cost by approximately 100 yuan,and reduces the energy abandonment rate to zero.Meanwhile,it enhances user satisfaction and ensures the stable operation of the micro-grid.展开更多
This paper deals with a multi-objective parameter optimization framework for energy saving in injection molding process.It combines an experimental design by Taguchi's method,a process analysis by analysis of vari...This paper deals with a multi-objective parameter optimization framework for energy saving in injection molding process.It combines an experimental design by Taguchi's method,a process analysis by analysis of variance(ANOVA),a process modeling algorithm by artificial neural network(ANN),and a multi-objective parameter optimization algorithm by genetic algorithm(GA)-based lexicographic method.Local and global Pareto analyses show the trade-off between product quality and energy consumption.The implementation of the proposed framework can reduce the energy consumption significantly in laboratory scale tests,and at the same time,the product quality can meet the pre-determined requirements.展开更多
This paper introduces the Surrogate-assisted Multi-objective Grey Wolf Optimizer(SMOGWO)as a novel methodology for addressing the complex problem of empty-heavy train allocation,with a focus on line utilization balanc...This paper introduces the Surrogate-assisted Multi-objective Grey Wolf Optimizer(SMOGWO)as a novel methodology for addressing the complex problem of empty-heavy train allocation,with a focus on line utilization balance.By integrating surrogate models to approximate the objective functions,SMOGWO significantly improves the efficiency and accuracy of the optimization process.The effectiveness of this approach is evaluated using the CEC2009 multi-objective test function suite,where SMOGWO achieves a superiority rate of 76.67%compared to other leading multi-objective algorithms.Furthermore,the practical applicability of SMOGWO is demonstrated through a case study on empty and heavy train allocation,which validates its ability to balance line capacity,minimize transportation costs,and optimize the technical combination of heavy trains.The research highlights SMOGWO's potential as a robust solution for optimization challenges in railway transportation,offering valuable contributions toward enhancing operational efficiency and promoting sustainable development in the sector.展开更多
In the independent electro-hydrogen system(IEHS)with hybrid energy storage(HESS),achieving optimal scheduling is crucial.Still,it presents a challenge due to the significant deviations in values ofmultiple optimizatio...In the independent electro-hydrogen system(IEHS)with hybrid energy storage(HESS),achieving optimal scheduling is crucial.Still,it presents a challenge due to the significant deviations in values ofmultiple optimization objective functions caused by their physical dimensions.These deviations seriously affect the scheduling process.A novel standardization fusion method has been established to address this issue by analyzing the variation process of each objective function’s values.The optimal scheduling results of IEHS with HESS indicate that the economy and overall energy loss can be improved 2–3 times under different optimization methods.The proposed method better balances all optimization objective functions and reduces the impact of their dimensionality.When the cost of BESS decreases by approximately 30%,its participation deepens by about 1 time.Moreover,if the price of the electrolyzer is less than 15¥/kWh or if the cost of the fuel cell drops below 4¥/kWh,their participation will increase substantially.This study aims to provide a more reasonable approach to solving multi-objective optimization problems.展开更多
A conceptual model of intermittent joints is introduced to the cyclic shear test in the laboratory to explore the effects of loading parameters on its shear behavior under cyclic shear loading.The results show that th...A conceptual model of intermittent joints is introduced to the cyclic shear test in the laboratory to explore the effects of loading parameters on its shear behavior under cyclic shear loading.The results show that the loading parameters(initial normal stress,normal stiffness,and shear velocity)determine propagation paths of the wing and secondary cracks in rock bridges during the initial shear cycle,creating different morphologies of macroscopic step-path rupture surfaces and asperities on them.The differences in stress state and rupture surface induce different cyclic shear responses.It shows that high initial normal stress accelerates asperity degradation,raises shear resistance,and promotes compression of intermittent joints.In addition,high normal stiffness provides higher normal stress and shear resistance during the initial cycles and inhibits the dilation and compression of intermittent joints.High shear velocity results in a higher shear resistance,greater dilation,and greater compression.Finally,shear strength is most sensitive to initial normal stress,followed by shear velocity and normal stiffness.Moreover,average dilation angle is most sensitive to initial normal stress,followed by normal stiffness and shear velocity.During the shear cycles,frictional coefficient is affected by asperity degradation,backfilling of rock debris,and frictional area,exhibiting a non-monotonic behavior.展开更多
基金Projects(U22B2084,52275483,52075142)supported by the National Natural Science Foundation of ChinaProject(2023ZY01050)supported by the Ministry of Industry and Information Technology High Quality Development,China。
文摘The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.
基金supported by the National Natural Science Foundation of China(Grant No.52179105)China Postdoctoral Science Foundation(Grant No.2024M762193)。
文摘In tunnel construction,tunnel boring machine(TBM)tunnelling typically relies on manual experience with sub-optimal control parameters,which can easily lead to inefficiency and high costs.This study proposed an intelligent decision-making method for TBM tunnelling control parameters based on multiobjective optimization(MOO).First,the effective TBM operation dataset is obtained through data preprocessing of the Songhua River(YS)tunnel project in China.Next,the proposed method begins with developing machine learning models for predicting TBM tunnelling performance parameters(i.e.total thrust and cutterhead torque),rock mass classification,and hazard risks(i.e.tunnel collapse and shield jamming).Then,considering three optimal objectives,(i.e.,penetration rate,rock-breaking energy consumption,and cutterhead hob wear),the MOO framework and corresponding mathematical expression are established.The Pareto optimal front is solved using DE-NSGA-II algorithm.Finally,the optimal control parameters(i.e.,advance rate and cutterhead rotation speed)are obtained by the satisfactory solution determination criterion,which can balance construction safety and efficiency with satisfaction.Furthermore,the proposed method is validated through 50 cases of TBM tunnelling,showing promising potential of application.
基金supported by the National Natural Science Foundation of China(Grant Nos.52090081,52079068)the State Key Laboratory of Hydroscience and Hydraulic Engineering(Grant No.2021-KY-04).
文摘Accurate determination of rock mass parameters is essential for ensuring the accuracy of numericalsimulations. Displacement back-analysis is the most widely used method;however, the reliability of thecurrent approaches remains unsatisfactory. Therefore, in this paper, a multistage rock mass parameterback-analysis method, that considers the construction process and displacement losses is proposed andimplemented through the coupling of numerical simulation, auto-machine learning (AutoML), andmulti-objective optimization algorithms (MOOAs). First, a parametric modeling platform for mechanizedtwin tunnels is developed, generating a dataset through extensive numerical simulations. Next, theAutoML method is utilized to establish a surrogate model linking rock parameters and displacements.The tunnel construction process is divided into multiple stages, transforming the rock mass parameterback-analysis into a multi-objective optimization problem, for which multi-objective optimization algorithmsare introduced to obtain the rock mass parameters. The newly proposed rock mass parameterback-analysis method is validated in a mechanized twin tunnel project, and its accuracy and effectivenessare demonstrated. Compared with traditional single-stage back-analysis methods, the proposedmodel decreases the average absolute percentage error from 12.73% to 4.34%, significantly improving theaccuracy of the back-analysis. Moreover, although the accuracy of back analysis significantly increaseswith the number of construction stages considered, the back analysis time is acceptable. This studyprovides a new method for displacement back analysis that is efficient and accurate, thereby paving theway for precise parameter determination in numerical simulations.
文摘Hepatocellular carcinoma presents with three distinct immune phenotypes,including immune-desert,immune-excluded,and immune-inflamed,indicating various treatment responses and prognostic outcomes.The clinical application of multi-omics parameters is still restricted by the expensive and less accessible assays,although they accurately reflect immune status.A comprehensive evaluation framework based on“easy-to-obtain”multi-model clinical parameters is urgently required,incorporating clinical features to establish baseline patient profiles and disease staging;routine blood tests assessing systemic metabolic and functional status;immune cell subsets quantifying subcluster dynamics;imaging features delineating tumor morphology,spatial configuration,and perilesional anatomical relationships;immunohistochemical markers positioning qualitative and quantitative detection of tumor antigens from the cellular and molecular level.This integrated phenomic approach aims to improve prognostic stratification and clinical decision-making in hepatocellular carcinoma management conveniently and practically.
基金financially supported by the National Key Research and Development Program of China(Grant No.2016YFB0701204)
文摘Multi-objective optimization has been increasingly applied in engineering where optimal decisions need to be made in the presence of trade-offs between two or more objectives. Minimizing the volume of shrinkage porosity, while reducing the secondary dendritic arm spacing of a wheel casting during low-pressure die casting(LPDC) process, was taken as an example of such problem. A commercial simulation software Pro CASTTM was applied to simulate the filling and solidification processes. Additionally, a program for integrating the optimization algorithm with numerical simulation was developed based on SiPESC. By setting pouring temperature and filling pressure as design variables, shrinkage porosity and secondary dendritic arm spacing as objective variables, the multi-objective optimization of minimum volume of shrinkage porosity and secondary dendritic arm spacing was achieved. The optimal combination of AZ91 D wheel casting was: pouring temperature 689 °C and filling pressure 6.5 kPa. The predicted values decreased from 4.1% to 2.1% for shrinkage porosity, and 88.5 μm to 81.2 μm for the secondary dendritic arm spacing. The optimal results proved the feasibility of the developed program in multi-objective optimization.
基金financially sponsored by National Natural Science Foundation of China(No.50975121)Changchun Science and Technology Plan Projects(No.10KZ03)the Plan for Scientific and Technology Development of Jilin Province(No.20150520106JH)
文摘Q345D high-quality low-carbon steel has been extensively employed in structures with stringent weld- ing quality requirements. A multi-objective optimization of welding stress and deformation was presented to design reasonable values of gas metal arc welding parameters and sequences of Q345D T-joints. The optimized factors included continuous variables (welding current (I), welding voltage (U) ahd welding speed (V)) and discrete variables (welding sequence (S) and welding direc- tion (D)). The concepts of the pointer and stack in Visual Basic (VB) and the interpolation method were introduced to optimize the variables. The optimization objectives included the different combina- tions of the angular distortion and transverse welding stress along the transverse and longitudinal dis- tributions. Based on the design of experiments (DOE) and the polynomial regression (PR) model, the finite element (FE) results of the T-joint were used to establish the mathematical models. The Pareto front and the compromise solutions were obtained by using a multi-objective particle swarm optimization (MOPSO) algorithm. The optimal results were validated by the corresponding results of the FE method, and the error between the FE results and the two-objective results as well as that be-tween the FE results and the three-objective optimization results were less than 17.2% and 21.5%, respectively. The influence and setting regularity of different factors were discussed according to the compromise solutions.
文摘The optimum friction welding (FW) parameters of duplex stainless steel (DSS) UNS $32205 joint was determined. The experiment was carried out as the central composite array of 30 experiments. The selected input parameters were friction pressure (F), upset pressure (U), speed (S) and burn-off length (B), and responses were hardness and ultimate tensile strength. To achieve the quality of the welded joint, the ultimate tensile strength and hardness were maximized, and response surface methodology (RSM) was applied to create separate regression equations of tensile strength and hardness. Intelligent optimization technique such as genetic algorithm was used to predict the Pareto optimal solutions. Depending upon the application, preferred suitable welding parameters were selected. It was inferred that the changing hardness and tensile strength of the friction welded joint influenced the upset pressure, friction Pressure and speed of rotation.
基金Project(51074180) supported by the National Natural Science Foundation of ChinaProject(2012AA041801) supported by the National High Technology Research and Development Program of China+2 种基金Project(2007CB714002) supported by the National Basic Research Program of ChinaProject(2013GK3003) supported by the Technology Support Plan of Hunan Province,ChinaProject(2010FJ1002) supported by Hunan Science and Technology Major Program,China
文摘In order to improve the strength and stiffness of shield cutterhead, the method of fuzzy mathematics theory in combination with the finite element analysis is adopted. An optimal design model of structural parameters for shield cutterhead is formulated,based on the complex engineering technical requirements. In the model, as the objective function of the model is a composite function of the strength and stiffness, the response surface method is applied to formulate the approximate function of objective function in order to reduce the solution scale of optimal problem. A multi-objective genetic algorithm is used to solve the cutterhead structure design problem and the change rule of the stress-strain with various structural parameters as well as their optimal values were researched under specific geological conditions. The results show that compared with original cutterhead structure scheme, the obtained optimal scheme of the cutterhead structure can greatly improve the strength and stiffness of the cutterhead, which can be seen from the reduction of its maximum equivalent stress by 21.2%, that of its maximum deformation by 0.75%, and that of its mass by 1.04%.
文摘Submerged arc welding(SAW)is one of the main welding processes with high deposition rate and high welding quality.This welding method is extensively used in welding large-diameter gas transmission pipelines and high-pressure vessels.In welding of such structures,the selection process parameters has great influence on the weld bead geometry and consequently affects the weld quality.Based on Fuzzy logic and NSGA-II(Non-dominated Sorting Genetic Algorithm-II)algorithm,a new approach was proposed for weld bead geometry prediction and for process parameters optimization.First,different welding parameters including welding voltage,current and speed were set to perform SAW under different conditions on API X65 steel plates.Next,the designed Fuzzy model was used for predicting the weld bead geometry and modeling of the process.The obtained mean percentage error of penetration depth,weld bead width and height from the proposed Fuzzy model was 6.06%,6.40% and 5.82%,respectively.The process parameters were then optimized to achieve the desired values of convexity and penetration indexes simultaneously using NSGA-II algorithm.As a result,a set of optimum vectors(each vector contains current,voltage and speed within their selected experimental domains)was presented for desirable values of convexity and penetration indexes in the ranges of(0.106,0.168)and(0.354,0.561)respectively,which was more applicable in real conditions.
基金Project was supported by National Natural Science Foundation of China(Grant No.62173170).
文摘The successful confinement of the arc by the flux band depends on the welding process parameters for achieving single-pass,multi-layer, and ultra-narrow gap welding. The sidewall fusion depth, the width of the heat-affected zone, and the line energy are utilized as comprehensive indications of the quality of the welded joint. In order to achieve well fusion and reduce the heat input to the base metal.Three welding process characteristics were chosen as the primary determinants, including welding voltage, welding speed, and wire feeding speed. The metamodel of the welding quality index was built by the orthogonal experiments. The metamodel and NSGA-Ⅱ(Non-dominated sorting genetic algorithm Ⅱ) were combined to develop a multi-objective optimization model of ultra-narrow gap welding process parameters. The results showed that the optimized welding process parameters can increase the sidewall fusion depth, reduce the width of the heataffected zone and the line energy, and to some extent improve the overall quality of the ultra-narrow gap welding process.
文摘In this paper, we present an algorithm to solve the inequality constrained multi-objective programming (MP) by using a penalty function with objective parameters and constraint penalty parameter. First, the penalty function with objective parameters and constraint penalty parameter for MP and the corresponding unconstraint penalty optimization problem (UPOP) is defined. Under some conditions, a Pareto efficient solution (or a weakly-efficient solution) to UPOP is proved to be a Pareto efficient solution (or a weakly-efficient solution) to MP. The penalty function is proved to be exact under a stable condition. Then, we design an algorithm to solve MP and prove its convergence. Finally, numerical examples show that the algorithm may help decision makers to find a satisfactory solution to MP.
文摘This paper presents a modified method to solve multi-objective nonlinear programming problems with fuzzy parameters in its objective functions and these fuzzy parameters are characterized by fuzzy numbers. The modified method is based on normalized trade-off weights. The obtained stability set corresponding to α-Pareto optimal solution, using our method, is investigated. Moreover, an algorithm for obtaining any subset of the parametric space which has the same corresponding α-Pareto optimal solution is presented. Finally, a numerical example to illustrate our method is also given.
文摘In order to explore the cutting rules, optimize the cutting parameters and improve cutting efficiency of tita- nium alloy, multiple sets of test parameters were schemed out by using the uniform design method. Test cutting research of cutting forces and surface roughness with these parameters were conducted under the condition of 12 ℃ dry cutting and -50 ℃ cold blast machining, respectively. Through the regression analysis about the results of the test, a multiple linear regression model which was applicable for titanium alloy clean cutting on its surface roughhess and cutting force has been established. On this basis, a multi-objective optimization model aimed at suogace roughness, cutting force and cutting efficieney had been set up. And by means of the multi-objective data weighted method, successfully converted the multi-objective optimization model into a single-objective one. Verification tests were done under these cutting parameters, and the results are in good agreement with those calculated.
基金National Science Fund for Distinguished Young Scholars (10425208)Programme of Introducing Talents of Discipline to Universities (B07009)
文摘For dealing with the multi-objective optimization problems of parametric design for aircraft, a novel hybrid parallel multi-objective tabu search (HPMOTS) algorithm is used. First, a new multi-objective tabu search (MOTS) algorithm is proposed. Comparing with the traditional MOTS algorithm, this proposed algorithm adds some new methods such as the combination of MOTS algorithm and "Pareto solution", the strategy of "searching from many directions" and the reservation of good solutions. Second, this article also proposes the improved parallel multi-objective tabu search (PMOTS) algorithm. Finally, a new hybrid algorithm--HPMOTS algorithm which combines the PMOTS algorithm with the non-dominated sorting-based multi-objective genetic algorithm (NSGA) is presented. The computing results of these algorithms are compared with each other and it is shown that the optimal result can be obtained by the HPMOTS algorithm and the computing result of the PMOTS algorithm is better than that of MOTS algorithm.
基金supported by National Natural Science Foundations of China(nos.12271326,62102304,61806120,61502290,61672334,61673251)China Postdoctoral Science Foundation(no.2015M582606)+2 种基金Industrial Research Project of Science and Technology in Shaanxi Province(nos.2015GY016,2017JQ6063)Fundamental Research Fund for the Central Universities(no.GK202003071)Natural Science Basic Research Plan in Shaanxi Province of China(no.2022JM-354).
文摘The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition and multi-selection strategy is proposed to improve the search efficiency.First,two update strategies based on decomposition are used to update the evolving population and external archive,respectively.Second,a multiselection strategy is designed.The first strategy is for the subspace without a non-dominated solution.Among the neighbor particles,the particle with the smallest penalty-based boundary intersection value is selected as the global optimal solution and the particle far away fromthe search particle and the global optimal solution is selected as the personal optimal solution to enhance global search.The second strategy is for the subspace with a non-dominated solution.In the neighbor particles,two particles are randomly selected,one as the global optimal solution and the other as the personal optimal solution,to enhance local search.The third strategy is for Pareto optimal front(PF)discontinuity,which is identified by the cumulative number of iterations of the subspace without non-dominated solutions.In the subsequent iteration,a new probability distribution is used to select from the remaining subspaces to search.Third,an adaptive inertia weight update strategy based on the dominated degree is designed to further improve the search efficiency.Finally,the proposed algorithmis compared with fivemulti-objective particle swarm optimization algorithms and five multi-objective evolutionary algorithms on 22 test problems.The results show that the proposed algorithm has better performance.
基金supported by the Open Fund of Guangxi Key Laboratory of Building New Energy and Energy Conservation(Project Number:Guike Energy 17-J-21-3).
文摘With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm improvement.To reduce the operational costs of micro-grid systems and the energy abandonment rate of renewable energy,while simultaneously enhancing user satisfaction on the demand side,this paper introduces an improvedmultiobjective Grey Wolf Optimizer based on Cauchy variation.The proposed approach incorporates a Cauchy variation strategy during the optimizer’s search phase to expand its exploration range and minimize the likelihood of becoming trapped in local optima.At the same time,adoptingmultiple energy storage methods to improve the consumption rate of renewable energy.Subsequently,under different energy balance orders,themulti-objective particle swarmalgorithm,multi-objective grey wolf optimizer,and Cauchy’s variant of the improvedmulti-objective grey wolf optimizer are used for example simulation,solving the Pareto solution set of the model and comparing.The analysis of the results reveals that,compared to the original optimizer,the improved optimizer decreases the daily cost by approximately 100 yuan,and reduces the energy abandonment rate to zero.Meanwhile,it enhances user satisfaction and ensures the stable operation of the micro-grid.
基金(Nos. 20806040,61073059 and 61034005) supported by the National Natural Science Foundation of China
文摘This paper deals with a multi-objective parameter optimization framework for energy saving in injection molding process.It combines an experimental design by Taguchi's method,a process analysis by analysis of variance(ANOVA),a process modeling algorithm by artificial neural network(ANN),and a multi-objective parameter optimization algorithm by genetic algorithm(GA)-based lexicographic method.Local and global Pareto analyses show the trade-off between product quality and energy consumption.The implementation of the proposed framework can reduce the energy consumption significantly in laboratory scale tests,and at the same time,the product quality can meet the pre-determined requirements.
基金supported by the National Natural Science Foundation of China(Project No.5217232152102391)+2 种基金Sichuan Province Science and Technology Innovation Talent Project(2024JDRC0020)China Shenhua Energy Company Limited Technology Project(GJNY-22-7/2300-K1220053)Key science and technology projects in the transportation industry of the Ministry of Transport(2022-ZD7-132).
文摘This paper introduces the Surrogate-assisted Multi-objective Grey Wolf Optimizer(SMOGWO)as a novel methodology for addressing the complex problem of empty-heavy train allocation,with a focus on line utilization balance.By integrating surrogate models to approximate the objective functions,SMOGWO significantly improves the efficiency and accuracy of the optimization process.The effectiveness of this approach is evaluated using the CEC2009 multi-objective test function suite,where SMOGWO achieves a superiority rate of 76.67%compared to other leading multi-objective algorithms.Furthermore,the practical applicability of SMOGWO is demonstrated through a case study on empty and heavy train allocation,which validates its ability to balance line capacity,minimize transportation costs,and optimize the technical combination of heavy trains.The research highlights SMOGWO's potential as a robust solution for optimization challenges in railway transportation,offering valuable contributions toward enhancing operational efficiency and promoting sustainable development in the sector.
基金sponsored by R&D Program of Beijing Municipal Education Commission(KM202410009013).
文摘In the independent electro-hydrogen system(IEHS)with hybrid energy storage(HESS),achieving optimal scheduling is crucial.Still,it presents a challenge due to the significant deviations in values ofmultiple optimization objective functions caused by their physical dimensions.These deviations seriously affect the scheduling process.A novel standardization fusion method has been established to address this issue by analyzing the variation process of each objective function’s values.The optimal scheduling results of IEHS with HESS indicate that the economy and overall energy loss can be improved 2–3 times under different optimization methods.The proposed method better balances all optimization objective functions and reduces the impact of their dimensionality.When the cost of BESS decreases by approximately 30%,its participation deepens by about 1 time.Moreover,if the price of the electrolyzer is less than 15¥/kWh or if the cost of the fuel cell drops below 4¥/kWh,their participation will increase substantially.This study aims to provide a more reasonable approach to solving multi-objective optimization problems.
基金financially supported by the National Natural Science Foundation of China(Grant No.42172292)Taishan Scholars Project Special Funding,and Shandong Energy Group(Grant No.SNKJ 2022A01-R26).
文摘A conceptual model of intermittent joints is introduced to the cyclic shear test in the laboratory to explore the effects of loading parameters on its shear behavior under cyclic shear loading.The results show that the loading parameters(initial normal stress,normal stiffness,and shear velocity)determine propagation paths of the wing and secondary cracks in rock bridges during the initial shear cycle,creating different morphologies of macroscopic step-path rupture surfaces and asperities on them.The differences in stress state and rupture surface induce different cyclic shear responses.It shows that high initial normal stress accelerates asperity degradation,raises shear resistance,and promotes compression of intermittent joints.In addition,high normal stiffness provides higher normal stress and shear resistance during the initial cycles and inhibits the dilation and compression of intermittent joints.High shear velocity results in a higher shear resistance,greater dilation,and greater compression.Finally,shear strength is most sensitive to initial normal stress,followed by shear velocity and normal stiffness.Moreover,average dilation angle is most sensitive to initial normal stress,followed by normal stiffness and shear velocity.During the shear cycles,frictional coefficient is affected by asperity degradation,backfilling of rock debris,and frictional area,exhibiting a non-monotonic behavior.