期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
Back analysis of rock mass parameters in mechanized twin tunnels based on coupled auto machine learning and multi-objective optimization algorithm
1
作者 Chengwen Wang Xiaoli Liu +4 位作者 Jiubao Li Enzhi Wang Nan Hu Wenli Yao Zhihui He 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第11期7038-7055,共18页
Accurate determination of rock mass parameters is essential for ensuring the accuracy of numericalsimulations. Displacement back-analysis is the most widely used method;however, the reliability of thecurrent approache... Accurate determination of rock mass parameters is essential for ensuring the accuracy of numericalsimulations. Displacement back-analysis is the most widely used method;however, the reliability of thecurrent approaches remains unsatisfactory. Therefore, in this paper, a multistage rock mass parameterback-analysis method, that considers the construction process and displacement losses is proposed andimplemented through the coupling of numerical simulation, auto-machine learning (AutoML), andmulti-objective optimization algorithms (MOOAs). First, a parametric modeling platform for mechanizedtwin tunnels is developed, generating a dataset through extensive numerical simulations. Next, theAutoML method is utilized to establish a surrogate model linking rock parameters and displacements.The tunnel construction process is divided into multiple stages, transforming the rock mass parameterback-analysis into a multi-objective optimization problem, for which multi-objective optimization algorithmsare introduced to obtain the rock mass parameters. The newly proposed rock mass parameterback-analysis method is validated in a mechanized twin tunnel project, and its accuracy and effectivenessare demonstrated. Compared with traditional single-stage back-analysis methods, the proposedmodel decreases the average absolute percentage error from 12.73% to 4.34%, significantly improving theaccuracy of the back-analysis. Moreover, although the accuracy of back analysis significantly increaseswith the number of construction stages considered, the back analysis time is acceptable. This studyprovides a new method for displacement back analysis that is efficient and accurate, thereby paving theway for precise parameter determination in numerical simulations. 展开更多
关键词 Back analysis of rock parameters Auto machine learning multi-objective optimization algorithm Mechanized twin tunnels parametric modeling
在线阅读 下载PDF
Optimization of the Hydrological Model Using Multi-objective Particle Swarm Optimization Algorithm 被引量:2
2
作者 黄晓敏 雷晓辉 +1 位作者 王宇晖 朱连勇 《Journal of Donghua University(English Edition)》 EI CAS 2011年第5期519-522,共4页
An application of multi-objective particle swarm optimization (MOPSO) algorithm for optimization of the hydrological model (HYMOD) is presented in this paper. MOPSO algorithm is used to find non-dominated solution... An application of multi-objective particle swarm optimization (MOPSO) algorithm for optimization of the hydrological model (HYMOD) is presented in this paper. MOPSO algorithm is used to find non-dominated solutions with two objectives: high flow Nash-Sutcliffe efficiency and low flow Nash- Sutcliffe efficiency. The two sets' coverage rate and Pareto front spacing metric are two criterions to analyze the performance of the algorithms. MOPSO algorithm surpasses multi-objective shuffled complex evolution metcopolis (MOSCEM_UA) algorithr~, in terms of the two sets' coverage rate. But when we come to Pareto front spacing rate, the non-dominated solutions of MOSCEM_ UA algorithm are better-distributed than that of MOPSO algorithm when the iteration is set to 40 000. In addition, there are obvious conflicts between the two objectives. But a compromise solution can be acquired by adopting the MOPSO algorithm. 展开更多
关键词 multi-objective particle swarm optimization (MOPSO) hydrological model (HYMOD) multi-objective optimization
在线阅读 下载PDF
Effect of calibration data series length on performance and optimal parameters of hydrological model 被引量:3
3
作者 Chuan-zhe LI Hao WANG +3 位作者 Jia LIU Deng-hua YAN Fu-liang YU Lu ZHANG 《Water Science and Engineering》 EI CAS 2010年第4期378-393,共16页
In order to assess the effects of calibration data series length on the performance and optimal parameter values of a hydrological model in ungauged or data-limited catchments (data are non-continuous and fragmental ... In order to assess the effects of calibration data series length on the performance and optimal parameter values of a hydrological model in ungauged or data-limited catchments (data are non-continuous and fragmental in some catchments), we used non-continuous calibration periods for more independent streamflow data for SIMHYD (simple hydrology) model calibration. Nash-Sutcliffe efficiency and percentage water balance error were used as performance measures. The particle swarm optimization (PSO) method was used to calibrate the rainfall-runoff models. Different lengths of data series ranging from one year to ten years, randomly sampled, were used to study the impact of calibration data series length. Fifty-five relatively unimpaired catchments located all over Australia with daily precipitation, potential evapotranspiration, and streamflow data were tested to obtain more general conclusions. The results show that longer calibration data series do not necessarily result in better model performance. In general, eight years of data are sufficient to obtain steady estimates of model performance and parameters for the SIMHYD model. It is also shown that most humid catchments require fewer calibration data to obtain a good performance and stable parameter values. The model performs better in humid and semi-humid catchments than in arid catchments. Our results may have useful and interesting implications for the efficiency of using limited observation data for hydrological model calibration in different climates. 展开更多
关键词 calibration data series length model performance optimal parameter hydrological model data-limited catchment
在线阅读 下载PDF
Analysis of Hydrological Simulation Models Using the Parameter Combinatorial Diagram
4
作者 Mikel Goni Garatea Faustino N. Gimena Ramos Jose Javier Lopez Rodriguez 《Journal of Civil Engineering and Architecture》 2015年第1期104-113,共10页
The aim of this paper is to present graphically the behaviour of a simulation model to the varying parameters and to establish the suitability of this representation as a valid tool for the analysis of the same parame... The aim of this paper is to present graphically the behaviour of a simulation model to the varying parameters and to establish the suitability of this representation as a valid tool for the analysis of the same parameters. In this paper, we define parameter combinatorial diagram as the joint graphical representation of all box plots related to the adjustment between real and simulated data, by setting and/or changing the parameters of the simulation model. To do this, we start with a box plot representing the values of an objective adjustment function, achieving these results when varying all the parameters of the simulation model, Then we draw the box plot when setting all the parameters of the model, for example, using the median or average. Later, we get all the box plots when carrying out simulations combining fixed or variable values of the model parameters. Finally, all box plots obtained are represented neatly in a single graph. It is intended that the new parameter combinatorial diagram is used to examine and analyze simulation models useful in practice. This paper presents combinatorial diagrams of different examples of application as in the case of hydrologic models of one, two, three, and five parameters. 展开更多
关键词 parameter calibration optimization combinatorial diagram hydrological simulation models.
在线阅读 下载PDF
Integration of a statistical emulator approach with the SCE-UA method for parameter optimization of a hydrological model 被引量:13
5
作者 SONG XiaoMeng ZHAN CheSheng XIA Jun 《Chinese Science Bulletin》 SCIE CAS 2012年第26期3397-3403,共7页
Parameter optimization of a hydrological model is an indispensable process within model development and application.The lack of knowledge regarding the efficient optimization of model parameters often results in a bot... Parameter optimization of a hydrological model is an indispensable process within model development and application.The lack of knowledge regarding the efficient optimization of model parameters often results in a bottle-neck within the modeling process,resulting in the effective calibration and validation of distributed hydrological models being more difficult to achieve.The classical approaches to global parameter optimization are usually characterized by being time consuming,and having a high computation cost.For this reason,an integrated approach coupling a meta-modeling approach with the SCE-UA method was proposed,and applied within this study to optimize hydrological model parameter estimation.Meta-modeling was used to determine the optimization range for all parameters,following which the SCE-UA method was applied to achieve global parameter optimization.The multivariate regression adaptive splines method was used to construct the response surface as a surrogate model to a complex hydrological model.In this study,the daily distributed time-variant gain model(DTVGM) applied to the Huaihe River Basin,China,was chosen as a case study.The integrated objective function based on the water balance coefficient and the Nash-Sutcliffe coefficient was used to evaluate the model performance.The case study shows that the integrated method can efficiently complete the multi-parameter optimization process,and also demonstrates that the method is a powerful tool for efficient parameter optimization. 展开更多
关键词 分布式水文模型 参数优化方法 模拟器 整合 统计 多参数优化 模型开发 建模过程
在线阅读 下载PDF
Efficiency and Feasibility of an Integrated Algorithm for Distributed Hydrological M odel Calibration 被引量:1
6
作者 王宇晖 牛瑞华 +3 位作者 韩耀宗 雷晓辉 蒋云钟 宋新山 《Journal of Donghua University(English Edition)》 EI CAS 2013年第4期323-329,共7页
Increasing complexity of distributed hydrological model (DHM) has lowered the efficiency of convergence.In this study,global sensitivity analysis (SA) was introduced by combining multiobjective (MO) optimization... Increasing complexity of distributed hydrological model (DHM) has lowered the efficiency of convergence.In this study,global sensitivity analysis (SA) was introduced by combining multiobjective (MO) optimization for DHM calibration.Latin Hypercube-once at a time (LH-OAT) was adopted in global parameter SA to obtain relative sensitivity of model parameter,which can be categorized into different sensitivity levels.Two comparative study cases were conducted to present the efficiency and feasibility by combining SA with MO(SA-MO).WetSpa model with non-dominated sorting genetic algorithm-Ⅱ (NSGA-Ⅱ) algorithm and EasyDHM model with multi-objective sequential complex evolutionary metropolis-uncertainty analysis (MOSCEM-UA)algorithm were adopted to demonstrate the general feasibility of combining SA in optimization.Results showed that the LH-OAT was globally effective in selecting high sensitivity parameters.It proves that using parameter from high sensitivity groups results in higher convergence efficiency.Study case Ⅰ showed a better Pareto front distribution and convergence compared with model calibration without SA.Study case Ⅱ indicated a more efficient convergence of parameters in sequential evolution of MOSCEM-UA under the same iteration.It indicates that SA-MO is feasible and efficient for high dimensional DHM calibration. 展开更多
关键词 distributed hydrological model (DHM) optimization sensitivity analysis multi-objective (MO) convergence efficiency calibrationCLC number:TV211.1+1Document code:AArticle ID:1672-5220(2013)04-0323-07
在线阅读 下载PDF
Multi-Objective Rule System Based Control Model with Tunable Parameters for Swarm Robotic Control in Confined Environment
7
作者 Yuan Wang Lining Xing +2 位作者 Junde Wang Tao Xie Lidong Chen 《Complex System Modeling and Simulation》 EI 2024年第1期33-49,共17页
Enhancing the adaptability of Unmanned Aerial Vehicle(UAV)swarm control models to cope with different complex working scenarios is an important issue in this research field.To achieve this goal,control model with tuna... Enhancing the adaptability of Unmanned Aerial Vehicle(UAV)swarm control models to cope with different complex working scenarios is an important issue in this research field.To achieve this goal,control model with tunable parameters is a widely adopted approach.In this article,an improved UAV swarm control model with tunable parameters namely Multi-Objective O-Flocking(MO O-Flocking)is proposed.The MO O-Flocking model is a combination of a multi rule control system and a virtual-physical-law based control model with tunable parameters.To achieve multi-objective parameter tuning,a multi-objective parameter tuning method namely Improved Strength Pareto Evolutionary Algorithm 2(ISPEA2)is designed.Simulation experiment scenarios include six target orientation scenarios with different kinds of objectives.Experimental results show that both the ISPEA2 algorithm and MO O-Flocking control model have good performance in their experiment scenarios. 展开更多
关键词 swarm robotics flocking model parameter tuning multi-objective optimization HEURISTICS
原文传递
基于大语言模型的交互式水文模型参数优化特性——以HBV和VIC模型为例
8
作者 汤业海 唐雄朋 +4 位作者 高超 章四龙 胡彩虹 王国庆 刘艳丽 《水科学进展》 北大核心 2025年第5期818-831,共14页
复杂物理分布式水文模型计算成本高昂,传统全局优化算法因需大量物理模型运算而难以适用于此类优化问题。以较少次数的物理模型运行寻找最优参数,对于复杂模型的优化迭代求解具有重要意义。本文提出基于大语言模型(Large Language Model... 复杂物理分布式水文模型计算成本高昂,传统全局优化算法因需大量物理模型运算而难以适用于此类优化问题。以较少次数的物理模型运行寻找最优参数,对于复杂模型的优化迭代求解具有重要意义。本文提出基于大语言模型(Large Language Models,LLMs)的智能交互式参数优化框架,以HBV和VIC模型为例系统评估了6种主流LLMs在水文模型参数优化中的表现。结果表明:①LLMs凭借对参数物理含义和反馈指标的深度理解,平均仅需45次迭代即可达到95%最优解,显著优于传统算法(100次以上);②LLMs在低中维参数空间(参数数量≤6)表现优异,在高维参数任务中其水文模型参数优化性能衰减严重,但推理型模型展现出更强鲁棒性;③专家知识引导策略下VIC模型平均纳什效率系数较零知识策略提升0.14,上下文记忆机制有效增强了优化稳定性。本文将LLMs引入水文模型参数优化过程,证明LLMs“诊断—反馈—调整”在模型参数优化中的有效性,可为大语言模型赋能科学研究的范式创新提供参考。 展开更多
关键词 水文模型 参数优化 大语言模型 领域知识 上下文记忆
在线阅读 下载PDF
基于神经常微分方程的水文模型参数优化方法研究
9
作者 覃相钊 梁忠民 +4 位作者 赵建飞 李彬权 段雅楠 胡义明 王军 《湖泊科学》 北大核心 2025年第3期1000-1010,共11页
流域水文模型参数对水文模拟预报的精度具有重要影响。在水文模型的数学表达由差分形式向微分形式发展的背景下,如何利用微分形式水文模型过程连续、时间尺度灵活的特点进行模型参数优化是值得研究的问题。本文提出一种基于神经常微分方... 流域水文模型参数对水文模拟预报的精度具有重要影响。在水文模型的数学表达由差分形式向微分形式发展的背景下,如何利用微分形式水文模型过程连续、时间尺度灵活的特点进行模型参数优化是值得研究的问题。本文提出一种基于神经常微分方程(NODE)的水文模型参数优化方法,将神经网络嵌入水文模型的微分动力系统,使用常微分方程数值求解器正向模拟连续水文过程,计算损失函数并反向传播梯度信息以更新神经网络参数,从而实现水文模型参数优化。以新安江模型为例,设计了理想数值实验和典型流域应用两种验证方案,并与SCE-UA优化方法进行了对比。结果显示,基于NODE优化方法确定的新安江模型参数,与理想参数“真值”的误差平均不超过9.8%;相较于SCE-UA方法,NODE得到的优化参数对流量过程具有更高的模拟精度。研究表明,基于NODE的参数优化方法通过微分方程正向求解和梯度信息反向传播,可有效搜索参数空间,适用于微分形式水文模型的参数优化问题。 展开更多
关键词 神经常微分方程 参数优化 水文模型 深度学习 新安江模型
在线阅读 下载PDF
Control of water contamination on side window of road vehicles by A-pillar section parameter optimization
10
作者 Li Xin Xing-jun Hu Jing-yu Wang 《Journal of Hydrodynamics》 SCIE EI CSCD 2020年第6期1138-1150,共13页
The water contamination on the side windows of moving vehicles is a crucial issue in improving the driving safety and the comfort.In this paper,an effective optimization method is proposed to reduce the water contamin... The water contamination on the side windows of moving vehicles is a crucial issue in improving the driving safety and the comfort.In this paper,an effective optimization method is proposed to reduce the water contamination on the side windows of automobiles.The accuracy and the efficiency of the numerical simulation are improved by using the lattice Boltzmann method,and the Lagrangian particle tracking method.Optimized parameters are constructed on the basis of the occurrence of the water deposition on a vehicle’s side window.The water contamination area of the side window and the aerodynamic drag are considered simultaneously in the design process;these two factors are used to form the multi-objective optimization function in the genetic algorithm(GA)method.The approximate model,the boundary-seeded domain method,and the GA method are combined in this study to enhance the optimization efficiency.After optimization,the optimal parameters for the A-pillar section are determined by setting the boundary to an area of W=7.77 mm,L=1.27 mm and H=11.22 mm.The side window’s soiling area in the optimized model is reduced by 66.93%,and the aerodynamic drag is increased by 0.41%only,as compared with the original model.It is shown that the optimization method can effectively solve the water contamination problem of side windows. 展开更多
关键词 Water contamination aerodynamic drag A-pillar section parameters multi-objective optimization approximate model genetic algorithm
原文传递
山区河流洪水预报中水文模型参数优化分析
11
作者 刘振宇 高素坤 《山东水利》 2025年第8期33-35,共3页
山区河流洪水预报通过构建高精度水文模型并优化关键参数,实现对复杂地形降雨-径流过程的精准模拟与预警。文章阐述了构建水文模型时要素整合与空间分辨率配置的方法,介绍了基于敏感性分析、多目标演化算法与混合优化策略对土壤曲线数... 山区河流洪水预报通过构建高精度水文模型并优化关键参数,实现对复杂地形降雨-径流过程的精准模拟与预警。文章阐述了构建水文模型时要素整合与空间分辨率配置的方法,介绍了基于敏感性分析、多目标演化算法与混合优化策略对土壤曲线数、导水率与河道阻力系数等参数进行校准的技术要点,并通过典型案例验证了优化后模型在洪峰预测精度提高(NSE由0.65提升至0.84)、RMSE显著降低及预报提前期延长等效果。结果表明:自动化参数优化可大幅提升山区洪水预报可靠性,为防洪调度与风险管理提供科学支撑。 展开更多
关键词 山区河流 洪水预报 水文模型 参数优化
在线阅读 下载PDF
Development of an integrated modeling system for improved multi-objective reservoir operation
12
作者 Lei WANG Cho Thanda NYUNT +3 位作者 Toshio KOIKE Oliver SAAVEDRA Lan Chau NGUYEN Tran van SAP 《Frontiers of Structural and Civil Engineering》 SCIE EI 2010年第1期47-55,共9页
Reservoir is an efficient way for flood control and improving all sectors related to water resources in the integrated water resources management.Moreover,multiobjective reservoir plays a significant role in the devel... Reservoir is an efficient way for flood control and improving all sectors related to water resources in the integrated water resources management.Moreover,multiobjective reservoir plays a significant role in the development of a country’s economy especially in developing countries.All multi-objective reservoirs have conflicts and disputes in flood control and water use,which makes the operator a great challenge in the decision of reservoir operation.For improved multi-objective reservoir operation,an integrated modeling system has been developed by incorporating a global optimization system(SCE-UA)into a distributed biosphere hydrological model(WEB-DHM)coupled with the reservoir routing module.The new integrated modeling system has been tested in the Da River subbasin of the Red River and showed the capability of reproducing observed reservoir inflows and optimizing the multi-objective reservoir operation.First,the WEB-DHM was calibrated for the inflows to the Hoa Binh Reservoir in the Da River.Second,the WEB-DHM coupled with the reservoir routing module was tested by simulating the reservoir water level,when using the observed dam outflows as the reservoir release.Third,the new integrated modeling system was evaluated by optimizing the operation rule of the Hoa Binh Reservoir from 1 June to 28 July 2006,which covered the annual largest flood peak.By using the optimal rule for the reservoir operation,the annual largest flood peak at downstream control point(Ben Ngoc station)was successfully reduced(by about 2.4 m for water level and 2500 m^(3)·s^(-1) for discharge);while after the simulation periods,the reservoir water level was increased by about 20 m that could supply future water use. 展开更多
关键词 distributed biosphere hydrological model(WEB-DHM) optimization multi-objective reservoir the Red River basin
原文传递
水文模型参数敏感性分析方法评述 被引量:46
13
作者 宋晓猛 张建云 +2 位作者 占车生 王小军 刘翠善 《水利水电科技进展》 CSCD 北大核心 2015年第6期105-112,共8页
针对水文模型敏感性分析中存在的诸多问题,分析水文模型参数敏感性分析在模型构建及应用过程中的主要作用及其与不确定性分析和参数优化之间的联系,总结敏感性分析方法的3种分类,并探讨水文模型中常用的筛选法、回归分析法、基于方差的... 针对水文模型敏感性分析中存在的诸多问题,分析水文模型参数敏感性分析在模型构建及应用过程中的主要作用及其与不确定性分析和参数优化之间的联系,总结敏感性分析方法的3种分类,并探讨水文模型中常用的筛选法、回归分析法、基于方差的分析方法及基于代理模型技术的分析方法等4种关键技术方法,剖析水文模型参数敏感性分析方法的适用条件及优缺点,回顾各种方法在水文模型中的研究现状,提出水文模型参数敏感性分析的研究框架与步骤,指出水文模型参数敏感性分析的计算效率、可靠性和参数的相关性是未来的主要研究方向。 展开更多
关键词 水文模型 敏感性分析 参数识别 不确定性分析 参数优化
在线阅读 下载PDF
分布式水文模型的参数率定及敏感性分析探讨 被引量:87
14
作者 王中根 夏军 +2 位作者 刘昌明 欧春平 张永勇 《自然资源学报》 CSCD 北大核心 2007年第4期649-655,共7页
参数率定与敏感性分析是分布式水文模型应用和发展中的难点问题,论文对当前典型的、应用比较成功的全局最优化参数率定和敏感性分析方法进行归纳和分析,包括:遗传算法(Genetic Algorithm)、SCE-UA算法(Shuffled Complex Evolution)、贝... 参数率定与敏感性分析是分布式水文模型应用和发展中的难点问题,论文对当前典型的、应用比较成功的全局最优化参数率定和敏感性分析方法进行归纳和分析,包括:遗传算法(Genetic Algorithm)、SCE-UA算法(Shuffled Complex Evolution)、贝叶斯方法(Bayesian Method)、RSA方法(Regionalized Sensitivity Analysis)、GLUE方法(Generalized Likelihood Uncertainty Estimation)等等。并对计算机自动优化方法和人工参数调试方法的利弊进行讨论,展望了分布式水文模型的参数率定与敏感性分析的发展方向。 展开更多
关键词 分布式模型 参数率定 敏感性分析 优化方法
在线阅读 下载PDF
分布式水文模型EasyDHM(Ⅰ):理论方法 被引量:35
15
作者 雷晓辉 廖卫红 +1 位作者 蒋云钟 王浩 《水利学报》 EI CSCD 北大核心 2010年第7期786-794,共9页
介绍了自主开发的分布式水文模型EasyDHM的空间单元离散方式、主要理论模块以及相应的模型软件系统MWEasyDHM。EasyDHM的空间离散采用通用子流域划分算法,很大程度上扩展了分布式水文模型的通用性。同时,它支持多种产汇流算法,还支持用... 介绍了自主开发的分布式水文模型EasyDHM的空间单元离散方式、主要理论模块以及相应的模型软件系统MWEasyDHM。EasyDHM的空间离散采用通用子流域划分算法,很大程度上扩展了分布式水文模型的通用性。同时,它支持多种产汇流算法,还支持用户对主要产汇流参数的敏感性分析和参数优化,以优化模型模拟效果。 展开更多
关键词 分布式水文模型 EasyDHM DEM 敏感性分析 参数优化
在线阅读 下载PDF
分布式水文模型EasyDHM(Ⅱ):应用实例 被引量:30
16
作者 雷晓辉 蒋云钟 +1 位作者 王浩 田雨 《水利学报》 EI CSCD 北大核心 2010年第8期893-899,907,共8页
本文介绍了分布式水文模型EasyDHM在汉江上游流域的应用实例。通过采用EasyDHM中的EasyDHM产流模型、马斯京干汇流模型、LH-OAT敏感性分析方法和SCE-UA参数优化方法等,对汉江上游流域进行了水文模拟及参数率定。由参数敏感性及参数优化... 本文介绍了分布式水文模型EasyDHM在汉江上游流域的应用实例。通过采用EasyDHM中的EasyDHM产流模型、马斯京干汇流模型、LH-OAT敏感性分析方法和SCE-UA参数优化方法等,对汉江上游流域进行了水文模拟及参数率定。由参数敏感性及参数优化结果可知,各产汇流参数敏感性随空间分布的不同有一定差异,而随着时间系列的延长其变化并不大,这不仅说明了按水文站进行参数分区的必要性,也说明了在长系列水文模拟中,可仅对指定校正期进行参数优化。而参数优化后能较大程度提高水文模型模拟精度,则证实了参数优化的必要性以及本模型所选取参数优化算法的合理性。 展开更多
关键词 水文模型 EasyDHM SCE-UA LH-OAT 敏感性分析 参数优化
在线阅读 下载PDF
水文模型参数优选遗传算法的应用 被引量:48
17
作者 陆桂华 郦建强 杨晓华 《水利学报》 EI CSCD 北大核心 2004年第2期50-56,共7页
本文对遗传算法进行了详细地分析,建立了实编码单纯形混合加速遗传算法,并将其与二进制加速遗传算法、实编码加速遗传算法、单纯形法、模式搜索法进行了比较。数值模拟和新安江模型的实例应用表明,二进制加速遗传算法、实编码加速遗传... 本文对遗传算法进行了详细地分析,建立了实编码单纯形混合加速遗传算法,并将其与二进制加速遗传算法、实编码加速遗传算法、单纯形法、模式搜索法进行了比较。数值模拟和新安江模型的实例应用表明,二进制加速遗传算法、实编码加速遗传算法、混合加速遗传算法的全局优化性能比单纯形法和模式搜索法好,而其中混合加速遗传算法不仅有较好的全局优化性能和稳定性,而且在调用目标函数的次数相同的情况下,精度较高。 展开更多
关键词 参数优选 水文模型 遗传算法 单纯形法 模式搜索法
在线阅读 下载PDF
三水源新安江模型参数优化及其应用 被引量:12
18
作者 华舒愉 顾圣平 +2 位作者 贺军 张楠 郑贵桥 《水电能源科学》 北大核心 2013年第2期23-26,242,共5页
三水源新安江模型含有比其他模型更多的参数,参数间的相互作用使其成为影响模型模拟结果的重要因素。为使人工模拟结果与实际水文测量数据及水文现象较为一致,基于三水源新安江模型结构及参数敏感性建立参数优化率定的目标函数,并应用... 三水源新安江模型含有比其他模型更多的参数,参数间的相互作用使其成为影响模型模拟结果的重要因素。为使人工模拟结果与实际水文测量数据及水文现象较为一致,基于三水源新安江模型结构及参数敏感性建立参数优化率定的目标函数,并应用于竹竿河流域,取得了较好的率定及校验结果,证明该模型及优化方法有效可行。 展开更多
关键词 水文模型 新安江模型 参数优化 应用
原文传递
水文模型参数多目标率定及最优非劣解优选 被引量:16
19
作者 周建中 卢韦伟 +3 位作者 孙娜 叶磊 张海荣 陈璐 《水文》 CSCD 北大核心 2017年第2期1-7,共7页
针对概念性水文模型参数众多、相互制约,且多目标参数优化率定最优参数求解困难、易受决策者主观因素影响的问题,采用多目标优化算法对水文模型参数进行率定,得到模型参数最优非劣解集,在此基础上,引入最小最大后悔值决策理论,并结合Par... 针对概念性水文模型参数众多、相互制约,且多目标参数优化率定最优参数求解困难、易受决策者主观因素影响的问题,采用多目标优化算法对水文模型参数进行率定,得到模型参数最优非劣解集,在此基础上,引入最小最大后悔值决策理论,并结合Pareto支配基本理论,提出了一种多目标最优非劣解选取准则。以柘溪流域为研究对象,采用三目标MOSCDE优化率定新安江模型的参数,并与单目标SCE-UA优化结果进行对比分析。结果表明,提出的非劣解选取方法可以有效从大规模非劣解集中筛选出最优非劣解,大大缩短参数率定耗时。 展开更多
关键词 水文模型参数率定 多目标优化 参数最优非劣解优选 最小最大后悔值决策
在线阅读 下载PDF
粒子群算法在新安江模型参数率定中的应用 被引量:37
20
作者 刘苏宁 甘泓 魏国孝 《水利学报》 EI CSCD 北大核心 2010年第5期537-544,共8页
选用1997年中国水文预报竞赛中降雨、蒸发、径流数据,重点研究在应用粒子群优化算法(PSO)率定新安江模型参数时,PSO算法中惯性权重、加速度常数和种群规模3个参数对算法性能的影响,并优选出适合于该问题的最优PSO参数区间。在此基础上... 选用1997年中国水文预报竞赛中降雨、蒸发、径流数据,重点研究在应用粒子群优化算法(PSO)率定新安江模型参数时,PSO算法中惯性权重、加速度常数和种群规模3个参数对算法性能的影响,并优选出适合于该问题的最优PSO参数区间。在此基础上率定出与研究流域匹配的新安江模型参数,定量评价了降雨径流模拟效果的优劣。另外,对PSO算法的效率和稳定性进行了简要分析。研究结果表明,PSO算法率定新安江模型参数的收敛效率较传统方法明显提高,稳定性普遍较好。 展开更多
关键词 径流模拟 新安江水文模型 PSO算法 算法性能分析 参数选择
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部