The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can caus...The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.展开更多
In tunnel construction,tunnel boring machine(TBM)tunnelling typically relies on manual experience with sub-optimal control parameters,which can easily lead to inefficiency and high costs.This study proposed an intelli...In tunnel construction,tunnel boring machine(TBM)tunnelling typically relies on manual experience with sub-optimal control parameters,which can easily lead to inefficiency and high costs.This study proposed an intelligent decision-making method for TBM tunnelling control parameters based on multiobjective optimization(MOO).First,the effective TBM operation dataset is obtained through data preprocessing of the Songhua River(YS)tunnel project in China.Next,the proposed method begins with developing machine learning models for predicting TBM tunnelling performance parameters(i.e.total thrust and cutterhead torque),rock mass classification,and hazard risks(i.e.tunnel collapse and shield jamming).Then,considering three optimal objectives,(i.e.,penetration rate,rock-breaking energy consumption,and cutterhead hob wear),the MOO framework and corresponding mathematical expression are established.The Pareto optimal front is solved using DE-NSGA-II algorithm.Finally,the optimal control parameters(i.e.,advance rate and cutterhead rotation speed)are obtained by the satisfactory solution determination criterion,which can balance construction safety and efficiency with satisfaction.Furthermore,the proposed method is validated through 50 cases of TBM tunnelling,showing promising potential of application.展开更多
Accurate determination of rock mass parameters is essential for ensuring the accuracy of numericalsimulations. Displacement back-analysis is the most widely used method;however, the reliability of thecurrent approache...Accurate determination of rock mass parameters is essential for ensuring the accuracy of numericalsimulations. Displacement back-analysis is the most widely used method;however, the reliability of thecurrent approaches remains unsatisfactory. Therefore, in this paper, a multistage rock mass parameterback-analysis method, that considers the construction process and displacement losses is proposed andimplemented through the coupling of numerical simulation, auto-machine learning (AutoML), andmulti-objective optimization algorithms (MOOAs). First, a parametric modeling platform for mechanizedtwin tunnels is developed, generating a dataset through extensive numerical simulations. Next, theAutoML method is utilized to establish a surrogate model linking rock parameters and displacements.The tunnel construction process is divided into multiple stages, transforming the rock mass parameterback-analysis into a multi-objective optimization problem, for which multi-objective optimization algorithmsare introduced to obtain the rock mass parameters. The newly proposed rock mass parameterback-analysis method is validated in a mechanized twin tunnel project, and its accuracy and effectivenessare demonstrated. Compared with traditional single-stage back-analysis methods, the proposedmodel decreases the average absolute percentage error from 12.73% to 4.34%, significantly improving theaccuracy of the back-analysis. Moreover, although the accuracy of back analysis significantly increaseswith the number of construction stages considered, the back analysis time is acceptable. This studyprovides a new method for displacement back analysis that is efficient and accurate, thereby paving theway for precise parameter determination in numerical simulations.展开更多
Recently, the single-shaft series-parallel powertrain of Plug-in Hybrid Electric Bus (PHEB) has become one of the most popu- lar powertrains due to its alterable operating modes, excellent fuel economy and strong ad...Recently, the single-shaft series-parallel powertrain of Plug-in Hybrid Electric Bus (PHEB) has become one of the most popu- lar powertrains due to its alterable operating modes, excellent fuel economy and strong adaptability for driving cycles. Never- theless, for configuring the PHEB with single-shaft series-parallel powertrain in the development stage, it still faces greater challenge than other configurations when choosing and matching the main component parameters. Motivated by this issue, a comprehensive multi-objectives optimization strategy based on Genetic Algorithm (GA) is developed for the PHEB with the typical powertrain. First, considering repeatability and regularity of bus route, the methods of off-line data processing and mathematical statistics are adopted, to obtain a representative driving cycle, which could well reflect the general characteristic of the real-world bus route. Then, the economical optimization objective is defined, which is consist of manufacturing costs of the key components and energy consumption, and combined with the dynamical optimization objective, a multi-objective op- timization function is put forward. Meanwhile, GA algorithm is used to optimize the parameters, for the optimal components combination of the novel series-parallel powertrain. Finally, a comparison with the prototype is carried out to verify the per- formance of the optimized powertrain along driving cycles. Simulation results indicate that the parameters of powertrain com- ponents obtained by the proposed comprehensive multi-objectives optimization strategy might get better fuel economy, meanwhile ensure the dynamic performance of PHEB. In contrast to the original, the costs declined by 18%. Hence, the strat- egy would provide a theoretical guidance on parameter selection for PHEB manufacturers.展开更多
Multi-objective optimization has been increasingly applied in engineering where optimal decisions need to be made in the presence of trade-offs between two or more objectives. Minimizing the volume of shrinkage porosi...Multi-objective optimization has been increasingly applied in engineering where optimal decisions need to be made in the presence of trade-offs between two or more objectives. Minimizing the volume of shrinkage porosity, while reducing the secondary dendritic arm spacing of a wheel casting during low-pressure die casting(LPDC) process, was taken as an example of such problem. A commercial simulation software Pro CASTTM was applied to simulate the filling and solidification processes. Additionally, a program for integrating the optimization algorithm with numerical simulation was developed based on SiPESC. By setting pouring temperature and filling pressure as design variables, shrinkage porosity and secondary dendritic arm spacing as objective variables, the multi-objective optimization of minimum volume of shrinkage porosity and secondary dendritic arm spacing was achieved. The optimal combination of AZ91 D wheel casting was: pouring temperature 689 °C and filling pressure 6.5 kPa. The predicted values decreased from 4.1% to 2.1% for shrinkage porosity, and 88.5 μm to 81.2 μm for the secondary dendritic arm spacing. The optimal results proved the feasibility of the developed program in multi-objective optimization.展开更多
Q345D high-quality low-carbon steel has been extensively employed in structures with stringent weld- ing quality requirements. A multi-objective optimization of welding stress and deformation was presented to design r...Q345D high-quality low-carbon steel has been extensively employed in structures with stringent weld- ing quality requirements. A multi-objective optimization of welding stress and deformation was presented to design reasonable values of gas metal arc welding parameters and sequences of Q345D T-joints. The optimized factors included continuous variables (welding current (I), welding voltage (U) ahd welding speed (V)) and discrete variables (welding sequence (S) and welding direc- tion (D)). The concepts of the pointer and stack in Visual Basic (VB) and the interpolation method were introduced to optimize the variables. The optimization objectives included the different combina- tions of the angular distortion and transverse welding stress along the transverse and longitudinal dis- tributions. Based on the design of experiments (DOE) and the polynomial regression (PR) model, the finite element (FE) results of the T-joint were used to establish the mathematical models. The Pareto front and the compromise solutions were obtained by using a multi-objective particle swarm optimization (MOPSO) algorithm. The optimal results were validated by the corresponding results of the FE method, and the error between the FE results and the two-objective results as well as that be-tween the FE results and the three-objective optimization results were less than 17.2% and 21.5%, respectively. The influence and setting regularity of different factors were discussed according to the compromise solutions.展开更多
This paper deals with a multi-objective parameter optimization framework for energy saving in injection molding process.It combines an experimental design by Taguchi's method,a process analysis by analysis of vari...This paper deals with a multi-objective parameter optimization framework for energy saving in injection molding process.It combines an experimental design by Taguchi's method,a process analysis by analysis of variance(ANOVA),a process modeling algorithm by artificial neural network(ANN),and a multi-objective parameter optimization algorithm by genetic algorithm(GA)-based lexicographic method.Local and global Pareto analyses show the trade-off between product quality and energy consumption.The implementation of the proposed framework can reduce the energy consumption significantly in laboratory scale tests,and at the same time,the product quality can meet the pre-determined requirements.展开更多
The optimum friction welding (FW) parameters of duplex stainless steel (DSS) UNS $32205 joint was determined. The experiment was carried out as the central composite array of 30 experiments. The selected input par...The optimum friction welding (FW) parameters of duplex stainless steel (DSS) UNS $32205 joint was determined. The experiment was carried out as the central composite array of 30 experiments. The selected input parameters were friction pressure (F), upset pressure (U), speed (S) and burn-off length (B), and responses were hardness and ultimate tensile strength. To achieve the quality of the welded joint, the ultimate tensile strength and hardness were maximized, and response surface methodology (RSM) was applied to create separate regression equations of tensile strength and hardness. Intelligent optimization technique such as genetic algorithm was used to predict the Pareto optimal solutions. Depending upon the application, preferred suitable welding parameters were selected. It was inferred that the changing hardness and tensile strength of the friction welded joint influenced the upset pressure, friction Pressure and speed of rotation.展开更多
For dealing with the multi-objective optimization problems of parametric design for aircraft, a novel hybrid parallel multi-objective tabu search (HPMOTS) algorithm is used. First, a new multi-objective tabu search ...For dealing with the multi-objective optimization problems of parametric design for aircraft, a novel hybrid parallel multi-objective tabu search (HPMOTS) algorithm is used. First, a new multi-objective tabu search (MOTS) algorithm is proposed. Comparing with the traditional MOTS algorithm, this proposed algorithm adds some new methods such as the combination of MOTS algorithm and "Pareto solution", the strategy of "searching from many directions" and the reservation of good solutions. Second, this article also proposes the improved parallel multi-objective tabu search (PMOTS) algorithm. Finally, a new hybrid algorithm--HPMOTS algorithm which combines the PMOTS algorithm with the non-dominated sorting-based multi-objective genetic algorithm (NSGA) is presented. The computing results of these algorithms are compared with each other and it is shown that the optimal result can be obtained by the HPMOTS algorithm and the computing result of the PMOTS algorithm is better than that of MOTS algorithm.展开更多
The successful confinement of the arc by the flux band depends on the welding process parameters for achieving single-pass,multi-layer, and ultra-narrow gap welding. The sidewall fusion depth, the width of the heat-af...The successful confinement of the arc by the flux band depends on the welding process parameters for achieving single-pass,multi-layer, and ultra-narrow gap welding. The sidewall fusion depth, the width of the heat-affected zone, and the line energy are utilized as comprehensive indications of the quality of the welded joint. In order to achieve well fusion and reduce the heat input to the base metal.Three welding process characteristics were chosen as the primary determinants, including welding voltage, welding speed, and wire feeding speed. The metamodel of the welding quality index was built by the orthogonal experiments. The metamodel and NSGA-Ⅱ(Non-dominated sorting genetic algorithm Ⅱ) were combined to develop a multi-objective optimization model of ultra-narrow gap welding process parameters. The results showed that the optimized welding process parameters can increase the sidewall fusion depth, reduce the width of the heataffected zone and the line energy, and to some extent improve the overall quality of the ultra-narrow gap welding process.展开更多
Submerged arc welding(SAW)is one of the main welding processes with high deposition rate and high welding quality.This welding method is extensively used in welding large-diameter gas transmission pipelines and high...Submerged arc welding(SAW)is one of the main welding processes with high deposition rate and high welding quality.This welding method is extensively used in welding large-diameter gas transmission pipelines and high-pressure vessels.In welding of such structures,the selection process parameters has great influence on the weld bead geometry and consequently affects the weld quality.Based on Fuzzy logic and NSGA-II(Non-dominated Sorting Genetic Algorithm-II)algorithm,a new approach was proposed for weld bead geometry prediction and for process parameters optimization.First,different welding parameters including welding voltage,current and speed were set to perform SAW under different conditions on API X65 steel plates.Next,the designed Fuzzy model was used for predicting the weld bead geometry and modeling of the process.The obtained mean percentage error of penetration depth,weld bead width and height from the proposed Fuzzy model was 6.06%,6.40% and 5.82%,respectively.The process parameters were then optimized to achieve the desired values of convexity and penetration indexes simultaneously using NSGA-II algorithm.As a result,a set of optimum vectors(each vector contains current,voltage and speed within their selected experimental domains)was presented for desirable values of convexity and penetration indexes in the ranges of(0.106,0.168)and(0.354,0.561)respectively,which was more applicable in real conditions.展开更多
To solve the constraints of multi-objective optimization of the driver system and high nonlinear problems, according to the relevant dimensions of a car, we build a simulation model with Hybrid Ⅲ 50th dummy driver co...To solve the constraints of multi-objective optimization of the driver system and high nonlinear problems, according to the relevant dimensions of a car, we build a simulation model with Hybrid Ⅲ 50th dummy driver constraint system. The comparison of the driver mechanics index of the experimental data with the simulation data in the frontal crash shows that the accuracy of simulation model meets the requirements. The optimal Latin test design is adopted, and the global sensitivity analysis of the design parameters is carried out based on the Kriging model. The four most sensitive parameters are selected, and the parameters are solved by a multi-island genetic algorithm.And then the nonlinear programming quadratic line(NLPQL) algorithm is used to search for accurate optimization. The optimal parameters of the occupant restraint system are determined: the limiting force value of force limiter 2 985.603 N, belt extension 12.684%, airbag point explosion time 27.585 ms, and airbag vent diameter 27.338 mm, with the weighted injury criterion(WIC) decreased by 12.97%, the head injury decreased by 22.60%, and the chest compression decreased by 7.29%. The results show that the system integration of passive safety devices such as seat belts and airbags can effectively protect the driver.展开更多
With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm impro...With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm improvement.To reduce the operational costs of micro-grid systems and the energy abandonment rate of renewable energy,while simultaneously enhancing user satisfaction on the demand side,this paper introduces an improvedmultiobjective Grey Wolf Optimizer based on Cauchy variation.The proposed approach incorporates a Cauchy variation strategy during the optimizer’s search phase to expand its exploration range and minimize the likelihood of becoming trapped in local optima.At the same time,adoptingmultiple energy storage methods to improve the consumption rate of renewable energy.Subsequently,under different energy balance orders,themulti-objective particle swarmalgorithm,multi-objective grey wolf optimizer,and Cauchy’s variant of the improvedmulti-objective grey wolf optimizer are used for example simulation,solving the Pareto solution set of the model and comparing.The analysis of the results reveals that,compared to the original optimizer,the improved optimizer decreases the daily cost by approximately 100 yuan,and reduces the energy abandonment rate to zero.Meanwhile,it enhances user satisfaction and ensures the stable operation of the micro-grid.展开更多
The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition...The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition and multi-selection strategy is proposed to improve the search efficiency.First,two update strategies based on decomposition are used to update the evolving population and external archive,respectively.Second,a multiselection strategy is designed.The first strategy is for the subspace without a non-dominated solution.Among the neighbor particles,the particle with the smallest penalty-based boundary intersection value is selected as the global optimal solution and the particle far away fromthe search particle and the global optimal solution is selected as the personal optimal solution to enhance global search.The second strategy is for the subspace with a non-dominated solution.In the neighbor particles,two particles are randomly selected,one as the global optimal solution and the other as the personal optimal solution,to enhance local search.The third strategy is for Pareto optimal front(PF)discontinuity,which is identified by the cumulative number of iterations of the subspace without non-dominated solutions.In the subsequent iteration,a new probability distribution is used to select from the remaining subspaces to search.Third,an adaptive inertia weight update strategy based on the dominated degree is designed to further improve the search efficiency.Finally,the proposed algorithmis compared with fivemulti-objective particle swarm optimization algorithms and five multi-objective evolutionary algorithms on 22 test problems.The results show that the proposed algorithm has better performance.展开更多
In order to explore the cutting rules, optimize the cutting parameters and improve cutting efficiency of tita- nium alloy, multiple sets of test parameters were schemed out by using the uniform design method. Test cut...In order to explore the cutting rules, optimize the cutting parameters and improve cutting efficiency of tita- nium alloy, multiple sets of test parameters were schemed out by using the uniform design method. Test cutting research of cutting forces and surface roughness with these parameters were conducted under the condition of 12 ℃ dry cutting and -50 ℃ cold blast machining, respectively. Through the regression analysis about the results of the test, a multiple linear regression model which was applicable for titanium alloy clean cutting on its surface roughhess and cutting force has been established. On this basis, a multi-objective optimization model aimed at suogace roughness, cutting force and cutting efficieney had been set up. And by means of the multi-objective data weighted method, successfully converted the multi-objective optimization model into a single-objective one. Verification tests were done under these cutting parameters, and the results are in good agreement with those calculated.展开更多
In this study,a novel synergistic swing energy-regenerative hybrid system(SSEHS)for excavators with a large inertia slewing platform is constructed.With the SSEHS,the pressure boosting and output energy synergy of mul...In this study,a novel synergistic swing energy-regenerative hybrid system(SSEHS)for excavators with a large inertia slewing platform is constructed.With the SSEHS,the pressure boosting and output energy synergy of multiple energy sources can be realized,while the swing braking energy can be recovered and used by means of hydraulic energy.Additionally,considering the system constraints and comprehensive optimization conditions of energy efficiency and dynamic characteristics,an improved multi-objective particle swarm optimization(IMOPSO)combined with an adaptive grid is proposed for parameter optimization of the SSEHS.Meanwhile,a parameter rule-based control strategy is designed,which can switch to a reasonable working mode according to the real-time state.Finally,a physical prototype of a 50-t excavator and its AMESim model is established.The semi-simulation and semi-experiment results demonstrate that compared with a conventional swing system,energy consumption under the 90°rotation condition could be reduced by about 51.4%in the SSEHS before parameter optimization,while the energy-saving efficiency is improved by another 13.2%after parameter optimization.This confirms the effectiveness of the SSEHS and the IMOPSO parameter optimization method proposed in this paper.The IMOPSO algorithm is universal and can be used for parameter matching and optimization of hybrid power systems.展开更多
Silicone material extrusion(MEX)is widely used for processing liquids and pastes.Owing to the uneven linewidth and elastic extrusion deformation caused by material accumulation,products may exhibit geometric errors an...Silicone material extrusion(MEX)is widely used for processing liquids and pastes.Owing to the uneven linewidth and elastic extrusion deformation caused by material accumulation,products may exhibit geometric errors and performance defects,leading to a decline in product quality and affecting its service life.This study proposes a process parameter optimization method that considers the mechanical properties of printed specimens and production costs.To improve the quality of silicone printing samples and reduce production costs,three machine learning models,kernel extreme learning machine(KELM),support vector regression(SVR),and random forest(RF),were developed to predict these three factors.Training data were obtained through a complete factorial experiment.A new dataset is obtained using the Euclidean distance method,which assigns the elimination factor.It is trained with Bayesian optimization algorithms for parameter optimization,the new dataset is input into the improved double Gaussian extreme learning machine,and finally obtains the improved KELM model.The results showed improved prediction accuracy over SVR and RF.Furthermore,a multi-objective optimization framework was proposed by combining genetic algorithm technology with the improved KELM model.The effectiveness and reasonableness of the model algorithm were verified by comparing the optimized results with the experimental results.展开更多
This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Op...This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain.展开更多
The lack of systematic and scientific top-level arrangement in the field of civil aircraft flight test leads to the problems of long duration and high cost.Based on the flight test activity,mathematical models of flig...The lack of systematic and scientific top-level arrangement in the field of civil aircraft flight test leads to the problems of long duration and high cost.Based on the flight test activity,mathematical models of flight test duration and cost are established to set up the framework of flight test process.The top-level arrangement for flight test is optimized by multi-objective algorithm to reduce the duration and cost of flight test.In order to verify the necessity and validity of the mathematical models and the optimization algorithm of top-level arrangement,real flight test data is used to make an example calculation.Results show that the multi-objective optimization results of the top-level flight arrangement are better than the initial arrangement data,which can shorten the duration,reduce the cost,and improve the efficiency of flight test.展开更多
Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple dat...Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance.展开更多
基金Projects(U22B2084,52275483,52075142)supported by the National Natural Science Foundation of ChinaProject(2023ZY01050)supported by the Ministry of Industry and Information Technology High Quality Development,China。
文摘The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.
基金supported by the National Natural Science Foundation of China(Grant No.52179105)China Postdoctoral Science Foundation(Grant No.2024M762193)。
文摘In tunnel construction,tunnel boring machine(TBM)tunnelling typically relies on manual experience with sub-optimal control parameters,which can easily lead to inefficiency and high costs.This study proposed an intelligent decision-making method for TBM tunnelling control parameters based on multiobjective optimization(MOO).First,the effective TBM operation dataset is obtained through data preprocessing of the Songhua River(YS)tunnel project in China.Next,the proposed method begins with developing machine learning models for predicting TBM tunnelling performance parameters(i.e.total thrust and cutterhead torque),rock mass classification,and hazard risks(i.e.tunnel collapse and shield jamming).Then,considering three optimal objectives,(i.e.,penetration rate,rock-breaking energy consumption,and cutterhead hob wear),the MOO framework and corresponding mathematical expression are established.The Pareto optimal front is solved using DE-NSGA-II algorithm.Finally,the optimal control parameters(i.e.,advance rate and cutterhead rotation speed)are obtained by the satisfactory solution determination criterion,which can balance construction safety and efficiency with satisfaction.Furthermore,the proposed method is validated through 50 cases of TBM tunnelling,showing promising potential of application.
基金supported by the National Natural Science Foundation of China(Grant Nos.52090081,52079068)the State Key Laboratory of Hydroscience and Hydraulic Engineering(Grant No.2021-KY-04).
文摘Accurate determination of rock mass parameters is essential for ensuring the accuracy of numericalsimulations. Displacement back-analysis is the most widely used method;however, the reliability of thecurrent approaches remains unsatisfactory. Therefore, in this paper, a multistage rock mass parameterback-analysis method, that considers the construction process and displacement losses is proposed andimplemented through the coupling of numerical simulation, auto-machine learning (AutoML), andmulti-objective optimization algorithms (MOOAs). First, a parametric modeling platform for mechanizedtwin tunnels is developed, generating a dataset through extensive numerical simulations. Next, theAutoML method is utilized to establish a surrogate model linking rock parameters and displacements.The tunnel construction process is divided into multiple stages, transforming the rock mass parameterback-analysis into a multi-objective optimization problem, for which multi-objective optimization algorithmsare introduced to obtain the rock mass parameters. The newly proposed rock mass parameterback-analysis method is validated in a mechanized twin tunnel project, and its accuracy and effectivenessare demonstrated. Compared with traditional single-stage back-analysis methods, the proposedmodel decreases the average absolute percentage error from 12.73% to 4.34%, significantly improving theaccuracy of the back-analysis. Moreover, although the accuracy of back analysis significantly increaseswith the number of construction stages considered, the back analysis time is acceptable. This studyprovides a new method for displacement back analysis that is efficient and accurate, thereby paving theway for precise parameter determination in numerical simulations.
基金supported by the National Key Science and Technology Projects(Grant No.2014ZX04002041)
文摘Recently, the single-shaft series-parallel powertrain of Plug-in Hybrid Electric Bus (PHEB) has become one of the most popu- lar powertrains due to its alterable operating modes, excellent fuel economy and strong adaptability for driving cycles. Never- theless, for configuring the PHEB with single-shaft series-parallel powertrain in the development stage, it still faces greater challenge than other configurations when choosing and matching the main component parameters. Motivated by this issue, a comprehensive multi-objectives optimization strategy based on Genetic Algorithm (GA) is developed for the PHEB with the typical powertrain. First, considering repeatability and regularity of bus route, the methods of off-line data processing and mathematical statistics are adopted, to obtain a representative driving cycle, which could well reflect the general characteristic of the real-world bus route. Then, the economical optimization objective is defined, which is consist of manufacturing costs of the key components and energy consumption, and combined with the dynamical optimization objective, a multi-objective op- timization function is put forward. Meanwhile, GA algorithm is used to optimize the parameters, for the optimal components combination of the novel series-parallel powertrain. Finally, a comparison with the prototype is carried out to verify the per- formance of the optimized powertrain along driving cycles. Simulation results indicate that the parameters of powertrain com- ponents obtained by the proposed comprehensive multi-objectives optimization strategy might get better fuel economy, meanwhile ensure the dynamic performance of PHEB. In contrast to the original, the costs declined by 18%. Hence, the strat- egy would provide a theoretical guidance on parameter selection for PHEB manufacturers.
基金financially supported by the National Key Research and Development Program of China(Grant No.2016YFB0701204)
文摘Multi-objective optimization has been increasingly applied in engineering where optimal decisions need to be made in the presence of trade-offs between two or more objectives. Minimizing the volume of shrinkage porosity, while reducing the secondary dendritic arm spacing of a wheel casting during low-pressure die casting(LPDC) process, was taken as an example of such problem. A commercial simulation software Pro CASTTM was applied to simulate the filling and solidification processes. Additionally, a program for integrating the optimization algorithm with numerical simulation was developed based on SiPESC. By setting pouring temperature and filling pressure as design variables, shrinkage porosity and secondary dendritic arm spacing as objective variables, the multi-objective optimization of minimum volume of shrinkage porosity and secondary dendritic arm spacing was achieved. The optimal combination of AZ91 D wheel casting was: pouring temperature 689 °C and filling pressure 6.5 kPa. The predicted values decreased from 4.1% to 2.1% for shrinkage porosity, and 88.5 μm to 81.2 μm for the secondary dendritic arm spacing. The optimal results proved the feasibility of the developed program in multi-objective optimization.
基金financially sponsored by National Natural Science Foundation of China(No.50975121)Changchun Science and Technology Plan Projects(No.10KZ03)the Plan for Scientific and Technology Development of Jilin Province(No.20150520106JH)
文摘Q345D high-quality low-carbon steel has been extensively employed in structures with stringent weld- ing quality requirements. A multi-objective optimization of welding stress and deformation was presented to design reasonable values of gas metal arc welding parameters and sequences of Q345D T-joints. The optimized factors included continuous variables (welding current (I), welding voltage (U) ahd welding speed (V)) and discrete variables (welding sequence (S) and welding direc- tion (D)). The concepts of the pointer and stack in Visual Basic (VB) and the interpolation method were introduced to optimize the variables. The optimization objectives included the different combina- tions of the angular distortion and transverse welding stress along the transverse and longitudinal dis- tributions. Based on the design of experiments (DOE) and the polynomial regression (PR) model, the finite element (FE) results of the T-joint were used to establish the mathematical models. The Pareto front and the compromise solutions were obtained by using a multi-objective particle swarm optimization (MOPSO) algorithm. The optimal results were validated by the corresponding results of the FE method, and the error between the FE results and the two-objective results as well as that be-tween the FE results and the three-objective optimization results were less than 17.2% and 21.5%, respectively. The influence and setting regularity of different factors were discussed according to the compromise solutions.
基金(Nos. 20806040,61073059 and 61034005) supported by the National Natural Science Foundation of China
文摘This paper deals with a multi-objective parameter optimization framework for energy saving in injection molding process.It combines an experimental design by Taguchi's method,a process analysis by analysis of variance(ANOVA),a process modeling algorithm by artificial neural network(ANN),and a multi-objective parameter optimization algorithm by genetic algorithm(GA)-based lexicographic method.Local and global Pareto analyses show the trade-off between product quality and energy consumption.The implementation of the proposed framework can reduce the energy consumption significantly in laboratory scale tests,and at the same time,the product quality can meet the pre-determined requirements.
文摘The optimum friction welding (FW) parameters of duplex stainless steel (DSS) UNS $32205 joint was determined. The experiment was carried out as the central composite array of 30 experiments. The selected input parameters were friction pressure (F), upset pressure (U), speed (S) and burn-off length (B), and responses were hardness and ultimate tensile strength. To achieve the quality of the welded joint, the ultimate tensile strength and hardness were maximized, and response surface methodology (RSM) was applied to create separate regression equations of tensile strength and hardness. Intelligent optimization technique such as genetic algorithm was used to predict the Pareto optimal solutions. Depending upon the application, preferred suitable welding parameters were selected. It was inferred that the changing hardness and tensile strength of the friction welded joint influenced the upset pressure, friction Pressure and speed of rotation.
基金National Science Fund for Distinguished Young Scholars (10425208)Programme of Introducing Talents of Discipline to Universities (B07009)
文摘For dealing with the multi-objective optimization problems of parametric design for aircraft, a novel hybrid parallel multi-objective tabu search (HPMOTS) algorithm is used. First, a new multi-objective tabu search (MOTS) algorithm is proposed. Comparing with the traditional MOTS algorithm, this proposed algorithm adds some new methods such as the combination of MOTS algorithm and "Pareto solution", the strategy of "searching from many directions" and the reservation of good solutions. Second, this article also proposes the improved parallel multi-objective tabu search (PMOTS) algorithm. Finally, a new hybrid algorithm--HPMOTS algorithm which combines the PMOTS algorithm with the non-dominated sorting-based multi-objective genetic algorithm (NSGA) is presented. The computing results of these algorithms are compared with each other and it is shown that the optimal result can be obtained by the HPMOTS algorithm and the computing result of the PMOTS algorithm is better than that of MOTS algorithm.
基金Project was supported by National Natural Science Foundation of China(Grant No.62173170).
文摘The successful confinement of the arc by the flux band depends on the welding process parameters for achieving single-pass,multi-layer, and ultra-narrow gap welding. The sidewall fusion depth, the width of the heat-affected zone, and the line energy are utilized as comprehensive indications of the quality of the welded joint. In order to achieve well fusion and reduce the heat input to the base metal.Three welding process characteristics were chosen as the primary determinants, including welding voltage, welding speed, and wire feeding speed. The metamodel of the welding quality index was built by the orthogonal experiments. The metamodel and NSGA-Ⅱ(Non-dominated sorting genetic algorithm Ⅱ) were combined to develop a multi-objective optimization model of ultra-narrow gap welding process parameters. The results showed that the optimized welding process parameters can increase the sidewall fusion depth, reduce the width of the heataffected zone and the line energy, and to some extent improve the overall quality of the ultra-narrow gap welding process.
文摘Submerged arc welding(SAW)is one of the main welding processes with high deposition rate and high welding quality.This welding method is extensively used in welding large-diameter gas transmission pipelines and high-pressure vessels.In welding of such structures,the selection process parameters has great influence on the weld bead geometry and consequently affects the weld quality.Based on Fuzzy logic and NSGA-II(Non-dominated Sorting Genetic Algorithm-II)algorithm,a new approach was proposed for weld bead geometry prediction and for process parameters optimization.First,different welding parameters including welding voltage,current and speed were set to perform SAW under different conditions on API X65 steel plates.Next,the designed Fuzzy model was used for predicting the weld bead geometry and modeling of the process.The obtained mean percentage error of penetration depth,weld bead width and height from the proposed Fuzzy model was 6.06%,6.40% and 5.82%,respectively.The process parameters were then optimized to achieve the desired values of convexity and penetration indexes simultaneously using NSGA-II algorithm.As a result,a set of optimum vectors(each vector contains current,voltage and speed within their selected experimental domains)was presented for desirable values of convexity and penetration indexes in the ranges of(0.106,0.168)and(0.354,0.561)respectively,which was more applicable in real conditions.
基金Supported by Natural Science and Technology Research Project of the Jiangxi Education Department(GJJ202002, GJJ2202620)。
文摘To solve the constraints of multi-objective optimization of the driver system and high nonlinear problems, according to the relevant dimensions of a car, we build a simulation model with Hybrid Ⅲ 50th dummy driver constraint system. The comparison of the driver mechanics index of the experimental data with the simulation data in the frontal crash shows that the accuracy of simulation model meets the requirements. The optimal Latin test design is adopted, and the global sensitivity analysis of the design parameters is carried out based on the Kriging model. The four most sensitive parameters are selected, and the parameters are solved by a multi-island genetic algorithm.And then the nonlinear programming quadratic line(NLPQL) algorithm is used to search for accurate optimization. The optimal parameters of the occupant restraint system are determined: the limiting force value of force limiter 2 985.603 N, belt extension 12.684%, airbag point explosion time 27.585 ms, and airbag vent diameter 27.338 mm, with the weighted injury criterion(WIC) decreased by 12.97%, the head injury decreased by 22.60%, and the chest compression decreased by 7.29%. The results show that the system integration of passive safety devices such as seat belts and airbags can effectively protect the driver.
基金supported by the Open Fund of Guangxi Key Laboratory of Building New Energy and Energy Conservation(Project Number:Guike Energy 17-J-21-3).
文摘With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm improvement.To reduce the operational costs of micro-grid systems and the energy abandonment rate of renewable energy,while simultaneously enhancing user satisfaction on the demand side,this paper introduces an improvedmultiobjective Grey Wolf Optimizer based on Cauchy variation.The proposed approach incorporates a Cauchy variation strategy during the optimizer’s search phase to expand its exploration range and minimize the likelihood of becoming trapped in local optima.At the same time,adoptingmultiple energy storage methods to improve the consumption rate of renewable energy.Subsequently,under different energy balance orders,themulti-objective particle swarmalgorithm,multi-objective grey wolf optimizer,and Cauchy’s variant of the improvedmulti-objective grey wolf optimizer are used for example simulation,solving the Pareto solution set of the model and comparing.The analysis of the results reveals that,compared to the original optimizer,the improved optimizer decreases the daily cost by approximately 100 yuan,and reduces the energy abandonment rate to zero.Meanwhile,it enhances user satisfaction and ensures the stable operation of the micro-grid.
基金supported by National Natural Science Foundations of China(nos.12271326,62102304,61806120,61502290,61672334,61673251)China Postdoctoral Science Foundation(no.2015M582606)+2 种基金Industrial Research Project of Science and Technology in Shaanxi Province(nos.2015GY016,2017JQ6063)Fundamental Research Fund for the Central Universities(no.GK202003071)Natural Science Basic Research Plan in Shaanxi Province of China(no.2022JM-354).
文摘The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition and multi-selection strategy is proposed to improve the search efficiency.First,two update strategies based on decomposition are used to update the evolving population and external archive,respectively.Second,a multiselection strategy is designed.The first strategy is for the subspace without a non-dominated solution.Among the neighbor particles,the particle with the smallest penalty-based boundary intersection value is selected as the global optimal solution and the particle far away fromthe search particle and the global optimal solution is selected as the personal optimal solution to enhance global search.The second strategy is for the subspace with a non-dominated solution.In the neighbor particles,two particles are randomly selected,one as the global optimal solution and the other as the personal optimal solution,to enhance local search.The third strategy is for Pareto optimal front(PF)discontinuity,which is identified by the cumulative number of iterations of the subspace without non-dominated solutions.In the subsequent iteration,a new probability distribution is used to select from the remaining subspaces to search.Third,an adaptive inertia weight update strategy based on the dominated degree is designed to further improve the search efficiency.Finally,the proposed algorithmis compared with fivemulti-objective particle swarm optimization algorithms and five multi-objective evolutionary algorithms on 22 test problems.The results show that the proposed algorithm has better performance.
文摘In order to explore the cutting rules, optimize the cutting parameters and improve cutting efficiency of tita- nium alloy, multiple sets of test parameters were schemed out by using the uniform design method. Test cutting research of cutting forces and surface roughness with these parameters were conducted under the condition of 12 ℃ dry cutting and -50 ℃ cold blast machining, respectively. Through the regression analysis about the results of the test, a multiple linear regression model which was applicable for titanium alloy clean cutting on its surface roughhess and cutting force has been established. On this basis, a multi-objective optimization model aimed at suogace roughness, cutting force and cutting efficieney had been set up. And by means of the multi-objective data weighted method, successfully converted the multi-objective optimization model into a single-objective one. Verification tests were done under these cutting parameters, and the results are in good agreement with those calculated.
基金supported by the Changsha Major Science and Technology Plan Project,China(No.kq2207002)the Natural Science Foundation of Hunan Province(No.2023JJ40720)the Postgraduate Innovative Project of Central South University,China(No.2022XQLH058)。
文摘In this study,a novel synergistic swing energy-regenerative hybrid system(SSEHS)for excavators with a large inertia slewing platform is constructed.With the SSEHS,the pressure boosting and output energy synergy of multiple energy sources can be realized,while the swing braking energy can be recovered and used by means of hydraulic energy.Additionally,considering the system constraints and comprehensive optimization conditions of energy efficiency and dynamic characteristics,an improved multi-objective particle swarm optimization(IMOPSO)combined with an adaptive grid is proposed for parameter optimization of the SSEHS.Meanwhile,a parameter rule-based control strategy is designed,which can switch to a reasonable working mode according to the real-time state.Finally,a physical prototype of a 50-t excavator and its AMESim model is established.The semi-simulation and semi-experiment results demonstrate that compared with a conventional swing system,energy consumption under the 90°rotation condition could be reduced by about 51.4%in the SSEHS before parameter optimization,while the energy-saving efficiency is improved by another 13.2%after parameter optimization.This confirms the effectiveness of the SSEHS and the IMOPSO parameter optimization method proposed in this paper.The IMOPSO algorithm is universal and can be used for parameter matching and optimization of hybrid power systems.
基金supported by the National Key R&D Program of China(No.2022YFA1005204l)。
文摘Silicone material extrusion(MEX)is widely used for processing liquids and pastes.Owing to the uneven linewidth and elastic extrusion deformation caused by material accumulation,products may exhibit geometric errors and performance defects,leading to a decline in product quality and affecting its service life.This study proposes a process parameter optimization method that considers the mechanical properties of printed specimens and production costs.To improve the quality of silicone printing samples and reduce production costs,three machine learning models,kernel extreme learning machine(KELM),support vector regression(SVR),and random forest(RF),were developed to predict these three factors.Training data were obtained through a complete factorial experiment.A new dataset is obtained using the Euclidean distance method,which assigns the elimination factor.It is trained with Bayesian optimization algorithms for parameter optimization,the new dataset is input into the improved double Gaussian extreme learning machine,and finally obtains the improved KELM model.The results showed improved prediction accuracy over SVR and RF.Furthermore,a multi-objective optimization framework was proposed by combining genetic algorithm technology with the improved KELM model.The effectiveness and reasonableness of the model algorithm were verified by comparing the optimized results with the experimental results.
基金supported by the Serbian Ministry of Education and Science under Grant No.TR35006 and COST Action:CA23155—A Pan-European Network of Ocean Tribology(OTC)The research of B.Rosic and M.Rosic was supported by the Serbian Ministry of Education and Science under Grant TR35029.
文摘This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain.
基金supported by the National Natural Science Foundation of China(62073267,61903305)the Fundamental Research Funds for the Central Universities(HXGJXM202214).
文摘The lack of systematic and scientific top-level arrangement in the field of civil aircraft flight test leads to the problems of long duration and high cost.Based on the flight test activity,mathematical models of flight test duration and cost are established to set up the framework of flight test process.The top-level arrangement for flight test is optimized by multi-objective algorithm to reduce the duration and cost of flight test.In order to verify the necessity and validity of the mathematical models and the optimization algorithm of top-level arrangement,real flight test data is used to make an example calculation.Results show that the multi-objective optimization results of the top-level flight arrangement are better than the initial arrangement data,which can shorten the duration,reduce the cost,and improve the efficiency of flight test.
文摘Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance.