期刊文献+
共找到122篇文章
< 1 2 7 >
每页显示 20 50 100
Intelligent decision-making for TBM tunnelling control parameters using multi-objective optimization
1
作者 Shaokang Hou Yaoru Liu +3 位作者 Jialin Yu Rujiu Zhang Li Cheng Chenfeng Gao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期2943-2963,共21页
In tunnel construction,tunnel boring machine(TBM)tunnelling typically relies on manual experience with sub-optimal control parameters,which can easily lead to inefficiency and high costs.This study proposed an intelli... In tunnel construction,tunnel boring machine(TBM)tunnelling typically relies on manual experience with sub-optimal control parameters,which can easily lead to inefficiency and high costs.This study proposed an intelligent decision-making method for TBM tunnelling control parameters based on multiobjective optimization(MOO).First,the effective TBM operation dataset is obtained through data preprocessing of the Songhua River(YS)tunnel project in China.Next,the proposed method begins with developing machine learning models for predicting TBM tunnelling performance parameters(i.e.total thrust and cutterhead torque),rock mass classification,and hazard risks(i.e.tunnel collapse and shield jamming).Then,considering three optimal objectives,(i.e.,penetration rate,rock-breaking energy consumption,and cutterhead hob wear),the MOO framework and corresponding mathematical expression are established.The Pareto optimal front is solved using DE-NSGA-II algorithm.Finally,the optimal control parameters(i.e.,advance rate and cutterhead rotation speed)are obtained by the satisfactory solution determination criterion,which can balance construction safety and efficiency with satisfaction.Furthermore,the proposed method is validated through 50 cases of TBM tunnelling,showing promising potential of application. 展开更多
关键词 Tunnel boring machine(TBM) Intelligent decision-making multi-objective optimization(MOO) Control parameters
在线阅读 下载PDF
Back analysis of rock mass parameters in mechanized twin tunnels based on coupled auto machine learning and multi-objective optimization algorithm
2
作者 Chengwen Wang Xiaoli Liu +4 位作者 Jiubao Li Enzhi Wang Nan Hu Wenli Yao Zhihui He 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第11期7038-7055,共18页
Accurate determination of rock mass parameters is essential for ensuring the accuracy of numericalsimulations. Displacement back-analysis is the most widely used method;however, the reliability of thecurrent approache... Accurate determination of rock mass parameters is essential for ensuring the accuracy of numericalsimulations. Displacement back-analysis is the most widely used method;however, the reliability of thecurrent approaches remains unsatisfactory. Therefore, in this paper, a multistage rock mass parameterback-analysis method, that considers the construction process and displacement losses is proposed andimplemented through the coupling of numerical simulation, auto-machine learning (AutoML), andmulti-objective optimization algorithms (MOOAs). First, a parametric modeling platform for mechanizedtwin tunnels is developed, generating a dataset through extensive numerical simulations. Next, theAutoML method is utilized to establish a surrogate model linking rock parameters and displacements.The tunnel construction process is divided into multiple stages, transforming the rock mass parameterback-analysis into a multi-objective optimization problem, for which multi-objective optimization algorithmsare introduced to obtain the rock mass parameters. The newly proposed rock mass parameterback-analysis method is validated in a mechanized twin tunnel project, and its accuracy and effectivenessare demonstrated. Compared with traditional single-stage back-analysis methods, the proposedmodel decreases the average absolute percentage error from 12.73% to 4.34%, significantly improving theaccuracy of the back-analysis. Moreover, although the accuracy of back analysis significantly increaseswith the number of construction stages considered, the back analysis time is acceptable. This studyprovides a new method for displacement back analysis that is efficient and accurate, thereby paving theway for precise parameter determination in numerical simulations. 展开更多
关键词 Back analysis of rock parameters Auto machine learning multi-objective optimization algorithm Mechanized twin tunnels parametric modeling
在线阅读 下载PDF
Multi-objective optimization of process parametersduring low-pressure die casting of AZ91Dmagnesium alloy wheel castings 被引量:12
3
作者 Chen Zhang Yu Fu +1 位作者 Han Wang Hai Hao 《China Foundry》 SCIE 2018年第5期327-332,共6页
Multi-objective optimization has been increasingly applied in engineering where optimal decisions need to be made in the presence of trade-offs between two or more objectives. Minimizing the volume of shrinkage porosi... Multi-objective optimization has been increasingly applied in engineering where optimal decisions need to be made in the presence of trade-offs between two or more objectives. Minimizing the volume of shrinkage porosity, while reducing the secondary dendritic arm spacing of a wheel casting during low-pressure die casting(LPDC) process, was taken as an example of such problem. A commercial simulation software Pro CASTTM was applied to simulate the filling and solidification processes. Additionally, a program for integrating the optimization algorithm with numerical simulation was developed based on SiPESC. By setting pouring temperature and filling pressure as design variables, shrinkage porosity and secondary dendritic arm spacing as objective variables, the multi-objective optimization of minimum volume of shrinkage porosity and secondary dendritic arm spacing was achieved. The optimal combination of AZ91 D wheel casting was: pouring temperature 689 °C and filling pressure 6.5 kPa. The predicted values decreased from 4.1% to 2.1% for shrinkage porosity, and 88.5 μm to 81.2 μm for the secondary dendritic arm spacing. The optimal results proved the feasibility of the developed program in multi-objective optimization. 展开更多
关键词 magnesium alloy multi-objective optimization process parameters shrinkage porosity secondary DENDRITIC arm SPACING
在线阅读 下载PDF
Multi-objective optimization of gas metal arc welding parameters and sequences for low-carbon steel (Q345D) T-joints 被引量:6
4
作者 Qing Shao Tao Xu +1 位作者 Tatsuo Yoshino Nan Song 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第5期544-555,共12页
Q345D high-quality low-carbon steel has been extensively employed in structures with stringent weld- ing quality requirements. A multi-objective optimization of welding stress and deformation was presented to design r... Q345D high-quality low-carbon steel has been extensively employed in structures with stringent weld- ing quality requirements. A multi-objective optimization of welding stress and deformation was presented to design reasonable values of gas metal arc welding parameters and sequences of Q345D T-joints. The optimized factors included continuous variables (welding current (I), welding voltage (U) ahd welding speed (V)) and discrete variables (welding sequence (S) and welding direc- tion (D)). The concepts of the pointer and stack in Visual Basic (VB) and the interpolation method were introduced to optimize the variables. The optimization objectives included the different combina- tions of the angular distortion and transverse welding stress along the transverse and longitudinal dis- tributions. Based on the design of experiments (DOE) and the polynomial regression (PR) model, the finite element (FE) results of the T-joint were used to establish the mathematical models. The Pareto front and the compromise solutions were obtained by using a multi-objective particle swarm optimization (MOPSO) algorithm. The optimal results were validated by the corresponding results of the FE method, and the error between the FE results and the two-objective results as well as that be-tween the FE results and the three-objective optimization results were less than 17.2% and 21.5%, respectively. The influence and setting regularity of different factors were discussed according to the compromise solutions. 展开更多
关键词 T-JOINT Welding parameter Welding sequence multi-objective optimization Pareto front Gas metal arc welding Q345D
原文传递
Optimal proportioning of iron ore in sintering process based on improved multi-objective beluga whale optimisation algorithm 被引量:1
5
作者 Zong-ping Li Xu-dong Li +5 位作者 Xue-tong Yan Wu Wen Xiao-xin Zeng Rong-jia Zhu Ya-hui Wang Ling-zhi Yi 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第7期1597-1609,共13页
Proportioning is an important part of sintering,as it affects the cost of sintering and the quality of sintered ore.To address the problems posed by the complex raw material information and numerous constraints in the... Proportioning is an important part of sintering,as it affects the cost of sintering and the quality of sintered ore.To address the problems posed by the complex raw material information and numerous constraints in the sintering process,a multi-objective optimisation model for sintering proportioning was established,which takes the proportioning cost and TFe as the optimisation objectives.Additionally,an improved multi-objective beluga whale optimisation(IMOBWO)algorithm was proposed to solve the nonlinear,multi-constrained multi-objective optimisation problems.The algorithm uses the con-strained non-dominance criterion to deal with the constraint problem in the model.Moreover,the algorithm employs an opposite learning strategy and a population guidance mechanism based on angular competition and two-population competition strategy to enhance convergence and population diversity.The actual proportioning of a steel plant indicates that the IMOBWO algorithm applied to the ore proportioning process has good convergence and obtains the uniformly distributed Pareto front.Meanwhile,compared with the actual proportioning scheme,the proportioning cost is reduced by 4.3361¥/t,and the TFe content in the mixture is increased by 0.0367%in the optimal compromise solution.Therefore,the proposed method effectively balances the cost and total iron,facilitating the comprehensive utilisation of sintered iron ore resources while ensuring quality assurance. 展开更多
关键词 Sintering process Proportioning Iron ore multi-objective beluga whale optimisation algorithm Proportioning cost
原文传递
Reliability Based Multi-Objective Thermodynamic Cycle Optimisation of Turbofan Engines Using Luus-Jaakola Algorithm
6
作者 Vin Cent Tai Yong Chai Tan +3 位作者 Nor Faiza Abd Rahman Yaw Yoong Sia Chan Chin Wang Lip Huat Saw 《Energy Engineering》 EI 2021年第4期1057-1068,共12页
Aircraft engine design is a complicated process,as it involves huge number of components.The design process begins with parametric cycle analysis.It is crucial to determine the optimum values of the cycle parameters t... Aircraft engine design is a complicated process,as it involves huge number of components.The design process begins with parametric cycle analysis.It is crucial to determine the optimum values of the cycle parameters that would give a robust design in the early phase of engine development,to shorten the design cycle for cost saving and man-hour reduction.To obtain a robust solution,optimisation program is often being executed more than once,especially in Reliability Based Design Optimisations(RBDO)with Monte-Carlo Simulation(MCS)scheme for complex systems which require thousands to millions of optimisation loops to be executed.This paper presents a fast heuristic technique to optimise the thermodynamic cycle of two-spool separated flow turbofan engines based on energy and probability of failure criteria based on Luus-Jaakola algorithm(LJ).A computer program called Turbo Jet Engine Optimiser v2.0(TJEO-2.0)has been developed to perform the optimisation calculation.The program is made up of inner and outer loops,where LJ is used in the outer loop to determine the design variables while parametric cycle analysis of the engine is done in the inner loop to determine the engine performance.Latin-Hypercube-Sampling(LHS)technique is used to sample the design and model variations for uncertainty analysis.The results show that optimisation without reliability criteria may lead to high probability of failure of more than 11%on average.The thrust obtained with uncertainty quantification was about 25%higher than the one without uncertainty quantification,at the expense of less than 3%of fuel consumption.The proposed algorithm can solve the turbofan RBDO problem within 3 min. 展开更多
关键词 multi-objective design optimisation reliability based design optimisation turbofan engines luus-jaakola algorithm
在线阅读 下载PDF
A Penalty Function Algorithm with Objective Parameters and Constraint Penalty Parameter for Multi-Objective Programming
7
作者 Zhiqing Meng Rui Shen Min Jiang 《American Journal of Operations Research》 2014年第6期331-339,共9页
In this paper, we present an algorithm to solve the inequality constrained multi-objective programming (MP) by using a penalty function with objective parameters and constraint penalty parameter. First, the penalty fu... In this paper, we present an algorithm to solve the inequality constrained multi-objective programming (MP) by using a penalty function with objective parameters and constraint penalty parameter. First, the penalty function with objective parameters and constraint penalty parameter for MP and the corresponding unconstraint penalty optimization problem (UPOP) is defined. Under some conditions, a Pareto efficient solution (or a weakly-efficient solution) to UPOP is proved to be a Pareto efficient solution (or a weakly-efficient solution) to MP. The penalty function is proved to be exact under a stable condition. Then, we design an algorithm to solve MP and prove its convergence. Finally, numerical examples show that the algorithm may help decision makers to find a satisfactory solution to MP. 展开更多
关键词 multi-objective Programming PENALTY Function Objective parameterS CONSTRAINT PENALTY parameter PARETO Weakly-Efficient Solution
在线阅读 下载PDF
A Modified Interactive Stability Algorithm for Solving Multi-Objective NLP Problems with Fuzzy Parameters in Its Objective Functions
8
作者 Mohamed Abd El-Hady Kassem Ahmad M. K. Tarabia Noha Mohamed El-Badry 《American Journal of Operations Research》 2016年第1期8-16,共9页
This paper presents a modified method to solve multi-objective nonlinear programming problems with fuzzy parameters in its objective functions and these fuzzy parameters are characterized by fuzzy numbers. The modifie... This paper presents a modified method to solve multi-objective nonlinear programming problems with fuzzy parameters in its objective functions and these fuzzy parameters are characterized by fuzzy numbers. The modified method is based on normalized trade-off weights. The obtained stability set corresponding to α-Pareto optimal solution, using our method, is investigated. Moreover, an algorithm for obtaining any subset of the parametric space which has the same corresponding α-Pareto optimal solution is presented. Finally, a numerical example to illustrate our method is also given. 展开更多
关键词 multi-objective Nonlinear Programming Stability Trade-Off Method Fuzzy parameters
在线阅读 下载PDF
Parameter Identification of Photovoltaic Models Using an Enhanced INFO Algorithm
9
作者 Ying Chen Peng Min +5 位作者 Huiling Chen Cheng Tao Zeye Long Ali Asghar Heidari Shuihua Wang Yudong Zhang 《CAAI Transactions on Intelligence Technology》 2025年第6期1844-1866,共23页
Photovoltaic(PV)systems are electrical systems designed to convert solar energy into electrical energy.As a crucial component of PV systems,harsh weather conditions,photovoltaic panel temperature and solar irradiance ... Photovoltaic(PV)systems are electrical systems designed to convert solar energy into electrical energy.As a crucial component of PV systems,harsh weather conditions,photovoltaic panel temperature and solar irradiance influence the power output of photovoltaic cells.Therefore,accurately identifying the parameters of PV models is essential for simulating,controlling and evaluating PV systems.In this study,we propose an enhanced weighted-mean-of-vectors optimisation(EINFO)for efficiently determining the unknown parameters in PV systems.EINFO introduces a Lambert W-based explicit objective function for the PV model,enhancing the computational accuracy of the algorithm's population fitness.This addresses the challenge of improving the metaheuristic algorithms'identification accuracy for unknown parameter identification in PV models.We experimentally apply EINFO to three types of PV models(single-diode,double-diode and PV-module models)to validate its accuracy and stability in parameter identification.The results demonstrate that EINFO achieves root mean square errors(RMSEs)of 7.7301E-04,6.8553E-04 and 2.0608E-03 for the single-diode model,double-diode model and PV-module model,respectively,surpassing those obtained by using INFO algorithm as well as other methods in terms of convergence speed,accuracy and stability.Furthermore,comprehensive experimental findings on three commercial PV modules(ST40,SM55 and KC200GT)indicate that EINFO consistently maintains high accuracy across varying temperatures and irradiation levels.In conclusion,EINFO emerges as a highly competitive and practical approach for parameter identification in diverse types of PV models. 展开更多
关键词 Lambert W function multi-objective optimisation optimisation parameteridentification photovoltaic model weighted-mean-ofvectorsalgorithm
在线阅读 下载PDF
Parameter matching and optimization of hybrid excavator swing system
10
作者 Chao SHEN Jianxin ZHU +2 位作者 Jian CHEN Saibai LI Lixin YI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第2期138-150,共13页
In this study,a novel synergistic swing energy-regenerative hybrid system(SSEHS)for excavators with a large inertia slewing platform is constructed.With the SSEHS,the pressure boosting and output energy synergy of mul... In this study,a novel synergistic swing energy-regenerative hybrid system(SSEHS)for excavators with a large inertia slewing platform is constructed.With the SSEHS,the pressure boosting and output energy synergy of multiple energy sources can be realized,while the swing braking energy can be recovered and used by means of hydraulic energy.Additionally,considering the system constraints and comprehensive optimization conditions of energy efficiency and dynamic characteristics,an improved multi-objective particle swarm optimization(IMOPSO)combined with an adaptive grid is proposed for parameter optimization of the SSEHS.Meanwhile,a parameter rule-based control strategy is designed,which can switch to a reasonable working mode according to the real-time state.Finally,a physical prototype of a 50-t excavator and its AMESim model is established.The semi-simulation and semi-experiment results demonstrate that compared with a conventional swing system,energy consumption under the 90°rotation condition could be reduced by about 51.4%in the SSEHS before parameter optimization,while the energy-saving efficiency is improved by another 13.2%after parameter optimization.This confirms the effectiveness of the SSEHS and the IMOPSO parameter optimization method proposed in this paper.The IMOPSO algorithm is universal and can be used for parameter matching and optimization of hybrid power systems. 展开更多
关键词 Hybrid system Energy regeneration Swing braking energy parameter optimization Improved multi-objective particle swarm optimization(IMOPSO) Adaptive grid
原文传递
Optimization of Extrusion-based Silicone Additive Manufacturing Process Parameters Based on Improved Kernel Extreme Learning Machine
11
作者 Zi-Ning Li Xiao-Qing Tian +3 位作者 Dingyifei Ma Shahid Hussain Lian Xia Jiang Han 《Chinese Journal of Polymer Science》 2025年第5期848-862,共15页
Silicone material extrusion(MEX)is widely used for processing liquids and pastes.Owing to the uneven linewidth and elastic extrusion deformation caused by material accumulation,products may exhibit geometric errors an... Silicone material extrusion(MEX)is widely used for processing liquids and pastes.Owing to the uneven linewidth and elastic extrusion deformation caused by material accumulation,products may exhibit geometric errors and performance defects,leading to a decline in product quality and affecting its service life.This study proposes a process parameter optimization method that considers the mechanical properties of printed specimens and production costs.To improve the quality of silicone printing samples and reduce production costs,three machine learning models,kernel extreme learning machine(KELM),support vector regression(SVR),and random forest(RF),were developed to predict these three factors.Training data were obtained through a complete factorial experiment.A new dataset is obtained using the Euclidean distance method,which assigns the elimination factor.It is trained with Bayesian optimization algorithms for parameter optimization,the new dataset is input into the improved double Gaussian extreme learning machine,and finally obtains the improved KELM model.The results showed improved prediction accuracy over SVR and RF.Furthermore,a multi-objective optimization framework was proposed by combining genetic algorithm technology with the improved KELM model.The effectiveness and reasonableness of the model algorithm were verified by comparing the optimized results with the experimental results. 展开更多
关键词 Silicone material extrusion Process parameter optimization Double Gaussian kernel extreme learning machine Euclidean distance assigned to the elimination factor multi-objective optimization framework
原文传递
Optimization of Cutting Parameters for Trade-off Among Carbon Emissions, Surface Roughness, and Processing Time 被引量:5
12
作者 Zhipeng Jiang Dong Gao +1 位作者 Yong Lu Xianli Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第6期124-141,共18页
As the manufacturing industry is facing increasingly serious environmental problems, because of which carbon tax policies are being implemented, choosing the optimum cutting parameters during the machining process is ... As the manufacturing industry is facing increasingly serious environmental problems, because of which carbon tax policies are being implemented, choosing the optimum cutting parameters during the machining process is crucial for automobile panel dies in order to achieve synergistic minimization of the environment impact, product quality, and processing efficiency. This paper presents a processing task-based evaluation method to optimize the cutting parameters, considering the trade-off among carbon emissions, surface roughness, and processing time. Three objective models and their relationships with the cutting parameters were obtained through input–output, response surface, and theoretical analyses, respectively. Examples of cylindrical turning were applied to achieve a central composite design(CCD), and relative validation experiments were applied to evaluate the proposed method. The experiments were conducted on the CAK50135 di lathe cutting of AISI 1045 steel, and NSGA-Ⅱ was used to obtain the Pareto fronts of the three objectives. Based on the TOPSIS method, the Pareto solution set was ranked to find the optimal solution to evaluate and select the optimal cutting parameters. An S/N ratio analysis and contour plots were applied to analyze the influence of each decision variable on the optimization objective. Finally, the changing rules of a single factor for each objective were analyzed. The results demonstrate that the proposed method is effective in finding the trade-off among the three objectives and obtaining reasonable application ranges of the cutting parameters from Pareto fronts. 展开更多
关键词 Automobile panel dies Carbon emission parameter optimization multi-objective optimization NSGA-Ⅱ
在线阅读 下载PDF
Optimization of Cutting Parameters in Helical Milling of Carbon Fiber Reinforced Polymer 被引量:3
13
作者 Haiyan Wang Xuda Qin +1 位作者 Dongxu Wu Aijuan Song 《Transactions of Tianjin University》 EI CAS 2018年第1期91-100,共10页
To investigate cutting performance in the helical milling of carbon fiber reinforced polymer(CFRP),experiments were conducted with unidirectional laminates.The results show that the influence of cutting parameters is ... To investigate cutting performance in the helical milling of carbon fiber reinforced polymer(CFRP),experiments were conducted with unidirectional laminates.The results show that the influence of cutting parameters is very significant in the helical milling process. The axial force increases with the increase of cutting speed, which is below 95 m/min; otherwise, the axial force decreases with the increase of cutting speed. The resultant force always increases when cutting speed increases; with the increase of tangential and axial feed rates, cutting forces increase gradually. In addition, damage rings can appear in certain regions of the entry edges; therefore, the relationship between machining performance(cutting forces and holemaking quality) and cutting parameters is established using the nonlinear fitting methodology. Thus, three cutting parameters in the helical milling of CFRP, under the steady state, are optimized based on the multi-objective genetic algorithm, including material removal rate and machining performance. Finally, experiments were carried out to prove the validity of optimized cutting parameters. 展开更多
关键词 CFRP HELICAL MILLING CUTTING parameterS multi-objective optimization
在线阅读 下载PDF
Multi-objective Optimization of Geothermal Extraction from the Enhanced Geothermal System in Qiabuqia Geothermal Field, Gonghe Basin 被引量:3
14
作者 SONG Guofeng SONG Xianzhi +3 位作者 LI Gensheng XU Ruina CAO Wenjiong Zhao Chenru 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第6期1844-1856,共13页
A geothermal demonstration exploitation area will be established in the Enhanced Geothermal System of the Qiabuqia field, Gonghe Basin, Qinghai–Xizang Plateau in China. Selection of operational parameters for geother... A geothermal demonstration exploitation area will be established in the Enhanced Geothermal System of the Qiabuqia field, Gonghe Basin, Qinghai–Xizang Plateau in China. Selection of operational parameters for geothermal field extraction is thus of great significance to realize the best production performance. A novel integrated method of finite element and multi-objective optimization has been employed to obtain the optimal scheme for thermal extraction from the Gonghe Basin. A thermal-hydraulic-mechanical coupling model(THM) is established to analyze the thermal performance. From this it has been found that there exists a contraction among different heat extraction indexes. Parametric study indicates that injection mass rate(Q_(in)) is the most sensitive parameter to the heat extraction, followed by well spacing(WS) and injection temperature(T_(in)). The least sensitive parameter is production pressure(p_(out)). The optimal combination of operational parameters acquired is such that(T_(in), p_(out), Q_(in), WS) equals(72.72°C, 30.56 MPa, 18.32 kg/s, 327.82 m). Results indicate that the maximum electrical power is 1.41 MW for the optimal case over 20 years. The thermal break has been relieved and the pressure difference reduced by 8 MPa compared with the base case. The optimal case would extract 50% more energy than that of a previous case and the outcome will provide a remarkable reference for the construction of Gonghe project. 展开更多
关键词 geothermal energy EGS thermal performance operational parameters multi-objective optimization Gonghe project
在线阅读 下载PDF
Path Analysis of Energy-Saving Technology in Yangtze River Basin Based on Multi-Objective and Multi-Parameter Optimisation 被引量:1
15
作者 MENG Xiangzhong YU Wei +2 位作者 ZHENG Chuyu WANG Di CAO Xinyun 《Journal of Thermal Science》 SCIE EI CAS CSCD 2019年第6期1164-1175,共12页
The Yangtze River Basin in China is characterised by hot-and cold-humid climates in summer and winter, respectively. Thus, increased demand for heating and cooling energy according to the season, as well as poor indoo... The Yangtze River Basin in China is characterised by hot-and cold-humid climates in summer and winter, respectively. Thus, increased demand for heating and cooling energy according to the season, as well as poor indoor thermal comfort, are inevitable. To overcome this problem, this study focused on the influence of passive design and heating, ventilation, and air conditioning equipment performance on the energy performance of residential buildings, and explored potential energy-saving technology paths involving passive design and improved coefficient of performance through a multi-objective and multi-parameter optimisation technique. A large-scale questionnaire survey covering a typical city was first conducted to identify family lifestyle patterns regarding time spent at home, family type, air conditioner use habits, indoor thermal comfort, etc. Then, the actual heating and cooling energy consumption and information of model building were determined for this region. Subsequently, the design parameters of an individual building were simulated using Energyplus to investigate the cooling and heating energy consumption for a typical residential building with an air conditioner. The results indicated an improvement of approximately 30% in energy efficiency through optimisation of the external-wall insulation thickness and the external-window and shading performance, and through use of appropriate ventilation technology. Thus, a multi-objective and multi-parameter optimisation model was developed to achieve comprehensive optimisation of several design parameters. Experimental results showed that comprehensive optimisation could not only reduce cooling and heating energy consumption, but also improve the thermal comfort level achieved with a non-artificial cooling and heating source. Finally, three energy-saving technology paths were formulated to achieve a balance between indoor thermal comfort improvement and the target energy efficiency(20 kWh/(m2?a)). The findings of this study have implications for the future design of buildings in the Yangtze River Basin, and for modification of existing buildings for improved energy efficiency. 展开更多
关键词 YANGTZE River BASIN energy CONSUMPTION multi-objective and MULTI-parameter optimisation passive design ENERGY-SAVING technology path
原文传递
Modelling and Multi-Objective Optimal Control of Batch Processes Using Recurrent Neuro-fuzzy Networks 被引量:2
16
作者 Jie Zhang 《International Journal of Automation and computing》 EI 2006年第1期1-7,共7页
In this paper, the modelling and multi-objective optimal control of batch processes, using a recurrent neuro-fuzzy network, are presented. The recurrent neuro-fuzzy network, forms a "global" nonlinear long-range pre... In this paper, the modelling and multi-objective optimal control of batch processes, using a recurrent neuro-fuzzy network, are presented. The recurrent neuro-fuzzy network, forms a "global" nonlinear long-range prediction model through the fuzzy conjunction of a number of "local" linear dynamic models. Network output is fed back to network input through one or more time delay units, which ensure that predictions from the recurrent neuro-fuzzy network are long-range. In building a recurrent neural network model, process knowledge is used initially to partition the processes non-linear characteristics into several local operating regions, and to aid in the initialisation of corresponding network weights. Process operational data is then used to train the network. Membership functions of the local regimes are identified, and local models are discovered via network training. Based on a recurrent neuro-fuzzy network model, a multi-objective optimal control policy can be obtained. The proposed technique is applied to a fed-batch reactor. 展开更多
关键词 Optimal control batch processes neural networks multi-objective optimisation.
在线阅读 下载PDF
Multi-objective quality control method for cold-rolled products oriented to customized requirements 被引量:2
17
作者 Yi-fan Yan Zhi-min Lü 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第8期1332-1342,共11页
To deal with the increasing demand for low-volume customization of the mechanical properties of cold-rolled products, a two-way control method based on mechanical property prediction and process parameter optimization... To deal with the increasing demand for low-volume customization of the mechanical properties of cold-rolled products, a two-way control method based on mechanical property prediction and process parameter optimization(PPO) has become an effective solution. Aiming at the multi-objective quality control problem of a company's cold-rolled products, based on industrial production data, we proposed a process parameter design and optimization method that combined multi-objective quality prediction and PPO. This method used the multi-output support vector regression(MSVR) method to simultaneously predict multiple quality indices. The MSVR prediction model was used as the effect verification model of the PPO results. It performed multi-process parameter collaborative design and realized the optimization of production process parameters for customized multi-objective quality requirements. The experimental results showed that, compared with the traditional single-objective quality prediction model based on support vector regression(SVR), the multi-objective prediction model could better take into account the coupling effect between process parameters and quality index, the MSVR model prediction accuracy was higher than that of the SVR, and the optimized process parameters were more capable and reflected the influence of metallurgical mechanism on the quality index,which were more in line with actual production process requirements. 展开更多
关键词 customized production quality control multi-objective prediction multi-output support vector regression process parameter optimization
在线阅读 下载PDF
Time variant multi-objective linear fractional interval-valued transportation problem 被引量:1
18
作者 Dharmadas Mardanya Sankar Kumar Roy 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2022年第1期111-130,共20页
This paper studies a time-variant multi-objective linear fractional transportation problem. In reality, transported goods should reach in destinations within a specific time. Considering the importance of time, a time... This paper studies a time-variant multi-objective linear fractional transportation problem. In reality, transported goods should reach in destinations within a specific time. Considering the importance of time, a time-variant multi-objective linear fractional transportation problem is formulated here. We take into account the parameters as cost, supply and demand are interval valued that involved in the proposed model, so we treat the model as a multi-objective linear fractional interval transportation problem. To solve the formulated model, we first convert it into a deterministic form using a new transformation technique and then apply fuzzy programming to solve it. The applicability of our proposed method is shown by considering two numerical examples. At last, conclusions and future research directions regarding our study is included. 展开更多
关键词 fractional transportation problem multi-objective optimization interval number time variant parameter fuzzy programming Pareto optimal solution
在线阅读 下载PDF
Evolutionary Multi/Many-Objective Optimisation via Bilevel Decomposition
19
作者 Shouyong Jiang Jinglei Guo +1 位作者 Yong Wang Shengxiang Yang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第9期1973-1986,共14页
Decomposition of a complex multi-objective optimisation problem(MOP)to multiple simple subMOPs,known as M2M for short,is an effective approach to multi-objective optimisation.However,M2M facilitates little communicati... Decomposition of a complex multi-objective optimisation problem(MOP)to multiple simple subMOPs,known as M2M for short,is an effective approach to multi-objective optimisation.However,M2M facilitates little communication/collaboration between subMOPs,which limits its use in complex optimisation scenarios.This paper extends the M2M framework to develop a unified algorithm for both multi-objective and manyobjective optimisation.Through bilevel decomposition,an MOP is divided into multiple subMOPs at upper level,each of which is further divided into a number of single-objective subproblems at lower level.Neighbouring subMOPs are allowed to share some subproblems so that the knowledge gained from solving one subMOP can be transferred to another,and eventually to all the subMOPs.The bilevel decomposition is readily combined with some new mating selection and population update strategies,leading to a high-performance algorithm that competes effectively against a number of state-of-the-arts studied in this paper for both multiand many-objective optimisation.Parameter analysis and component analysis have been also carried out to further justify the proposed algorithm. 展开更多
关键词 Bilevel decomposition evolutionary algorithm many-objective optimisation multi-objective optimisation
在线阅读 下载PDF
Multi-objective aerodynamic optimization design of high-speed maglev train nose 被引量:1
20
作者 Shuanbao Yao Dawei Chen Sansan Ding 《Railway Sciences》 2022年第2期273-288,共16页
Purpose–The nose length is the key design parameter affecting the aerodynamic performance of high-speed maglev train,and the horizontal profile has a significant impact on the aerodynamic lift of the leading and trai... Purpose–The nose length is the key design parameter affecting the aerodynamic performance of high-speed maglev train,and the horizontal profile has a significant impact on the aerodynamic lift of the leading and trailing cars Hence,the study analyzes aerodynamic parameters with multi-objective optimization design.Design/methodology/approach–The nose of normal temperature and normal conduction high-speed maglev train is divided into streamlined part and equipment cabin according to its geometric characteristics.Then the modified vehicle modeling function(VMF)parameterization method and surface discretization method are adopted for the parametric design of the nose.For the 12 key design parameters extracted,combined with computational fluid dynamics(CFD),support vector machine(SVR)model and multi-objective particle swarm optimization(MPSO)algorithm,the multi-objective aerodynamic optimization design of highspeed maglev train nose and the sensitivity analysis of design parameters are carried out with aerodynamic drag coefficient of the whole vehicle and the aerodynamic lift coefficient of the trailing car as the optimization objectives and the aerodynamic lift coefficient of the leading car as the constraint.The engineering improvement and wind tunnel test verification of the optimized shape are done.Findings–Results show that the parametric design method can use less design parameters to describe the nose shape of high-speed maglev train.The prediction accuracy of the SVR model with the reduced amount of calculation and improved optimization efficiency meets the design requirements.Originality/value–Compared with the original shape,the aerodynamic drag coefficient of the whole vehicle is reduced by 19.2%,and the aerodynamic lift coefficients of the leading and trailing cars are reduced by 24.8 and 51.3%,respectively,after adopting the optimized shape modified according to engineering design requirements. 展开更多
关键词 Design of head shape Maglev train Aerodynamic parameter multi-objective optimization parametric design
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部