期刊文献+
共找到8,283篇文章
< 1 2 250 >
每页显示 20 50 100
A Survey of Evolutionary Algorithms for Multi-Objective Optimization Problems With Irregular Pareto Fronts 被引量:32
1
作者 Yicun Hua Qiqi Liu +1 位作者 Kuangrong Hao Yaochu Jin 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第2期303-318,I0001-I0004,共20页
Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remed... Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remedy this issue,a large body of research has been performed in recent years and many new algorithms have been proposed.This paper provides a comprehensive survey of the research on MOPs with irregular Pareto fronts.We start with a brief introduction to the basic concepts,followed by a summary of the benchmark test problems with irregular problems,an analysis of the causes of the irregularity,and real-world optimization problems with irregular Pareto fronts.Then,a taxonomy of the existing methodologies for handling irregular problems is given and representative algorithms are reviewed with a discussion of their strengths and weaknesses.Finally,open challenges are pointed out and a few promising future directions are suggested. 展开更多
关键词 Evolutionary algorithm machine learning multi-objective optimization problems(MOPs) irregular Pareto fronts
在线阅读 下载PDF
CHARACTERIZATION OF EFFICIENT SOLUTIONS FOR MULTI-OBJECTIVE OPTIMIZATION PROBLEMS INVOLVING SEMI-STRONG AND GENERALIZED SEMI-STRONG E-CONVEXITY 被引量:5
2
作者 E.A.Youness Tarek Emam 《Acta Mathematica Scientia》 SCIE CSCD 2008年第1期7-16,共10页
The authors of this article are interested in characterization of efficient solutions for special classes of problems. These classes consider semi-strong E-convexity of involved functions. Sufficient and necessary con... The authors of this article are interested in characterization of efficient solutions for special classes of problems. These classes consider semi-strong E-convexity of involved functions. Sufficient and necessary conditions for a feasible solution to be an efficient or properly efficient solution are obtained. 展开更多
关键词 multi-objective optimization problems semi-strong E-convex efficient solutions properly efficient solutions
在线阅读 下载PDF
A New Evolutionary Algorithm for Solving Multi-Objective Optimization Problems 被引量:1
3
作者 D Chen Wen-ping, Kang Li-shanState Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, Hubei, China 《Wuhan University Journal of Natural Sciences》 CAS 2003年第S1期202-206,共5页
Multi-objective optimization is a new focus of evolutionary computation research. This paper puts forward a new algorithm, which can not only converge quickly, but also keep diversity among population efficiently, in ... Multi-objective optimization is a new focus of evolutionary computation research. This paper puts forward a new algorithm, which can not only converge quickly, but also keep diversity among population efficiently, in order to find the Pareto-optimal set. This new algorithm replaces the worst individual with a newly-created one by 'multi-parent crossover' , so that the population could converge near the true Pareto-optimal solutions in the end. At the same time, this new algorithm adopts niching and fitness-sharing techniques to keep the population in a good distribution. Numerical experiments show that the algorithm is rather effective in solving some Benchmarks. No matter whether the Pareto front of problems is convex or non-convex, continuous or discontinuous, and the problems are with constraints or not, the program turns out to do well. 展开更多
关键词 evolutionary computation multi-objective optimization Pareto-optimal set fitness-sharing
在线阅读 下载PDF
Constraints Separation Based Evolutionary Multitasking for Constrained Multi-Objective Optimization Problems 被引量:1
4
作者 Kangjia Qiao Jing Liang +4 位作者 Kunjie Yu Xuanxuan Ban Caitong Yue Boyang Qu Ponnuthurai Nagaratnam Suganthan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1819-1835,共17页
Constrained multi-objective optimization problems(CMOPs)generally contain multiple constraints,which not only form multiple discrete feasible regions but also reduce the size of optimal feasible regions,thus they prop... Constrained multi-objective optimization problems(CMOPs)generally contain multiple constraints,which not only form multiple discrete feasible regions but also reduce the size of optimal feasible regions,thus they propose serious challenges for solvers.Among all constraints,some constraints are highly correlated with optimal feasible regions;thus they can provide effective help to find feasible Pareto front.However,most of the existing constrained multi-objective evolutionary algorithms tackle constraints by regarding all constraints as a whole or directly ignoring all constraints,and do not consider judging the relations among constraints and do not utilize the information from promising single constraints.Therefore,this paper attempts to identify promising single constraints and utilize them to help solve CMOPs.To be specific,a CMOP is transformed into a multitasking optimization problem,where multiple auxiliary tasks are created to search for the Pareto fronts that only consider a single constraint respectively.Besides,an auxiliary task priority method is designed to identify and retain some high-related auxiliary tasks according to the information of relative positions and dominance relationships.Moreover,an improved tentative method is designed to find and transfer useful knowledge among tasks.Experimental results on three benchmark test suites and 11 realworld problems with different numbers of constraints show better or competitive performance of the proposed method when compared with eight state-of-the-art peer methods. 展开更多
关键词 Constrained multi-objective optimization(CMOPs) evolutionary multitasking knowledge transfer single constraint.
在线阅读 下载PDF
An Immune-Inspired Approach with Interval Allocation in Solving Multimodal Multi-Objective Optimization Problems with Local Pareto Sets
5
作者 Weiwei Zhang Jiaqiang Li +2 位作者 Chao Wang Meng Li Zhi Rao 《Computers, Materials & Continua》 SCIE EI 2024年第6期4237-4257,共21页
In practical engineering,multi-objective optimization often encounters situations where multiple Pareto sets(PS)in the decision space correspond to the same Pareto front(PF)in the objective space,known as Multi-Modal ... In practical engineering,multi-objective optimization often encounters situations where multiple Pareto sets(PS)in the decision space correspond to the same Pareto front(PF)in the objective space,known as Multi-Modal Multi-Objective Optimization Problems(MMOP).Locating multiple equivalent global PSs poses a significant challenge in real-world applications,especially considering the existence of local PSs.Effectively identifying and locating both global and local PSs is a major challenge.To tackle this issue,we introduce an immune-inspired reproduction strategy designed to produce more offspring in less crowded,promising regions and regulate the number of offspring in areas that have been thoroughly explored.This approach achieves a balanced trade-off between exploration and exploitation.Furthermore,we present an interval allocation strategy that adaptively assigns fitness levels to each antibody.This strategy ensures a broader survival margin for solutions in their initial stages and progressively amplifies the differences in individual fitness values as the population matures,thus fostering better population convergence.Additionally,we incorporate a multi-population mechanism that precisely manages each subpopulation through the interval allocation strategy,ensuring the preservation of both global and local PSs.Experimental results on 21 test problems,encompassing both global and local PSs,are compared with eight state-of-the-art multimodal multi-objective optimization algorithms.The results demonstrate the effectiveness of our proposed algorithm in simultaneously identifying global Pareto sets and locally high-quality PSs. 展开更多
关键词 Multimodal multi-objective optimization problem local PSs immune-inspired reproduction
在线阅读 下载PDF
Enhancing Evolutionary Algorithms With Pattern Mining for Sparse Large-Scale Multi-Objective Optimization Problems
6
作者 Sheng Qi Rui Wang +3 位作者 Tao Zhang Weixiong Huang Fan Yu Ling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1786-1801,共16页
Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to tr... Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges. 展开更多
关键词 Evolutionary algorithms pattern mining sparse large-scale multi-objective problems(SLMOPs) sparse large-scale optimization.
在线阅读 下载PDF
Multi-Objective Hybrid Sailfish Optimization Algorithm for Planetary Gearbox and Mechanical Engineering Design Optimization Problems
7
作者 Miloš Sedak Maja Rosic Božidar Rosic 《Computer Modeling in Engineering & Sciences》 2025年第2期2111-2145,共35页
This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Op... This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain. 展开更多
关键词 multi-objective optimization planetary gearbox gear efficiency sailfish optimization differential evolution hybrid algorithms
在线阅读 下载PDF
MOCBOA:Multi-Objective Chef-Based Optimization Algorithm Using Hybrid Dominance Relations for Solving Engineering Design Problems
8
作者 Nour Elhouda Chalabi Abdelouahab Attia +4 位作者 Abdulaziz S.Almazyad Ali Wagdy Mohamed Frank Werner Pradeep Jangir Mohammad Shokouhifar 《Computer Modeling in Engineering & Sciences》 2025年第4期967-1008,共42页
Multi-objective optimization is critical for problem-solving in engineering,economics,and AI.This study introduces the Multi-Objective Chef-Based Optimization Algorithm(MOCBOA),an upgraded version of the Chef-Based Op... Multi-objective optimization is critical for problem-solving in engineering,economics,and AI.This study introduces the Multi-Objective Chef-Based Optimization Algorithm(MOCBOA),an upgraded version of the Chef-Based Optimization Algorithm(CBOA)that addresses distinct objectives.Our approach is unique in systematically examining four dominance relations—Pareto,Epsilon,Cone-epsilon,and Strengthened dominance—to evaluate their influence on sustaining solution variety and driving convergence toward the Pareto front.Our comparison investigation,which was conducted on fifty test problems from the CEC 2021 benchmark and applied to areas such as chemical engineering,mechanical design,and power systems,reveals that the dominance approach used has a considerable impact on the key optimization measures such as the hypervolume metric.This paper provides a solid foundation for determining themost effective dominance approach and significant insights for both theoretical research and practical applications in multi-objective optimization. 展开更多
关键词 multi-objective optimization chef-based optimization algorithm(CBOA) pareto dominance epsilon dominance cone-epsilon dominance strengthened dominance
在线阅读 下载PDF
Multi-objective spatial optimization by considering land use suitability in the Yangtze River Delta region
9
作者 CHENG Qianwen LI Manchun +4 位作者 LI Feixue LIN Yukun DING Chenyin XIAO Lishan LI Weiyue 《Journal of Geographical Sciences》 2026年第1期45-78,共34页
Rapid urbanization in China has led to spatial antagonism between urban development and farmland protection and ecological security maintenance.Multi-objective spatial collaborative optimization is a powerful method f... Rapid urbanization in China has led to spatial antagonism between urban development and farmland protection and ecological security maintenance.Multi-objective spatial collaborative optimization is a powerful method for achieving sustainable regional development.Previous studies on multi-objective spatial optimization do not involve spatial corrections to simulation results based on the natural endowment of space resources.This study proposes an Ecological Security-Food Security-Urban Sustainable Development(ES-FS-USD)spatial optimization framework.This framework combines the non-dominated sorting genetic algorithm II(NSGA-II)and patch-generating land use simulation(PLUS)model with an ecological protection importance evaluation,comprehensive agricultural productivity evaluation,and urban sustainable development potential assessment and optimizes the territorial space in the Yangtze River Delta(YRD)region in 2035.The proposed sustainable development(SD)scenario can effectively reduce the destruction of landscape patterns of various land-use types while considering both ecological and economic benefits.The simulation results were further revised by evaluating the land-use suitability of the YRD region.According to the revised spatial pattern for the YRD in 2035,the farmland area accounts for 43.59%of the total YRD,which is 5.35%less than that in 2010.Forest,grassland,and water area account for 40.46%of the total YRD—an increase of 1.42%compared with the case in 2010.Construction land accounts for 14.72%of the total YRD—an increase of 2.77%compared with the case in 2010.The ES-FS-USD spatial optimization framework ensures that spatial optimization outcomes are aligned with the natural endowments of land resources,thereby promoting the sustainable use of land resources,improving the ability of spatial management,and providing valuable insights for decision makers. 展开更多
关键词 multi-objective spatial optimization multi-scenario simulation ecological protection importance comprehensive agricultural productivity urban sustainable development land-use suitability
原文传递
Cooperative Metaheuristics with Dynamic Dimension Reduction for High-Dimensional Optimization Problems
10
作者 Junxiang Li Zhipeng Dong +2 位作者 Ben Han Jianqiao Chen Xinxin Zhang 《Computers, Materials & Continua》 2026年第1期1484-1502,共19页
Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when ta... Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when tackling high-dimensional optimization challenges.To effectively address these challenges,this study introduces cooperative metaheuristics integrating dynamic dimension reduction(DR).Building upon particle swarm optimization(PSO)and differential evolution(DE),the proposed cooperative methods C-PSO and C-DE are developed.In the proposed methods,the modified principal components analysis(PCA)is utilized to reduce the dimension of design variables,thereby decreasing computational costs.The dynamic DR strategy implements periodic execution of modified PCA after a fixed number of iterations,resulting in the important dimensions being dynamically identified.Compared with the static one,the dynamic DR strategy can achieve precise identification of important dimensions,thereby enabling accelerated convergence toward optimal solutions.Furthermore,the influence of cumulative contribution rate thresholds on optimization problems with different dimensions is investigated.Metaheuristic algorithms(PSO,DE)and cooperative metaheuristics(C-PSO,C-DE)are examined by 15 benchmark functions and two engineering design problems(speed reducer and composite pressure vessel).Comparative results demonstrate that the cooperative methods achieve significantly superior performance compared to standard methods in both solution accuracy and computational efficiency.Compared to standard metaheuristic algorithms,cooperative metaheuristics achieve a reduction in computational cost of at least 40%.The cooperative metaheuristics can be effectively used to tackle both high-dimensional unconstrained and constrained optimization problems. 展开更多
关键词 Dimension reduction modified principal components analysis high-dimensional optimization problems cooperative metaheuristics metaheuristic algorithms
在线阅读 下载PDF
An Improved Chaotic Quantum Multi-Objective Harris Hawks Optimization Algorithm for Emergency Centers Site Selection Decision Problem
11
作者 Yuting Zhu Wenyu Zhang +3 位作者 Hainan Wang Junjie Hou Haining Wang Meng Wang 《Computers, Materials & Continua》 2025年第2期2177-2198,共22页
Addressing the complex issue of emergency resource distribution center site selection in uncertain environments, this study was conducted to comprehensively consider factors such as uncertainty parameters and the urge... Addressing the complex issue of emergency resource distribution center site selection in uncertain environments, this study was conducted to comprehensively consider factors such as uncertainty parameters and the urgency of demand at disaster-affected sites. Firstly, urgency cost, economic cost, and transportation distance cost were identified as key objectives. The study applied fuzzy theory integration to construct a triangular fuzzy multi-objective site selection decision model. Next, the defuzzification theory transformed the fuzzy decision model into a precise one. Subsequently, an improved Chaotic Quantum Multi-Objective Harris Hawks Optimization (CQ-MOHHO) algorithm was proposed to solve the model. The CQ-MOHHO algorithm was shown to rapidly produce high-quality Pareto front solutions and identify optimal site selection schemes for emergency resource distribution centers through case studies. This outcome verified the feasibility and efficacy of the site selection decision model and the CQ-MOHHO algorithm. To further assess CQ-MOHHO’s performance, Zitzler-Deb-Thiele (ZDT) test functions, commonly used in multi-objective optimization, were employed. Comparisons with Multi-Objective Harris Hawks Optimization (MOHHO), Non-dominated Sorting Genetic Algorithm II (NSGA-II), and Multi-Objective Grey Wolf Optimizer (MOGWO) using Generational Distance (GD), Hypervolume (HV), and Inverted Generational Distance (IGD) metrics showed that CQ-MOHHO achieved superior global search ability, faster convergence, and higher solution quality. The CQ-MOHHO algorithm efficiently achieved a balance between multiple objectives, providing decision-makers with satisfactory solutions and a valuable reference for researching and applying emergency site selection problems. 展开更多
关键词 Site selection triangular fuzzy theory chaotic quantum Harris Hawks optimization multi-objective optimization
在线阅读 下载PDF
A performance comparison of multi-objective optimization algorithms for solving nearly-zero-energy-building design problems 被引量:8
12
作者 Mohamed Hamdy Anh-Tuan Nguyen +1 位作者 Jan L.M. Hensen 侯恩哲 《建筑节能》 CAS 2016年第6期4-4,共1页
Integrated building design is inherently a multi-objective optimization problem where two or more conflicting objectives must be minimized and/or maximized concurrently.Many multi-objective optimization algorithms hav... Integrated building design is inherently a multi-objective optimization problem where two or more conflicting objectives must be minimized and/or maximized concurrently.Many multi-objective optimization algorithms have been developed;however few of them are tested in solving building design problems.This paper compares performance of seven commonly-used multi-objective evolutionary optimization algorithms in solving the design problem of a nearly zero energy building(n ZEB) where more than 1.610 solutions would be possible.The compared algorithms include a controlled non-dominated sorting genetic algorithm witha passive archive(p NSGA-II),a multi-objective particle swarm optimization(MOPSO),a two-phase optimization using the genetic algorithm(PR_GA),an elitist non-dominated sorting evolution strategy(ENSES),a multi-objective evolutionary algorithm based on the concept of epsilon dominance(ev MOGA),a multi-objective differential evolution algorithm(sp MODE-II),and a multi-objective dragonfly algorithm(MODA).Several criteria was used to compare performance of these algorithms.In most cases,the quality of the obtained solutions was improved when the number of generations was increased.The optimization results of running each algorithm20 times with gradually increasing number of evaluations indicated that the PR_GA algorithm had a high repeatability to explore a large area of the solution-space and achieved close-to-optimal solutions with a good diversity,followed by the p NSGA-II,ev MOGA and sp MODE-II.Uncompetitive results were achieved by the ENSES,MOPSO and MODA in most running cases.The study also found that 1400-1800 were minimum required number of evaluations to stabilize optimization results of the building energy model. 展开更多
关键词 multi-objective optimization ALGORITHMS EXPERIMENTATION Building simulation Comparison
在线阅读 下载PDF
SET COVERING-BASED TOPSIS METHOD FOR SLOVING SUP-T EQUATION CONSTRAINED MULTI-OBJECTIVE OPTIMIZATION PROBLEMS 被引量:2
13
作者 Cheng-Feng Hu Shu-Cherng Fang 《Journal of Systems Science and Systems Engineering》 SCIE EI CSCD 2015年第3期258-275,共18页
This paper considers solving a multi-objective optimization problem with sup-T equation constraints A set covering-based technique for order of preference by similarity to the ideal solution is proposed for solving su... This paper considers solving a multi-objective optimization problem with sup-T equation constraints A set covering-based technique for order of preference by similarity to the ideal solution is proposed for solving such a problem. It is shown that a compromise solution of the sup-T equation constrained multi-objective optimization problem can be obtained by "solving an associated set covering problem. A surrogate heuristic is then applied to solve the resulting optimization problem. Numerical experiments on solving randomly generated multi-objective optimization problems with sup-T equation constraints are included. Our computational results confirm the efficiency of the proposed method and show its potential for solving large scale sup-T equation constrained multi-objective optimization problems. 展开更多
关键词 Fuzzy relational equations fuzzy optimization set covering problems
原文传递
IBMSMA: An Indicator-based Multi-swarm Slime Mould Algorithm for Multi-objective Truss Optimization Problems 被引量:2
14
作者 Shihong Yin Qifang Luo Yongquan Zhou 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第3期1333-1360,共28页
This work proposes an improved multi-objective slime mould algorithm, called IBMSMA, for solving the multi-objective truss optimization problem. In IBMSMA, the chaotic grouping mechanism and dynamic regrouping strateg... This work proposes an improved multi-objective slime mould algorithm, called IBMSMA, for solving the multi-objective truss optimization problem. In IBMSMA, the chaotic grouping mechanism and dynamic regrouping strategy are employed to improve population diversity;the shift density estimation is used to assess the superiority of search agents and to provide selection pressure for population evolution;and the Pareto external archive is utilized to maintain the convergence and distribution of the non-dominated solution set. To evaluate the performance of IBMSMA, it is applied to eight multi-objective truss optimization problems. The results obtained by IBMSMA are compared with other 14 well-known optimization algorithms on hypervolume, inverted generational distance and spacing-to-extent indicators. The Wilcoxon statistical test and Friedman ranking are used for statistical analysis. The results of this study reveal that IBMSMA can find the Pareto front with better convergence and diversity in less time than state-of-the-art algorithms, demonstrating its capability in tackling large-scale engineering design problems. 展开更多
关键词 Slime mould algorithm Shift-based density estimation Multi-swarm strategy multi-objective optimization Truss optimization
在线阅读 下载PDF
Immune Optimization Approach for Dynamic Constrained Multi-Objective Multimodal Optimization Problems 被引量:1
15
作者 Zhuhong Zhang Min Liao Lei Wang 《American Journal of Operations Research》 2012年第2期193-202,共10页
This work investigates one immune optimization approach for dynamic constrained multi-objective multimodal optimization in terms of biological immune inspirations and the concept of constraint dominance. Such approach... This work investigates one immune optimization approach for dynamic constrained multi-objective multimodal optimization in terms of biological immune inspirations and the concept of constraint dominance. Such approach includes mainly three functional modules, environmental detection, population initialization and immune evolution. The first, inspired by the function of immune surveillance, is designed to detect the change of such kind of problem and to decide the type of a new environment;the second generates an initial population for the current environment, relying upon the result of detection;the last evolves two sub-populations along multiple directions and searches those excellent and diverse candidates. Experimental results show that the proposed approach can adaptively track the environmental change and effectively find the global Pareto-optimal front in each environment. 展开更多
关键词 DYNAMIC CONSTRAINED multi-objective optimization MULTIMODALITY Artificial IMMUNE Systems IMMUNE optimization Environmental Detection
暂未订购
Non-dominated Sorting Advanced Butterfly Optimization Algorithm for Multi-objective Problems
16
作者 Sushmita Sharma Nima Khodadadi +2 位作者 Apu Kumar Saha Farhad Soleimanian Gharehchopogh Seyedali Mirjalili 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第2期819-843,共25页
This paper uses the Butterfly Optimization Algorithm(BOA)with dominated sorting and crowding distance mechanisms to solve multi-objective optimization problems.There is also an improvement to the original version of B... This paper uses the Butterfly Optimization Algorithm(BOA)with dominated sorting and crowding distance mechanisms to solve multi-objective optimization problems.There is also an improvement to the original version of BOA to alleviate its drawbacks before extending it into a multi-objective version.Due to better coverage and a well-distributed Pareto front,non-dominant rankings are applied to the modified BOA using the crowding distance strategy.Seven benchmark functions and eight real-world problems have been used to test the performance of multi-objective non-dominated advanced BOA(MONSBOA),including unconstrained,constrained,and real-world design multiple-objective,highly nonlinear constraint problems.Various performance metrics,such as Generational Distance(GD),Inverted Generational Distance(IGD),Maximum Spread(MS),and Spacing(S),have been used for performance comparison.It is demonstrated that the new MONSBOA algorithm is better than the compared algorithms in more than 80%occasions in solving problems with a variety of linear,nonlinear,continuous,and discrete characteristics based on the Pareto front when compared quantitatively.From all the analysis,it may be concluded that the suggested MONSBOA is capable of producing high-quality Pareto fronts with very competitive results with rapid convergence. 展开更多
关键词 multi-objective problems Butterfly optimization algorithm Non-dominated sorting Crowding distance
在线阅读 下载PDF
Duality in Solving Multi-Objective Optimization (MOO) Problems
17
作者 Chandra Sen 《American Journal of Operations Research》 2019年第3期109-113,共5页
Multi-Objective Optimization (MOO) techniques often achieve the combination of both maximization and minimization objectives. The study suggests scalarizing the multi-objective functions simpler using duality. An exam... Multi-Objective Optimization (MOO) techniques often achieve the combination of both maximization and minimization objectives. The study suggests scalarizing the multi-objective functions simpler using duality. An example of four objective functions has been solved using duality with satisfactory results. 展开更多
关键词 DUALITY multi-objective optimization (MOO) Scalarizing TECHNIQUES
在线阅读 下载PDF
MODS: A Novel Metaheuristic of Deterministic Swapping for the Multi-Objective Optimization of Combinatorials Problems
18
作者 Elias David Nifio Ruiz Carlos Julio Ardila Hemandez +2 位作者 Daladier Jabba Molinares Agustin Barrios Sarmiento Yezid Donoso Meisel 《Computer Technology and Application》 2011年第4期280-292,共13页
This paper states a new metaheuristic based on Deterministic Finite Automata (DFA) for the multi - objective optimization of combinatorial problems. First, a new DFA named Multi - Objective Deterministic Finite Auto... This paper states a new metaheuristic based on Deterministic Finite Automata (DFA) for the multi - objective optimization of combinatorial problems. First, a new DFA named Multi - Objective Deterministic Finite Automata (MDFA) is defined. MDFA allows the representation of the feasible solutions space of combinatorial problems. Second, it is defined and implemented a metaheuritic based on MDFA theory. It is named Metaheuristic of Deterministic Swapping (MODS). MODS is a local search strategy that works using a MDFA. Due to this, MODS never take into account unfeasible solutions. Hence, it is not necessary to verify the problem constraints for a new solution found. Lastly, MODS is tested using well know instances of the Bi-Objective Traveling Salesman Problem (TSP) from TSPLIB. Its results were compared with eight Ant Colony inspired algorithms and two Genetic algorithms taken from the specialized literature. The comparison was made using metrics such as Spacing, Generational Distance, Inverse Generational Distance and No-Dominated Generation Vectors. In every case, the MODS results on the metrics were always better and in some of those cases, the superiority was 100%. 展开更多
关键词 METAHEURISTIC deterministic finite automata combinatorial problem multi - objective optimization metrics.
在线阅读 下载PDF
A multi-objective optimization framework for ill-posed inverse problems
19
作者 Maoguo Gong Hao Li Xiangming Jiang 《CAAI Transactions on Intelligence Technology》 2016年第3期225-240,共16页
Many image inverse problems are ill-posed for no unique solutions. Most of them have incommensurable or mixed-type objectives. In this study, a multi-objective optimization framework is introduced to model such ill-po... Many image inverse problems are ill-posed for no unique solutions. Most of them have incommensurable or mixed-type objectives. In this study, a multi-objective optimization framework is introduced to model such ill-posed inverse problems. The conflicting objectives are designed according to the properties of ill-posedness and certain techniques. Multi-objective evolutionary algorithms have capability to optimize multiple objectives simultaneously and obtain a set of trade-off solutions. For that reason, we use multi-objective evolutionary algorithms to keep the trade-off between these objectives for image ill-posed problems. Two case studies of sparse reconstruction and change detection are imple- mented. In the case study of sparse reconstruction, the measurement error term and the sparsity term are optimized by multi-objective evolutionary algorithms, which aims at balancing the trade-off between enforcing sparsity and reducing measurement error. In the case study of image change detection, two conflicting objectives are constructed to keep the trade-off between robustness to noise and preserving the image details. Experimental results of the two case studies confirm the multi-objective optimization framework for ill-posed inverse problems in image processing is effective. 展开更多
关键词 Ill-posed problem Image processing multi-objective optimization Evolutionary algorithm
在线阅读 下载PDF
CCHP-Type Micro-Grid Scheduling Optimization Based on Improved Multi-Objective Grey Wolf Optimizer 被引量:1
20
作者 Yu Zhang Sheng Wang +1 位作者 Fanming Zeng Yijie Lin 《Energy Engineering》 2025年第3期1137-1151,共15页
With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm impro... With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm improvement.To reduce the operational costs of micro-grid systems and the energy abandonment rate of renewable energy,while simultaneously enhancing user satisfaction on the demand side,this paper introduces an improvedmultiobjective Grey Wolf Optimizer based on Cauchy variation.The proposed approach incorporates a Cauchy variation strategy during the optimizer’s search phase to expand its exploration range and minimize the likelihood of becoming trapped in local optima.At the same time,adoptingmultiple energy storage methods to improve the consumption rate of renewable energy.Subsequently,under different energy balance orders,themulti-objective particle swarmalgorithm,multi-objective grey wolf optimizer,and Cauchy’s variant of the improvedmulti-objective grey wolf optimizer are used for example simulation,solving the Pareto solution set of the model and comparing.The analysis of the results reveals that,compared to the original optimizer,the improved optimizer decreases the daily cost by approximately 100 yuan,and reduces the energy abandonment rate to zero.Meanwhile,it enhances user satisfaction and ensures the stable operation of the micro-grid. 展开更多
关键词 multi-objective optimization algorithm hybrid energy storage MICRO-GRID CCHP
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部