期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
A Surrogate-assisted Multi-objective Grey Wolf Optimizer for Empty-heavy Train Allocation Considering Coordinated Line Utilization Balance 被引量:1
1
作者 Zhigang Du Shaoquan Ni +1 位作者 Jeng-Shyang Pan Shuchuan Chu 《Journal of Bionic Engineering》 2025年第1期383-397,共15页
This paper introduces the Surrogate-assisted Multi-objective Grey Wolf Optimizer(SMOGWO)as a novel methodology for addressing the complex problem of empty-heavy train allocation,with a focus on line utilization balanc... This paper introduces the Surrogate-assisted Multi-objective Grey Wolf Optimizer(SMOGWO)as a novel methodology for addressing the complex problem of empty-heavy train allocation,with a focus on line utilization balance.By integrating surrogate models to approximate the objective functions,SMOGWO significantly improves the efficiency and accuracy of the optimization process.The effectiveness of this approach is evaluated using the CEC2009 multi-objective test function suite,where SMOGWO achieves a superiority rate of 76.67%compared to other leading multi-objective algorithms.Furthermore,the practical applicability of SMOGWO is demonstrated through a case study on empty and heavy train allocation,which validates its ability to balance line capacity,minimize transportation costs,and optimize the technical combination of heavy trains.The research highlights SMOGWO's potential as a robust solution for optimization challenges in railway transportation,offering valuable contributions toward enhancing operational efficiency and promoting sustainable development in the sector. 展开更多
关键词 Surrogate-assisted model Grey wolf optimizer multi-objective optimization Empty-heavy train allocation
在线阅读 下载PDF
Optimizing high-speed train tracking intervals with an improved multi-objective grey wolf
2
作者 Lin Yue Meng Wang +1 位作者 Peng Wang Jinchao Mu 《Railway Sciences》 2025年第3期322-336,共15页
Purpose-With the rapid advancement of China’s high-speed rail network,the density of train operations is on the rise.To address the challenge of shortening train tracking intervals while enhancing transportation effi... Purpose-With the rapid advancement of China’s high-speed rail network,the density of train operations is on the rise.To address the challenge of shortening train tracking intervals while enhancing transportation efficiency,the multi-objective dynamic optimization of the train operation process has emerged as a critical issue.Design/methodology/approach-Train dynamic model is established by analyzing the force of the train in the process of tracing operation.The train tracing operation model is established according to the dynamic mechanical model of the train tracking process,and the dynamic optimization analysis is carried out with comfort,energy saving and punctuality as optimization objectives.To achieve multi-objective dynamic optimization,a novel train tracking operation calculation method is proposed,utilizing the improved grey wolf optimization algorithm(MOGWO).The proposed method is simulated and verified based on the train characteristics and line data of CR400AF electric multiple units.Findings-The simulation results prove that the optimized MOGWO algorithm can be computed quickly during train tracks,the optimum results can be given within 5s and the algorithm can converge effectively in different optimization target directions.The optimized speed profile of the MOGWO algorithm is smoother and more stable and meets the target requirements of energy saving,punctuality and comfort while maximally respecting the speed limit profile.Originality/value-The MOGWO train tracking interval optimization method enhances the tracking process while ensuring a safe tracking interval.This approach enables the trailing train to operate more comfortably,energy-efficiently and punctually,aligning with passenger needs and industry trends.The method offers valuable insights for optimizing the high-speed train tracking process. 展开更多
关键词 tracking running train dynamics model multi-objective optimization MOGWO CR400AF electric multiple units
在线阅读 下载PDF
A multi-objective optimization approach for the virtual coupling train set driving strategy
3
作者 Junting Lin Maolin Li Xiaohui Qiu 《Railway Engineering Science》 2025年第2期169-191,共23页
This paper presents an improved virtual coupling train set(VCTS)operation control framework to deal with the lack of opti-mization of speed curves in the traditional techniques.The framework takes into account the tem... This paper presents an improved virtual coupling train set(VCTS)operation control framework to deal with the lack of opti-mization of speed curves in the traditional techniques.The framework takes into account the temporary speed limit on the railway line and the communication delay between trains,and it uses a VCTS consisting of three trains as an experimental object.It creates the virtual coupling train tracking and control process by improving the driving strategy of the leader train and using the leader-follower model.The follower train uses the improved speed curve of the leader train as its speed refer-ence curve through knowledge migration,and this completes the multi-objective optimization of the driving strategy for the VCTS.The experimental results confirm that the deep reinforcement learning algorithm effectively achieves the optimization goal of the train driving strategy.They also reveal that the intrinsic curiosity module prioritized experience replay dueling double deep Q-network(ICM-PER-D3QN)algorithm outperforms the deep Q-network(DQN)algorithm in optimizing the driving strategy of the leader train.The ICM-PER-D3QN algorithm enhances the leader train driving strategy by an average of 57%when compared to the DQN algorithm.Furthermore,the particle swarm optimization(PSO)-based model predictive control(MPC)algorithm has also demonstrated tracking accuracy and further improved safety during VCTS operation,with an average increase of 37.7%in tracking accuracy compared to the traditional MPC algorithm. 展开更多
关键词 High-speed trains Virtual coupling multi-objective optimization Deep reinforcement learning Knowledge transfer model predictive control
在线阅读 下载PDF
Multi-objective optimization design method of the high-speed train head 被引量:22
4
作者 Meng-ge YU Ji-ye ZHANG Wei-hua ZHANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2013年第9期631-641,共11页
With the continuous improvement of the train speed, the dynamic environment of trains turns out to be aerodynamic domination. Solving the aerodynamic problems has become one of the key factors of the high-speed train ... With the continuous improvement of the train speed, the dynamic environment of trains turns out to be aerodynamic domination. Solving the aerodynamic problems has become one of the key factors of the high-speed train head design. Given that the aerodynamic drag is a significant factor that restrains train speed and energy conservation, reducing the aerodynamic drag is thus an important consideration of the high-speed train head design. However, the reduction of the aerodynamic drag may increase other aerodynamic forces (moments), possibly deteriorating the operational safety of the train. The multi-objective optimization design method of the high-speed train head was proposed in this paper, and the aerodynamic drag and load reduction factor were set to be optimization objectives. The automatic multi-objective optimization design of the high-speed train head can be achieved by integrating a series of procedures into the multi-objective optimization algorithm, such as the establishment of 3D parametric model, the aerodynamic mesh generation, the calculation of the flow field around the train, and the vehicle system dynamics. The correlation between the optimization objectives and optimization variables was analyzed to obtain the most important optimization variables, and a further analysis of the nonlinear relationship between the key optimization variables and the optimization objectives was obtained. After optimization, the aerodynamic drag of optimized train was reduced by up to 4.15%, and the load reduction factor was reduced by up to 1.72%. 展开更多
关键词 High-speed train multi-objective optimization Parametric model Aerodynamic drag Load reduction factor
原文传递
Research Progress of Aerodynamic Multi-Objective Optimization on High-Speed Train Nose Shape 被引量:1
5
作者 Zhiyuan Dai Tian Li +1 位作者 Weihua Zhang Jiye Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1461-1489,共29页
The aerodynamic optimization design of high-speed trains(HSTs)is crucial for energy conservation,environmental preservation,operational safety,and speeding up.This study aims to review the current state and progress o... The aerodynamic optimization design of high-speed trains(HSTs)is crucial for energy conservation,environmental preservation,operational safety,and speeding up.This study aims to review the current state and progress of the aerodynamic multi-objective optimization of HSTs.First,the study explores the impact of train nose shape parameters on aerodynamic performance.The parameterization methods involved in the aerodynamic multiobjective optimization ofHSTs are summarized and classified as shape-based and disturbance-based parameterizationmethods.Meanwhile,the advantages and limitations of each parameterizationmethod,aswell as the applicable scope,are briefly discussed.In addition,the NSGA-II algorithm,particle swarm optimization algorithm,standard genetic algorithm,and other commonly used multi-objective optimization algorithms and the improvements in the field of aerodynamic optimization for HSTs are summarized.Second,this study investigates the aerodynamic multi-objective optimization technology for HSTs using the surrogate model,focusing on the Kriging surrogate models,neural network,and support vector regression.Moreover,the construction methods of surrogate models are summarized,and the influence of different sample infill criteria on the efficiency ofmulti-objective optimization is analyzed.Meanwhile,advanced aerodynamic optimization methods in the field of aircraft have been briefly introduced to guide research on the aerodynamic optimization of HSTs.Finally,based on the summary of the research progress of the aerodynamicmulti-objective optimization ofHSTs,future research directions are proposed,such as intelligent recognition technology of characteristic parameters,collaborative optimization of multiple operating environments,and sample infill criterion of the surrogate model. 展开更多
关键词 High-speed train multi-objective optimization PARAMETERIZATION optimization algorithm surrogate model sample infill criterion
在线阅读 下载PDF
Research on Optimization of Freight Train ATO Based on Elite Competition Multi-Objective Particle Swarm Optimization 被引量:1
6
作者 Lingzhi Yi Renzhe Duan +3 位作者 Wang Li Yihao Wang Dake Zhang Bo Liu 《Energy and Power Engineering》 2021年第4期41-51,共11页
<div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics ... <div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics model of the freight train operation process is established based on the safety and the freight train dynamics model in the process of its operation. The algorithm of combining elite competition strategy with multi-objective particle swarm optimization technology is introduced, and the winning particles are obtained through the competition between two elite particles to guide the update of other particles, so as to balance the convergence and distribution of multi-objective particle swarm optimization. The performance comparison experimental results verify the superiority of the proposed algorithm. The simulation experiments of the actual line verify the feasibility of the model and the effectiveness of the proposed algorithm. </div> 展开更多
关键词 Freight train Automatic train Operation Dynamics model Competitive multi-objective Particle Swarm optimization Algorithm (CMOPSO) multi-objective optimization
在线阅读 下载PDF
Study on Optimization of Urban Rail Train Operation Control Curve Based on Improved Multi-Objective Genetic Algorithm
7
作者 Xiaokan Wang Qiong Wang 《Journal on Internet of Things》 2021年第1期1-9,共9页
A multi-objective improved genetic algorithm is constructed to solve the train operation simulation model of urban rail train and find the optimal operation curve.In the train control system,the conversion point of op... A multi-objective improved genetic algorithm is constructed to solve the train operation simulation model of urban rail train and find the optimal operation curve.In the train control system,the conversion point of operating mode is the basic of gene encoding and the chromosome composed of multiple genes represents a control scheme,and the initial population can be formed by the way.The fitness function can be designed by the design requirements of the train control stop error,time error and energy consumption.the effectiveness of new individual can be ensured by checking the validity of the original individual when its in the process of selection,crossover and mutation,and the optimal algorithm will be joined all the operators to make the new group not eliminate on the best individual of the last generation.The simulation result shows that the proposed genetic algorithm comparing with the optimized multi-particle simulation model can reduce more than 10%energy consumption,it can provide a large amount of sub-optimal solution and has obvious optimization effect. 展开更多
关键词 multi-objective improved genetic algorithm urban rail train train operation simulation multi particle optimization model
在线阅读 下载PDF
Research on the Infuence of Multiple Parameters on the Responses of a B-type Subway Train 被引量:2
8
作者 Yanwen Liu Bing Yang +3 位作者 Shoune Xiao Tao Zhu Guangwu Yang Ruixian Xiu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第4期313-330,共18页
To obtain improved comprehensive crashworthiness criteria for a B-type subway train,the infuence laws of the vehicle design collision weight M and empty stroke D on the train’s collision responses were investigated,a... To obtain improved comprehensive crashworthiness criteria for a B-type subway train,the infuence laws of the vehicle design collision weight M and empty stroke D on the train’s collision responses were investigated,and multiobjective optimization and decision-making were performed to minimize TS(total compression displacement along the moving train)and TAMA(the overall mean acceleration along the moving train).Firstly,a one-dimensional train collision dynamics model was established and verifed by comparing with the results of the fnite element model.Secondly,based on the dynamics model,the infuence laws of M and D on the collision responses,such as the energy-absorbing devices’displacements and absorbed energy,vehicles’velocity and acceleration,TS,TAMA and the coupling correlation efect were investigated.Then,surrogate models for TS and TAMA were developed using the optimal Latin hypercube method(OLHD)and response surface method(RSM),and multi-objective optimization was conducted using the particle swarm optimization algorithm method(MPOSO).Finally,the entropy method was used to obtain the weight coefcients for TS and TAMA,and multi-objective decision-making was performed.The results indicate that D and M signifcantly afect the compression displacements and energy absorption of the frst three collision interfaces,but have limited impact on the last three collision interfaces.The velocity versus time curves of vehicle M1 and M2 are shifted and parallel with diferent D.However,the velocity versus time curves of all the vehicles are shifted but gradually divergent with diferent M.The maximum collision instantaneous accelerations of the vehicles are directly determined by M,but are only slightly afected by D.Under the coupling efect,all concerned collision responses are strongly correlated with M;however,the responses are weakly correlated with D except for the compression displacement at the M2-M3 collision interface and the maximum collision instantaneous acceleration of vehicle M2.The comprehensive crashworthiness criteria of the B-type subway train were signifcantly improved after multi-objective optimization and decision-making.The research provides more theoretical and engineering application references for the subway train crashworthiness design. 展开更多
关键词 train collision response Multi-body dynamics model Experiment design Surrogate model Multiobjective optimization Entropy method multi-objective decision-making
在线阅读 下载PDF
基于人工势场的虚拟编组自适应模型预测控制 被引量:1
9
作者 林俊亭 倪铭君 《北京航空航天大学学报》 北大核心 2025年第10期3273-3285,共13页
现今,列车高速度、高密度追踪控制对编队列车运行的安全性提出更高的要求。为满足人们对列车运行过程中自适应性和准确性的需求,提出一种基于人工势场的虚拟编组(VC)自适应模型预测控制(MPC)方法。将VC列车作为研究对象,采用MPC方法建... 现今,列车高速度、高密度追踪控制对编队列车运行的安全性提出更高的要求。为满足人们对列车运行过程中自适应性和准确性的需求,提出一种基于人工势场的虚拟编组(VC)自适应模型预测控制(MPC)方法。将VC列车作为研究对象,采用MPC方法建立基于列车平衡态的动力学模型,以控制精度和平稳性、安全性为优化目标,并将基于人工势场设置的防撞函数加入目标函数,从而实现编队的防撞控制;分析不同时域参数对系统控制精度和计算效率的影响作用,设计对应的适应度函数,基于遗传算法(GA)求得不同工况下的最优时域参数组合,并制定时域参数更新策略,在确保列车编组准确控制的同时提高系统的实时性;在MATLAB平台上搭建4列车追踪运行场景,仿真验证所提方法的有效性。结果表明:相较于传统的模型预测控制器,基于人工势场的模型预测控制器在间隔控制上准确度提高了94.8%,可有效避免列车间发生碰撞,保证了列车运行的安全性;另外,采用自适应控制律的控制器可根据列车运行状态对系统进行实时调整,在确保高控制精度的前提下,计算效率提高10%。研究结果验证了所提方法的可行性,提高了控制器的综合控制性能,并为进一步优化编队控制和保障列车安全运行提供参考。 展开更多
关键词 虚拟编组 模型预测控制 人工势场 遗传算法 列车追踪运行优化
原文传递
考虑牵引链温度场的货运列车动态建模及优化算法研究
10
作者 陶新坤 冯晓云 +2 位作者 郭佑星 王青元 孙鹏飞 《自动化学报》 北大核心 2025年第7期1562-1584,共23页
货运列车在运行中表现出时变行为,而静态机理模型难以捕捉这些变化,导致优化结果与列车运行状态不相符.此外,不当的驾驶策略可能导致电力设备温度过高.为此,提出一种用于评估列车能耗与温度的动态建模方法,并设计一种大规模自适应多策... 货运列车在运行中表现出时变行为,而静态机理模型难以捕捉这些变化,导致优化结果与列车运行状态不相符.此外,不当的驾驶策略可能导致电力设备温度过高.为此,提出一种用于评估列车能耗与温度的动态建模方法,并设计一种大规模自适应多策略多目标竞争群优化器(LA-MOCSO).具体而言,首先,建立“列车-线路-电网”的机理模型,用于计算多列车运行过程中的功率和网压;提出一种融合机理模型、数据驱动模型和补偿模型的混合建模方法,用于捕捉列车和环境的时变特征.其次,建立电力设备的温升模型,并设计基于拉普拉斯变换的快速求解方法.然后,构建一个优化牵引供电系统能效与电力设备温度的多目标优化模型;提出一种LA-MOCSO算法,用于解决多列车长距离运行的大规模多目标优化问题.最后,实验验证了动态建模方法的有效性;通过与四种经典算法的比较,验证了所提算法的性能;结果表明多列车综合优化方法可以降低变电所18.2%的能耗,确保电力设备处于适宜的温度环境. 展开更多
关键词 动态建模 列车节能 大规模综合优化 数据驱动 列车-线路-电网-温度场
在线阅读 下载PDF
考虑调车作业约束的城市轨道交通回库列车股道运用多目标优化模型 被引量:1
11
作者 张增超 徐鹏 +3 位作者 辛丽平 范锐 李辰 吴泽霖 《城市轨道交通研究》 北大核心 2025年第1期212-216,共5页
[目的]为改善调车作业对城市轨道交通车辆段回库列车股道运用的影响,提高城市轨道交通列车检修效率,需在考虑调车作业约束的情况下对城市轨道交通回库列车股道运用进行优化。[方法]将转场列车视为回库列车,按调车入库时间分别编入早、... [目的]为改善调车作业对城市轨道交通车辆段回库列车股道运用的影响,提高城市轨道交通列车检修效率,需在考虑调车作业约束的情况下对城市轨道交通回库列车股道运用进行优化。[方法]将转场列车视为回库列车,按调车入库时间分别编入早、晚回库计划中,以最少调车次数和最小检修走行距离为目标函数,考虑调车作业约束,基于改进灰狼算法开发了一种先对单个独立回库计划(早回库、晚回库)进行规划,再对所有回库计划通盘规划的列车股道运用多目标优化模型。以天津某地铁线路车辆段的回库列车股道运用方案为算例,验证所建立优化模型的有效性和可行性。[结果及结论]通过所提模型求解得到的列车股道运用方案的走行距离比人工方案减小65.7%(其中早回库阶段减小25%,晚回库阶段减小77.7%),且列车调车次数为0。该模型能在满足城市轨道交通回库列车洗车、检修、次日发车等调车作业约束的基础上实现回库列车股道运用的最优化编排。 展开更多
关键词 城市轨道交通 回库列车 股道运用多目标优化模型 调车作业约束
在线阅读 下载PDF
考虑行调冲突的大型高铁站到发线运用优化研究 被引量:2
12
作者 张毅 李季涛 +1 位作者 孙婉婷 周天阳 《铁道运输与经济》 北大核心 2025年第3期111-121,共11页
配备有动车所的大型高铁站同时承担行车与调车2类作业,编制到发线运用计划时充分考虑行调冲突的影响对确保行车安全、提高车站运转效率具有重要意义。为此,在分析行调作业时空冲突机理基础上,将行调冲突量化整合为列车过站费用的形式,... 配备有动车所的大型高铁站同时承担行车与调车2类作业,编制到发线运用计划时充分考虑行调冲突的影响对确保行车安全、提高车站运转效率具有重要意义。为此,在分析行调作业时空冲突机理基础上,将行调冲突量化整合为列车过站费用的形式,以列车过站费用小、到发线利用均衡性强和到发线运用计划鲁棒性优为优化目标,考虑行调冲突疏解、分段解锁条件下列车进路冲突疏解等安全约束,构建到发线运用多目标优化模型,设计改进遗传算法进行求解。以某大型高铁站为例进行验证,结果表明,模型优化方案比现行方案过站费用降低了15.0%,均衡性和鲁棒性分别提升25.2%和24.9%,相邻列车缓冲时间提高14.3%,在保证行车作业安全及到发线运用计划鲁棒性的情况下,模型可减少行车作业对调车作业的时空干扰,提高车站运转效率,为大型高铁站到发线运用计划编制提供参考。 展开更多
关键词 大型高铁站 到发线运用 行调冲突 改进遗传算法 多目标优化
在线阅读 下载PDF
面向多任务训练的网络调度技术
13
作者 操佳敏 关宇 翟恩南 《信息通信技术》 2025年第5期17-23,共7页
面向生产环境中深度学习训练(DLT)场景,观察到多DLT任务之间产生严重的通信竞争,严重影响训练集群整体GPU利用率。针对这一基础问题,研制Crux,一个旨在通过缓解DLT多任务间通信竞争最大化GPU利用率的通信调度方法。Crux核心思想是将最优... 面向生产环境中深度学习训练(DLT)场景,观察到多DLT任务之间产生严重的通信竞争,严重影响训练集群整体GPU利用率。针对这一基础问题,研制Crux,一个旨在通过缓解DLT多任务间通信竞争最大化GPU利用率的通信调度方法。Crux核心思想是将最优化GPU利用率目标转化为每个DLT对GPU强度需求问题,因此文章设计一种优先考虑高GPU强度的DLT流调度算法,从而最大程度减少潜在的通信竞争。基于大规模实验显示,与Sincronia、CASSINI和TACCL等调度方案相比,Crux可将GPU利用率提高至多23%,远高于同类方法。Crux已经在工业级大模型训练集群部署并进行任务调度。 展开更多
关键词 深度学习 模型训练 通信竞争 通信调度 利用率优化 集合通信 路径选择
在线阅读 下载PDF
基于遗传算法的单线列车运行调整体系 被引量:25
14
作者 章优仕 金炜东 《西南交通大学学报》 EI CSCD 北大核心 2005年第2期147-152,共6页
针对单线列车运行的特点,提出了“相邻列车”的概念,根据此概念建立了单线列车运行调整模型,并推导了列车运行图偏差函数作为模型调整目标.鉴于列车运行调整问题的解空间太大,用一般的运筹学方法难以有效地求解,提出了基于遗传算法的优... 针对单线列车运行的特点,提出了“相邻列车”的概念,根据此概念建立了单线列车运行调整模型,并推导了列车运行图偏差函数作为模型调整目标.鉴于列车运行调整问题的解空间太大,用一般的运筹学方法难以有效地求解,提出了基于遗传算法的优化求解算法.该算法根据被调整列车的等级将原问题分解成若干子问题,并在对每个子问题求解的过程中,运用遗传算法在解空间中寻优.仿真结果显示了该模型和算法在应用于实际运行调整时的有效性和实时性. 展开更多
关键词 列车运行调整 遗传算法 优化 单线铁路 模型
在线阅读 下载PDF
最大通过能力下高速铁路运行图优化研究 被引量:9
15
作者 路超 周磊山 陈然 《铁道科学与工程学报》 CAS CSCD 北大核心 2018年第11期2746-2754,共9页
为最大限度地利用多等级列车共存的高速铁路繁忙线路通过能力,同时保证运输质量,构建高速铁路网通过能力最大化条件下的列车运行图优化模型。根据列车运行过程中不得有冲突的特点将该问题抽象为时空网络中带约束的最大独立集问题。通过... 为最大限度地利用多等级列车共存的高速铁路繁忙线路通过能力,同时保证运输质量,构建高速铁路网通过能力最大化条件下的列车运行图优化模型。根据列车运行过程中不得有冲突的特点将该问题抽象为时空网络中带约束的最大独立集问题。通过D-W分解将模型进行转化及线性松弛。采用列生成算法对有大规模决策变量的松弛问题进行求解。在松弛解的基础上设计分支定界算法求得最优可行列车最大独立运行线集。研究结果表明:所建模型具有在不同参数表示的需求场景下灵活求得兼顾运能和运输质量的有效运行图的功能。通过与求解独立集问题的常用启发式算法对比,本文方法可在保持旅行时间平均1.33%波动条件下使得通过能力值目标提高2.56%、总目标值提高4.6%。 展开更多
关键词 高速铁路 能力利用 运行图 优化模型
在线阅读 下载PDF
单线铁路列车运行调整计算机辅助决策系统研究 被引量:9
16
作者 赵强 严余松 《铁道学报》 EI CSCD 北大核心 2000年第4期1-7,共7页
列车运行调整计算机辅助决策系统 ,是铁路行车调度指挥自动化系统的关键环节。本文构造了单线铁路列车运行调整的混合 0 - 1线性优化模型 ,该模型较好地体现了列车运行计划调整、机车交路调整和车站到发线利用的协调与配合。鉴于列车运... 列车运行调整计算机辅助决策系统 ,是铁路行车调度指挥自动化系统的关键环节。本文构造了单线铁路列车运行调整的混合 0 - 1线性优化模型 ,该模型较好地体现了列车运行计划调整、机车交路调整和车站到发线利用的协调与配合。鉴于列车运行计划调整为 NPC问题 ,结合问题的实际背景 ,提出了一种有效的大系统分解算法——动态区域局部优化算法。该算法应用分枝定界法实现局部问题的优化。讨论了同向列车越行优化问题 ,并给出了同向列车越行最优性条件。对机车交路调整与车站到发线利用分别提出了复杂性为 O(n)和 O(pn) 展开更多
关键词 列车运行调整 局部优化 计算机辅助决策 单线
在线阅读 下载PDF
复线列车运行调整的满意优化模型体系及算法 被引量:3
17
作者 陈彦如 蒲云 蒋阳升 《科技通报》 北大核心 2002年第6期463-469,共7页
针对复线列车运行调整模型中各项性能指标 ,设计了适合各自特点的评价函数——满意度函数 ,并采用公正原则来完成综合满意度的建立 ,从而构造出可靠反映列车运行调整过程及调整优化规律的复线列车运行调整满意优化模型并提供有效的算法 .
关键词 满意优化模型 复线列车 运行调整模型 满意度函数 性能优化 指标体系
在线阅读 下载PDF
判别外观模型下的寻优匹配跟踪算法 被引量:3
18
作者 刘万军 刘大千 费博雯 《模式识别与人工智能》 EI CSCD 北大核心 2017年第9期791-802,共12页
针对模型匹配跟踪算法易受遮挡、复杂背景等因素影响的问题,提出判别外观模型下的寻优匹配跟踪算法.首先,提取前5帧图像的局部特征块,建立由特征块组成的训练样本集,并利用颜色、纹理特征进行聚类组建判别外观模型.然后,利用双向最优相... 针对模型匹配跟踪算法易受遮挡、复杂背景等因素影响的问题,提出判别外观模型下的寻优匹配跟踪算法.首先,提取前5帧图像的局部特征块,建立由特征块组成的训练样本集,并利用颜色、纹理特征进行聚类组建判别外观模型.然后,利用双向最优相似匹配方法进行目标检测.为了解决复杂背景干扰,提出前景划分方法约束匹配过程,得到更准确的匹配结果.最后,定期将跟踪结果加入聚类集合以更新外观模型.实验表明,由于利用多帧训练的判别外观模型及双向最优相似匹配方法,算法在局部遮挡、复杂背景等条件下的跟踪准确率较高. 展开更多
关键词 训练样本集 判别外观模型 最优相似性匹配 双向校验 目标跟踪
在线阅读 下载PDF
基于机器视觉的垃圾分类算法研究与应用 被引量:4
19
作者 王光清 李文拴 +1 位作者 党佳琦 张愉 《计算技术与自动化》 2024年第1期78-83,共6页
垃圾分类识别算法是目前研究的热点问题,本文通过引入色块追踪模块Lab颜色模型对YOLOv3算法进行优化,利用优化后的算法搭建训练模型。并针对目前垃圾类别利用网络爬虫爬取日常生活中常见的垃圾图像并进行分类,形成数据集。其次通过优化... 垃圾分类识别算法是目前研究的热点问题,本文通过引入色块追踪模块Lab颜色模型对YOLOv3算法进行优化,利用优化后的算法搭建训练模型。并针对目前垃圾类别利用网络爬虫爬取日常生活中常见的垃圾图像并进行分类,形成数据集。其次通过优化的YOLOv3算法对处理好的数据集进行模型训练,将训练后的模型进行模型检测。最后通过实际测试,优化后的YOLOv3算法识别的平均准确率达到了94.33%,与原始算法相比,优化后的算法在稳定性和准确度上都有了明显的改善。 展开更多
关键词 垃圾分类 色块追踪模块 模型训练 YOLOv3算法优化
在线阅读 下载PDF
周期模式下高速铁路车站到发线运用优化模型研究 被引量:9
20
作者 单奕嘉 聂磊 +2 位作者 乐逸祥 徐瑞华 王鹏玲 《铁道学报》 EI CAS CSCD 北大核心 2022年第8期1-13,共13页
周期化列车开行模式为铁路规律化运营提供了条件,也为旅客出行提供了高频率、规律化的服务。为适应我国周期化列车运行图的发展,车站到发线作业组织模式必须向周期化转变。本文分析高速铁路车站设备特点,用技术作业链刻画作业流程,给出... 周期化列车开行模式为铁路规律化运营提供了条件,也为旅客出行提供了高频率、规律化的服务。为适应我国周期化列车运行图的发展,车站到发线作业组织模式必须向周期化转变。本文分析高速铁路车站设备特点,用技术作业链刻画作业流程,给出到发线周期化运用方案的编制流程,提出列车接续、过表列车冲突消解和非周期化列车到发线安排3个关键技术,构建列车站内总走行时间最短、到发线运用最均衡的多目标优化模型;分析模型的最优值,基于Min-max Normalization的无量纲处理办法与线性加权法将多目标转为单目标,利用Matlab调用Cplex编程求解;以北京南站京沪高速场和济南西站为例,验证模型和算法的有效性。结果显示到发线运用指标良好并满足周期化运用要求;过表列车冲突成功消解,方案拼接后无冲突。 展开更多
关键词 高速铁路车站 到发线运用方案 周期化列车开行模式 多目标模型 优化
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部