期刊文献+
共找到63篇文章
< 1 2 4 >
每页显示 20 50 100
Enhancing Evolutionary Algorithms With Pattern Mining for Sparse Large-Scale Multi-Objective Optimization Problems
1
作者 Sheng Qi Rui Wang +3 位作者 Tao Zhang Weixiong Huang Fan Yu Ling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1786-1801,共16页
Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to tr... Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges. 展开更多
关键词 Evolutionary algorithms pattern mining sparse large-scale multi-objective problems(SLmops) sparse large-scale optimization.
在线阅读 下载PDF
An Immune-Inspired Approach with Interval Allocation in Solving Multimodal Multi-Objective Optimization Problems with Local Pareto Sets
2
作者 Weiwei Zhang Jiaqiang Li +2 位作者 Chao Wang Meng Li Zhi Rao 《Computers, Materials & Continua》 SCIE EI 2024年第6期4237-4257,共21页
In practical engineering,multi-objective optimization often encounters situations where multiple Pareto sets(PS)in the decision space correspond to the same Pareto front(PF)in the objective space,known as Multi-Modal ... In practical engineering,multi-objective optimization often encounters situations where multiple Pareto sets(PS)in the decision space correspond to the same Pareto front(PF)in the objective space,known as Multi-Modal Multi-Objective Optimization Problems(MMOP).Locating multiple equivalent global PSs poses a significant challenge in real-world applications,especially considering the existence of local PSs.Effectively identifying and locating both global and local PSs is a major challenge.To tackle this issue,we introduce an immune-inspired reproduction strategy designed to produce more offspring in less crowded,promising regions and regulate the number of offspring in areas that have been thoroughly explored.This approach achieves a balanced trade-off between exploration and exploitation.Furthermore,we present an interval allocation strategy that adaptively assigns fitness levels to each antibody.This strategy ensures a broader survival margin for solutions in their initial stages and progressively amplifies the differences in individual fitness values as the population matures,thus fostering better population convergence.Additionally,we incorporate a multi-population mechanism that precisely manages each subpopulation through the interval allocation strategy,ensuring the preservation of both global and local PSs.Experimental results on 21 test problems,encompassing both global and local PSs,are compared with eight state-of-the-art multimodal multi-objective optimization algorithms.The results demonstrate the effectiveness of our proposed algorithm in simultaneously identifying global Pareto sets and locally high-quality PSs. 展开更多
关键词 Multimodal multi-objective optimization problem local PSs immune-inspired reproduction
在线阅读 下载PDF
MGOKA:A Multi-Objective Optimization Algorithm for Controller Placement Problem Combining Network Partition with Cluster Fusion in Software Defined Network
3
作者 CHEN Jue XIAO Changwei +1 位作者 QIU Xihe LÜ Wenjing 《Wuhan University Journal of Natural Sciences》 CSCD 2024年第6期589-599,共11页
Software Defined Network(SDN)has been developed rapidly in technology and popularized in application due to its efficiency and flexibility in network management.In multi-controller SDN architecture,the Controller Plac... Software Defined Network(SDN)has been developed rapidly in technology and popularized in application due to its efficiency and flexibility in network management.In multi-controller SDN architecture,the Controller Placement Problem(CPP)must be solved carefully as it directly affects the whole network performance.This paper proposes a Multi-objective Greedy Optimized K-means Algorithm(MGOKA)to solve this problem to optimize worst-case and average delay between switches and controllers as well as synchronization delay and load balance among controllers for Wide Area Networks(WAN).MGOKA combines the process of network partition based on the K-means algorithm with cluster fusion based on the greedy algorithm and designs a normalization strategy to convert a multi-objective into a single-objective optimization problem.The simulation results depict that in different network scales with different numbers of controllers,the relative optimization rate of our proposed algorithm compared with K-means,K-means++,and GOKA can reach up to 101.5%,109.9%,and 79.8%,respectively.Moreover,the error rate between MGOKA and the global optimal solution is always less than 4%. 展开更多
关键词 Software Defined Network Controller Placement problem propagation delay load balance multi-objective optimization
原文传递
Incorporating Fully Fuzzy Logic in Multi-Objective Transshipment Problems:A Study of Alternative Path Selection Using LR Flat Fuzzy Numbers
4
作者 Vishwas Deep Joshi Priya Agarwal +4 位作者 Lenka Cepová Huda Alsaud Ajay Kumar B.Swarna Ashish Kumar 《Computer Modeling in Engineering & Sciences》 2025年第7期969-1011,共43页
In a world where supply chains are increasingly complex and unpredictable,finding the optimal way to move goods through transshipment networks is more important and challenging than ever.In addition to addressing the ... In a world where supply chains are increasingly complex and unpredictable,finding the optimal way to move goods through transshipment networks is more important and challenging than ever.In addition to addressing the complexity of transportation costs and demand,this study presents a novel method that offers flexible routing alternatives to manage these complexities.When real-world variables such as fluctuating costs,variable capacity,and unpredictable demand are considered,traditional transshipment models often prove inadequate.To overcome these challenges,we propose an innovative fully fuzzy-based framework using LR flat fuzzy numbers.This framework allows for more adaptable and flexible decision-making in multi-objective transshipment situations by effectively capturing uncertain parameters.To overcome these challenges,we develop an innovative,fully fuzzy-based framework using LR flat fuzzy numbers to effectively capture uncertainty in key parameters,offering more flexible and adaptive decision-making in multi-objective transshipment problems.The proposed model also presents alternative route options,giving decisionmakers a range of choices to satisfy multiple requirements,including reducing costs,improving service quality,and expediting delivery.Through extensive numerical experiments,we demonstrate that the model can achieve greater adaptability,efficiency,and flexibility than standard approaches.This multi-path structure provides additional flexibility to adapt to dynamic network conditions.Using ranking strategies,we compared our multi-objective transshipment model with existing methods.The results indicate that,while traditional methods such as goal and fuzzy programming generate results close to the anti-ideal value,thus reducing their efficiency,our model produces solutions close to the ideal value,thereby facilitating better decision making.By combining dynamic routing alternatives with a fully fuzzybased approach,this study offers an effective tool to improve decision-making and optimize complex networks under real-world conditions in practical settings.In this paper,we utilize LINGO 18 software to solve the provided numerical example,demonstrating the effectiveness of the proposed method. 展开更多
关键词 multi-objective transshipment problem LR flat fuzzy numbers fully fuzzy optimization flexible routing solutions ranking approach
在线阅读 下载PDF
Even Search in a Promising Region for Constrained Multi-Objective Optimization 被引量:3
5
作者 Fei Ming Wenyin Gong Yaochu Jin 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期474-486,共13页
In recent years, a large number of approaches to constrained multi-objective optimization problems(CMOPs) have been proposed, focusing on developing tweaked strategies and techniques for handling constraints. However,... In recent years, a large number of approaches to constrained multi-objective optimization problems(CMOPs) have been proposed, focusing on developing tweaked strategies and techniques for handling constraints. However, an overly finetuned strategy or technique might overfit some problem types,resulting in a lack of versatility. In this article, we propose a generic search strategy that performs an even search in a promising region. The promising region, determined by obtained feasible non-dominated solutions, possesses two general properties.First, the constrained Pareto front(CPF) is included in the promising region. Second, as the number of feasible solutions increases or the convergence performance(i.e., approximation to the CPF) of these solutions improves, the promising region shrinks. Then we develop a new strategy named even search,which utilizes the non-dominated solutions to accelerate convergence and escape from local optima, and the feasible solutions under a constraint relaxation condition to exploit and detect feasible regions. Finally, a diversity measure is adopted to make sure that the individuals in the population evenly cover the valuable areas in the promising region. Experimental results on 45 instances from four benchmark test suites and 14 real-world CMOPs have demonstrated that searching evenly in the promising region can achieve competitive performance and excellent versatility compared to 11 most state-of-the-art methods tailored for CMOPs. 展开更多
关键词 Constrained multi-objective optimization even search evolutionary algorithms promising region real-world problems
在线阅读 下载PDF
Energy-Saving Distributed Flexible Job Shop Scheduling Optimization with Dual Resource Constraints Based on Integrated Q-Learning Multi-Objective Grey Wolf Optimizer 被引量:2
6
作者 Hongliang Zhang Yi Chen +1 位作者 Yuteng Zhang Gongjie Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1459-1483,共25页
The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worke... The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality. 展开更多
关键词 Distributed flexible job shop scheduling problem dual resource constraints energy-saving scheduling multi-objective grey wolf optimizer Q-LEARNING
在线阅读 下载PDF
A Survey of Evolutionary Algorithms for Multi-Objective Optimization Problems With Irregular Pareto Fronts 被引量:30
7
作者 Yicun Hua Qiqi Liu +1 位作者 Kuangrong Hao Yaochu Jin 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第2期303-318,I0001-I0004,共20页
Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remed... Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remedy this issue,a large body of research has been performed in recent years and many new algorithms have been proposed.This paper provides a comprehensive survey of the research on MOPs with irregular Pareto fronts.We start with a brief introduction to the basic concepts,followed by a summary of the benchmark test problems with irregular problems,an analysis of the causes of the irregularity,and real-world optimization problems with irregular Pareto fronts.Then,a taxonomy of the existing methodologies for handling irregular problems is given and representative algorithms are reviewed with a discussion of their strengths and weaknesses.Finally,open challenges are pointed out and a few promising future directions are suggested. 展开更多
关键词 Evolutionary algorithm machine learning multi-objective optimization problems(mops) irregular Pareto fronts
在线阅读 下载PDF
CHARACTERIZATION OF EFFICIENT SOLUTIONS FOR MULTI-OBJECTIVE OPTIMIZATION PROBLEMS INVOLVING SEMI-STRONG AND GENERALIZED SEMI-STRONG E-CONVEXITY 被引量:5
8
作者 E.A.Youness Tarek Emam 《Acta Mathematica Scientia》 SCIE CSCD 2008年第1期7-16,共10页
The authors of this article are interested in characterization of efficient solutions for special classes of problems. These classes consider semi-strong E-convexity of involved functions. Sufficient and necessary con... The authors of this article are interested in characterization of efficient solutions for special classes of problems. These classes consider semi-strong E-convexity of involved functions. Sufficient and necessary conditions for a feasible solution to be an efficient or properly efficient solution are obtained. 展开更多
关键词 multi-objective optimization problems semi-strong E-convex efficient solutions properly efficient solutions
在线阅读 下载PDF
Non-dominated Sorting Advanced Butterfly Optimization Algorithm for Multi-objective Problems
9
作者 Sushmita Sharma Nima Khodadadi +2 位作者 Apu Kumar Saha Farhad Soleimanian Gharehchopogh Seyedali Mirjalili 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第2期819-843,共25页
This paper uses the Butterfly Optimization Algorithm(BOA)with dominated sorting and crowding distance mechanisms to solve multi-objective optimization problems.There is also an improvement to the original version of B... This paper uses the Butterfly Optimization Algorithm(BOA)with dominated sorting and crowding distance mechanisms to solve multi-objective optimization problems.There is also an improvement to the original version of BOA to alleviate its drawbacks before extending it into a multi-objective version.Due to better coverage and a well-distributed Pareto front,non-dominant rankings are applied to the modified BOA using the crowding distance strategy.Seven benchmark functions and eight real-world problems have been used to test the performance of multi-objective non-dominated advanced BOA(MONSBOA),including unconstrained,constrained,and real-world design multiple-objective,highly nonlinear constraint problems.Various performance metrics,such as Generational Distance(GD),Inverted Generational Distance(IGD),Maximum Spread(MS),and Spacing(S),have been used for performance comparison.It is demonstrated that the new MONSBOA algorithm is better than the compared algorithms in more than 80%occasions in solving problems with a variety of linear,nonlinear,continuous,and discrete characteristics based on the Pareto front when compared quantitatively.From all the analysis,it may be concluded that the suggested MONSBOA is capable of producing high-quality Pareto fronts with very competitive results with rapid convergence. 展开更多
关键词 multi-objective problems Butterfly optimization algorithm Non-dominated sorting Crowding distance
在线阅读 下载PDF
A multi-objective optimization framework for ill-posed inverse problems
10
作者 Maoguo Gong Hao Li Xiangming Jiang 《CAAI Transactions on Intelligence Technology》 2016年第3期225-240,共16页
Many image inverse problems are ill-posed for no unique solutions. Most of them have incommensurable or mixed-type objectives. In this study, a multi-objective optimization framework is introduced to model such ill-po... Many image inverse problems are ill-posed for no unique solutions. Most of them have incommensurable or mixed-type objectives. In this study, a multi-objective optimization framework is introduced to model such ill-posed inverse problems. The conflicting objectives are designed according to the properties of ill-posedness and certain techniques. Multi-objective evolutionary algorithms have capability to optimize multiple objectives simultaneously and obtain a set of trade-off solutions. For that reason, we use multi-objective evolutionary algorithms to keep the trade-off between these objectives for image ill-posed problems. Two case studies of sparse reconstruction and change detection are imple- mented. In the case study of sparse reconstruction, the measurement error term and the sparsity term are optimized by multi-objective evolutionary algorithms, which aims at balancing the trade-off between enforcing sparsity and reducing measurement error. In the case study of image change detection, two conflicting objectives are constructed to keep the trade-off between robustness to noise and preserving the image details. Experimental results of the two case studies confirm the multi-objective optimization framework for ill-posed inverse problems in image processing is effective. 展开更多
关键词 Ill-posed problem Image processing multi-objective optimization Evolutionary algorithm
在线阅读 下载PDF
Solving material distribution routing problem in mixed manufacturing systems with a hybrid multi-objective evolutionary algorithm 被引量:7
11
作者 高贵兵 张国军 +2 位作者 黄刚 朱海平 顾佩华 《Journal of Central South University》 SCIE EI CAS 2012年第2期433-442,共10页
The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency... The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II. 展开更多
关键词 material distribution routing problem multi-objective optimization evolutionary algorithm local search
在线阅读 下载PDF
A Multi-Objective Optimal Evolutionary Algorithm Based on Tree-Ranking 被引量:1
12
作者 Shi Chuan, Kang Li-shan, Li Yan, Yan Zhen-yuState Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, Hubei,China 《Wuhan University Journal of Natural Sciences》 CAS 2003年第S1期207-211,共5页
Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has so... Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has some shortcoming s, in this paper, we proposed a new method using tree structure to express the relationship of solutions. Experiments prove that the method can reach the Pare-to front, retain the diversity of the population, and use less time. 展开更多
关键词 multi-objective optimal problem multi-objective optimal evolutionary algorithm Pareto dominance tree structure dynamic space-compressed mutative operator
在线阅读 下载PDF
Time variant multi-objective linear fractional interval-valued transportation problem 被引量:1
13
作者 Dharmadas Mardanya Sankar Kumar Roy 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2022年第1期111-130,共20页
This paper studies a time-variant multi-objective linear fractional transportation problem. In reality, transported goods should reach in destinations within a specific time. Considering the importance of time, a time... This paper studies a time-variant multi-objective linear fractional transportation problem. In reality, transported goods should reach in destinations within a specific time. Considering the importance of time, a time-variant multi-objective linear fractional transportation problem is formulated here. We take into account the parameters as cost, supply and demand are interval valued that involved in the proposed model, so we treat the model as a multi-objective linear fractional interval transportation problem. To solve the formulated model, we first convert it into a deterministic form using a new transformation technique and then apply fuzzy programming to solve it. The applicability of our proposed method is shown by considering two numerical examples. At last, conclusions and future research directions regarding our study is included. 展开更多
关键词 fractional transportation problem multi-objective optimization interval number time variant parameter fuzzy programming Pareto optimal solution
在线阅读 下载PDF
Novel electromagnetism-like mechanism method for multiobjective optimization problems 被引量:1
14
作者 Lixia Han Shujuan Jiang Shaojiang Lan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第1期182-189,共8页
As a new-style stochastic algorithm, the electromagnetism-like mechanism(EM) method gains more and more attention from many researchers in recent years. A novel model based on EM(NMEM) for multiobjective optimizat... As a new-style stochastic algorithm, the electromagnetism-like mechanism(EM) method gains more and more attention from many researchers in recent years. A novel model based on EM(NMEM) for multiobjective optimization problems is proposed, which regards the charge of all particles as the constraints in the current population and the measure of the uniformity of non-dominated solutions as the objective function. The charge of the particle is evaluated based on the dominated concept, and its magnitude determines the direction of a force between two particles. Numerical studies are carried out on six complex test functions and the experimental results demonstrate that the proposed NMEM algorithm is a very robust method for solving the multiobjective optimization problems. 展开更多
关键词 electromagnetism-like mechanism(EM) method multi-objective optimization problem PARTICLE Pareto optimal solutions
在线阅读 下载PDF
A new evolutionary algorithm for constrained optimization problems
15
作者 王东华 刘占生 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第2期8-12,共5页
To solve single-objective constrained optimization problems,a new population-based evolutionary algorithm with elite strategy(PEAES) is proposed with the concept of single and multi-objective optimization.Constrained ... To solve single-objective constrained optimization problems,a new population-based evolutionary algorithm with elite strategy(PEAES) is proposed with the concept of single and multi-objective optimization.Constrained functions are combined to be an objective function.During the evolutionary process,the current optimal solution is found and treated as the reference point to divide the population into three sub-populations:one feasible and two infeasible ones.Different evolutionary operations of single or multi-objective optimization are respectively performed in each sub-population with elite strategy.Thirteen famous benchmark functions are selected to evaluate the performance of PEAES in comparison of other three optimization methods.The results show the proposed method is valid in efficiency,precision and probability for solving single-objective constrained optimization problems. 展开更多
关键词 constrained optimization problems evolutionary algorithm POPULATION-BASED elite strategy single and multi-objective optimization
在线阅读 下载PDF
Optimization of Multi-Project Multi-Site Location Based on MOPSOs
16
作者 ZHANG Yong GONG Dun-wei ZHOU Yong 《Journal of China University of Mining and Technology》 EI 2006年第2期167-170,共4页
Multi-project multi-site location problems are multi-objective combinational optimization ones with discrete variables which are hard to solve. To do so, the case of particle swarm optimization is considered due to it... Multi-project multi-site location problems are multi-objective combinational optimization ones with discrete variables which are hard to solve. To do so, the case of particle swarm optimization is considered due to its useful char- acteristics such as easy implantation, simple parameter settings and fast convergence. First these problems are trans- formed into ones with continuous variables by defining an equivalent probability matrix in this paper, then multi-objective particle swarm optimization based on the minimal particle angle is used to solve them. Methods such as continuation of discrete variables, update of particles for matrix variables, normalization of particle position and evalua- tion of particle fitness are presented. Finally the efficiency of the proposed method is validated by comparing it with other methods on an eight-project-ten-site location problem. 展开更多
关键词 multi-project location problems multi-objective optimization particle swarm optimization
在线阅读 下载PDF
A Parallel Search System for Dynamic Multi-Objective Traveling Salesman Problem
17
作者 Weiqi Li 《Journal of Mathematics and System Science》 2014年第5期295-314,共20页
This paper introduces a parallel search system for dynamic multi-objective traveling salesman problem. We design a multi-objective TSP in a stochastic dynamic environment. This dynamic setting of the problem is very u... This paper introduces a parallel search system for dynamic multi-objective traveling salesman problem. We design a multi-objective TSP in a stochastic dynamic environment. This dynamic setting of the problem is very useful for routing in ad-hoc networks. The proposed search system first uses parallel processors to identify the extreme solutions of the search space for each ofk objectives individually at the same time. These solutions are merged into the so-called hit-frequency matrix E. The solutions in E are then searched by parallel processors and evaluated for dominance relationship. The search system is implemented in two different ways master-worker architecture and pipeline architecture. 展开更多
关键词 dynamic multi-objective optimization traveling salesman problem parallel search algorithm solution attractor.
在线阅读 下载PDF
Optimal Kernel-based Extreme Learning and Multi-objective Function-aided Task Scheduling for Solving Load Balancing Problems in Cloud Environment
18
作者 Ravi Gugulothu Vijaya Saradhi Thommandru Suneetha Bulla 《Journal of Systems Science and Systems Engineering》 2025年第4期385-409,共25页
Workload balancing in cloud computing is not yet resolved,particularly considering Infrastructure as a Service(IaaS)in the cloud network.The problem of being underloaded or overloaded should not occur at the time of t... Workload balancing in cloud computing is not yet resolved,particularly considering Infrastructure as a Service(IaaS)in the cloud network.The problem of being underloaded or overloaded should not occur at the time of the server or host accessing the cloud which may lead to create system crash problem.Thus,to resolve these existing problems,an efficient task scheduling algorithm is required for distributing the tasks over the entire feasible resources,which is termed load balancing.The load balancing approach assures that the entire Virtual Machines(VMs)are utilized appropriately.So,it is highly essential to develop a load-balancing model in a cloud environment based on machine learning and optimization strategies.Here,the computing and networking data is utilized for the analysis to observe the traffic as well as performance patterns.The acquired data is offered to the machine learning decision to select the right server by predicting the performance effectively by employing an Optimal Kernel-based Extreme Learning Machine(OK-ELM)and their parameter is tuned by the developed hybrid approach Population Size-based Mud Ring Tunicate Swarm Algorithm(PS-MRTSA).Further,effective scheduling is performed to resolve the load balancing issues by employing the developed model MR-TSA.Here,the developed approach effectively resolves the multi-objective constraints such as Response time,Resource cost,and energy consumption.Thus,the recommended load balancing model securesan enhanced performance rate than the traditional approaches over several experimental analyses. 展开更多
关键词 Cloud environment load balancing problem optimal kernel-based extreme learning machine population size-based mud ring tunicate swarm algorithm multi-objective function
原文传递
Solving Multi-Area Environmental/Economic Dispatch by Pareto-Based Chemical-Reaction Optimization Algorithm 被引量:6
19
作者 Junqing Li Quanke Pan +2 位作者 Peiyong Duan Hongyan Sang Kaizhou Gao 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第5期1240-1250,共11页
In this study, we present a Pareto-based chemicalreaction optimization(PCRO) algorithm for solving the multiarea environmental/economic dispatch optimization problems.Two objectives are minimized simultaneously, i.e.,... In this study, we present a Pareto-based chemicalreaction optimization(PCRO) algorithm for solving the multiarea environmental/economic dispatch optimization problems.Two objectives are minimized simultaneously, i.e., total fuel cost and emission. In the proposed algorithm, each solution is represented by a chemical molecule. A novel encoding mechanism for solving the multi-area environmental/economic dispatch optimization problems is designed to dynamically enhance the performance of the proposed algorithm. Then, an ensemble of effective neighborhood approaches is developed, and a selfadaptive neighborhood structure selection mechanism is also embedded in PCRO to increase the search ability while maintaining population diversity. In addition, a grid-based crowding distance strategy is introduced, which can obviously enable the algorithm to easily converge near the Pareto front. Furthermore,a kinetic-energy-based search procedure is developed to enhance the global search ability. Finally, the proposed algorithm is tested on sets of the instances that are generated based on realistic production. Through the analysis of experimental results, the highly effective performance of the proposed PCRO algorithm is favorably compared with several algorithms, with regards to both solution quality and diversity. 展开更多
关键词 Chemical-reaction optimization algorithm gridbased CROWDING distance multi-area environmental/economic DISPATCH (MAEED) problem multi-objective optimization
在线阅读 下载PDF
Constraint-Feature-Guided Evolutionary Algorithms for Multi-Objective Multi-Stage Weapon-Target Assignment Problems
20
作者 WANG Danjing XIN Bin +3 位作者 WANG Yipeng ZHANG Jia DENG Fang WANG Xianpeng 《Journal of Systems Science & Complexity》 2025年第3期972-999,共28页
The allocation of heterogeneous battlefield resources is crucial in Command and Control(C2).Balancing multiple competing objectives under complex constraints so as to provide decisionmakers with diverse feasible candi... The allocation of heterogeneous battlefield resources is crucial in Command and Control(C2).Balancing multiple competing objectives under complex constraints so as to provide decisionmakers with diverse feasible candidate decision schemes remains an urgent challenge.Based on these requirements,a constrained multi-objective multi-stage weapon-target assignment(CMOMWTA)model is established in this paper.To solve this problem,three constraint-feature-guided multi-objective evolutionary algorithms(CFG-MOEAs)are proposed under three typical multi-objective evolutionary frameworks(i.e.,NSGA-Ⅱ,NSGA-Ⅲ,and MOEA/D)to obtain various high-quality candidate decision schemes.Firstly,a constraint-feature-guided reproduction strategy incorporating crossover,mutation,and repair is developed to handle complex constraints.It extracts common row and column features from different linear constraints to generate the feasible offspring population.Then,a variable-length integer encoding method is adopted to concisely denote the decision schemes.Moreover,a hybrid initialization method incorporating both heuristic methods and random sampling is designed to better guide the population.Systemic experiments are conducted on three CFG-MOEAs to verify their effectiveness.The superior algorithm CFG-NSGA-Ⅱamong three CFG-MOEAs is compared with two state-of-the-art CMOMWTA algorithms,and extensive experimental results demonstrate the effectiveness and superiority of CFG-NSGA-Ⅱ. 展开更多
关键词 Evolutionary algorithms constrained multi-objective optimization problem constraint handling weapon-target assignment
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部