期刊文献+
共找到256,196篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-Objective Evolutionary Framework for High-Precision Community Detection in Complex Networks
1
作者 Asal Jameel Khudhair Amenah Dahim Abbood 《Computers, Materials & Continua》 2026年第1期1453-1483,共31页
Community detection is one of the most fundamental applications in understanding the structure of complicated networks.Furthermore,it is an important approach to identifying closely linked clusters of nodes that may r... Community detection is one of the most fundamental applications in understanding the structure of complicated networks.Furthermore,it is an important approach to identifying closely linked clusters of nodes that may represent underlying patterns and relationships.Networking structures are highly sensitive in social networks,requiring advanced techniques to accurately identify the structure of these communities.Most conventional algorithms for detecting communities perform inadequately with complicated networks.In addition,they miss out on accurately identifying clusters.Since single-objective optimization cannot always generate accurate and comprehensive results,as multi-objective optimization can.Therefore,we utilized two objective functions that enable strong connections between communities and weak connections between them.In this study,we utilized the intra function,which has proven effective in state-of-the-art research studies.We proposed a new inter-function that has demonstrated its effectiveness by making the objective of detecting external connections between communities is to make them more distinct and sparse.Furthermore,we proposed a Multi-Objective community strength enhancement algorithm(MOCSE).The proposed algorithm is based on the framework of the Multi-Objective Evolutionary Algorithm with Decomposition(MOEA/D),integrated with a new heuristic mutation strategy,community strength enhancement(CSE).The results demonstrate that the model is effective in accurately identifying community structures while also being computationally efficient.The performance measures used to evaluate the MOEA/D algorithm in our work are normalized mutual information(NMI)and modularity(Q).It was tested using five state-of-the-art algorithms on social networks,comprising real datasets(Zachary,Dolphin,Football,Krebs,SFI,Jazz,and Netscience),as well as twenty synthetic datasets.These results provide the robustness and practical value of the proposed algorithm in multi-objective community identification. 展开更多
关键词 multi-objective optimization evolutionary algorithms community detection HEURISTIC METAHEURISTIC hybrid social network MODELS
在线阅读 下载PDF
A Multi-Objective Deep Reinforcement Learning Algorithm for Computation Offloading in Internet of Vehicles
2
作者 Junjun Ren Guoqiang Chen +1 位作者 Zheng-Yi Chai Dong Yuan 《Computers, Materials & Continua》 2026年第1期2111-2136,共26页
Vehicle Edge Computing(VEC)and Cloud Computing(CC)significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrain... Vehicle Edge Computing(VEC)and Cloud Computing(CC)significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrained onboard devices to nearby Roadside Unit(RSU),thereby achieving lower delay and energy consumption.However,due to the limited storage capacity and energy budget of RSUs,it is challenging to meet the demands of the highly dynamic Internet of Vehicles(IoV)environment.Therefore,determining reasonable service caching and computation offloading strategies is crucial.To address this,this paper proposes a joint service caching scheme for cloud-edge collaborative IoV computation offloading.By modeling the dynamic optimization problem using Markov Decision Processes(MDP),the scheme jointly optimizes task delay,energy consumption,load balancing,and privacy entropy to achieve better quality of service.Additionally,a dynamic adaptive multi-objective deep reinforcement learning algorithm is proposed.Each Double Deep Q-Network(DDQN)agent obtains rewards for different objectives based on distinct reward functions and dynamically updates the objective weights by learning the value changes between objectives using Radial Basis Function Networks(RBFN),thereby efficiently approximating the Pareto-optimal decisions for multiple objectives.Extensive experiments demonstrate that the proposed algorithm can better coordinate the three-tier computing resources of cloud,edge,and vehicles.Compared to existing algorithms,the proposed method reduces task delay and energy consumption by 10.64%and 5.1%,respectively. 展开更多
关键词 Deep reinforcement learning internet of vehicles multi-objective optimization cloud-edge computing computation offloading service caching
在线阅读 下载PDF
Multi-objective spatial optimization by considering land use suitability in the Yangtze River Delta region
3
作者 CHENG Qianwen LI Manchun +4 位作者 LI Feixue LIN Yukun DING Chenyin XIAO Lishan LI Weiyue 《Journal of Geographical Sciences》 2026年第1期45-78,共34页
Rapid urbanization in China has led to spatial antagonism between urban development and farmland protection and ecological security maintenance.Multi-objective spatial collaborative optimization is a powerful method f... Rapid urbanization in China has led to spatial antagonism between urban development and farmland protection and ecological security maintenance.Multi-objective spatial collaborative optimization is a powerful method for achieving sustainable regional development.Previous studies on multi-objective spatial optimization do not involve spatial corrections to simulation results based on the natural endowment of space resources.This study proposes an Ecological Security-Food Security-Urban Sustainable Development(ES-FS-USD)spatial optimization framework.This framework combines the non-dominated sorting genetic algorithm II(NSGA-II)and patch-generating land use simulation(PLUS)model with an ecological protection importance evaluation,comprehensive agricultural productivity evaluation,and urban sustainable development potential assessment and optimizes the territorial space in the Yangtze River Delta(YRD)region in 2035.The proposed sustainable development(SD)scenario can effectively reduce the destruction of landscape patterns of various land-use types while considering both ecological and economic benefits.The simulation results were further revised by evaluating the land-use suitability of the YRD region.According to the revised spatial pattern for the YRD in 2035,the farmland area accounts for 43.59%of the total YRD,which is 5.35%less than that in 2010.Forest,grassland,and water area account for 40.46%of the total YRD—an increase of 1.42%compared with the case in 2010.Construction land accounts for 14.72%of the total YRD—an increase of 2.77%compared with the case in 2010.The ES-FS-USD spatial optimization framework ensures that spatial optimization outcomes are aligned with the natural endowments of land resources,thereby promoting the sustainable use of land resources,improving the ability of spatial management,and providing valuable insights for decision makers. 展开更多
关键词 multi-objective spatial optimization multi-scenario simulation ecological protection importance comprehensive agricultural productivity urban sustainable development land-use suitability
原文传递
Multi-objective reservoir operation using particle swarm optimization with adaptive random inertia weights 被引量:12
4
作者 Hai-tao Chen Wen-chuan Wang +1 位作者 Xiao-nan Chen Lin Qiu 《Water Science and Engineering》 EI CAS CSCD 2020年第2期136-144,共9页
Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algori... Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algorithm,to build a multi-objective optimization model for reservoir operation.Using the triangular probability density function,the inertia weight is randomly generated,and the probability density function is automatically adjusted to make the inertia weight generally greater in the initial stage of evolution,which is suitable for global searches.In the evolution process,the inertia weight gradually decreases,which is beneficial to local searches.The performance of the ARIWPSO algorithm was investigated with some classical test functions,and the results were compared with those of the genetic algorithm(GA),the conventional PSO,and other improved PSO methods.Then,the ARIW-PSO algorithm was applied to multi-objective optimal dispatch of the Panjiakou Reservoir and multi-objective flood control operation of a reservoir group on the Luanhe River in China,including the Panjiakou Reservoir,Daheiting Reservoir,and Taolinkou Reservoir.The validity of the multi-objective optimization model for multi-reservoir systems based on the ARIW-PSO algorithm was verified. 展开更多
关键词 Particle swarm optimization Genetic algorithm Random inertia weight multi-objective reservoir operation Reservoir group Panjiakou Reservoir
在线阅读 下载PDF
Multi-objective optimization of operation loop recommendation for kill web 被引量:7
5
作者 YANG Kewei XIA Boyuan +2 位作者 CHEN Gang YANG Zhiwei LI Minghao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第4期969-985,共17页
In order to improve our military ’s level of intelligent accusation decision-making in future intelligent joint warfare, this paper studies operation loop recommendation methods for kill web based on the fundamental ... In order to improve our military ’s level of intelligent accusation decision-making in future intelligent joint warfare, this paper studies operation loop recommendation methods for kill web based on the fundamental combat form of the future, i.e.,“web-based kill,” and the operation loop theory. Firstly, we pioneer the operation loop recommendation problem with operation ring quality as the objective and closed-loop time as the constraint, and construct the corresponding planning model.Secondly, considering the case where there are multiple decision objectives for the combat ring recommendation problem,we propose for the first time a multi-objective optimization algorithm, the multi-objective ant colony evolutionary algorithm based on decomposition(MOACEA/D), which integrates the multi-objective evolutionary algorithm based on decomposition(MOEA/D) with the ant colony algorithm. The MOACEA/D can converge the optimal solutions of multiple single objectives nondominated solution set for the multi-objective problem. Finally,compared with other classical multi-objective optimization algorithms, the MOACEA/D is superior to other algorithms superior in terms of the hyper volume(HV), which verifies the effectiveness of the method and greatly improves the quality and efficiency of commanders’ decision-making. 展开更多
关键词 multi-objective operation loop recommendation kill web ant colony evolutionary algorithm hyper volume(HV)
在线阅读 下载PDF
Designing Load-Bearing Bio-Inspired Materials for Simultaneous Static Properties and Dynamic Damping:Multi-Objective Optimization for Micro-Structure
6
作者 Bo Dong Yunfei Jia Wei Wang 《Chinese Journal of Mechanical Engineering》 2025年第2期247-261,共15页
Biological load-bearing materials,like the nacre in shells,have a unique staggered structure that supports their superior mechanical properties.Engineers have been encouraged to imitate it to create load-bearing bio-i... Biological load-bearing materials,like the nacre in shells,have a unique staggered structure that supports their superior mechanical properties.Engineers have been encouraged to imitate it to create load-bearing bio-inspired materials which have excellent properties not present in conventional composites.To create such materials with desirable mechanical properties,the optimum structural parameters combination must be selected.Moreover,the optimal design of bio-inspired composites needs to take into account the trade-offs between various mechanical properties.In this paper,multi-objective optimization models were developed using structural parameters as design variables and mechanical properties as optimization objectives,including stiffness,strength,toughness,and dynamic damping.Using the NSGA-II optimization algorithm,a set of optimal solutions were solved.Additionally,three different structures in natural nacre were introduced in order to utilize the better structure when design bio-inspired materials.The range of optimal solutions that obtained using results from previous research were examined and explained why this collection of optimal solution ranges is better.Also,optimal solutions were compared with the structural features and mechanical properties of real nacre and artificial biomimetic composites to validate our models.Finally,the optimum design strategies can be obtained for nacre-like composites.Our research methodically proposes an optimization method for achieving load-bearing bio-inspired materials with excellent properties and creates a set of optimal solutions from which designers can select the one that best suits their preferences,allowing the fabricated materials to demonstrate preferred performance. 展开更多
关键词 Load-bearing bio-inspired composites Staggered structure multi-objective optimization
在线阅读 下载PDF
Research on Multi-Objective Real-Time Optimization of Automatic Train Operation(ATO) in Urban Rail Transit 被引量:2
7
作者 HE Tong XIONG Ruiqi 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第2期327-335,共9页
The determination and optimization of Automatic Train Operation(ATO) control strategy is one of the most critical technologies for urban rail train operation. The practical ATO optimal control strategy must consider m... The determination and optimization of Automatic Train Operation(ATO) control strategy is one of the most critical technologies for urban rail train operation. The practical ATO optimal control strategy must consider many goals of the train operation, such as safety, accuracy, comfort, energy saving and so on. This paper designs a set of efficient and universal multi-objective control strategy. Firstly, based on the analysis of urban rail transit and its operating environment, the multi-objective optimization model considering all the indexes of train operation is established by using multi-objective optimization theory. Secondly, Non-dominated Sorting Genetic Algorithm II(NSGA-II) is used to solve the model, and the optimal speed curve of train running is generated.Finally, the intelligent controller is designed by the combination of fuzzy controller algorithm and the predictive control algorithm, which can control and optimize the train operation in real time. Then the robustness of the control system can ensure and the requirements for multi-objective in train operation can be satisfied. 展开更多
关键词 urban rail transit multi-objective Automatic Train operation(ATO) Non-dominated Sorting Genetic Algorithm II(NSGA-II) fuzzy predictive controller
原文传递
Synergy methodology for multi-objective operational control of reservoirs in Yellow River basin 被引量:3
8
作者 HUANG Qiang CHANG Jianxia WANG Yimin PENG Shaoming 《Science China(Technological Sciences)》 SCIE EI CAS 2004年第z1期212-223,共12页
This paper presents an application of synergy methodology to a multi- objective operational control of reservoirs. This methodology enables a comprehensive consideration of multi-objectives which may be conflicting an... This paper presents an application of synergy methodology to a multi- objective operational control of reservoirs. This methodology enables a comprehensive consideration of multi-objectives which may be conflicting and non commensurate such as municipal and industrial water supply, flood protection, and hydroelectric power generation etc. On the basis of the synergy theory, a harmony degree model of sub- system was established to describe the coordination magnitude. Combined with information entropy, a harmony degree entropy was proposed to determine the water resources evolvement direction. While implementing the control, an initial scheme for reservoir operation was obtained from simulation first, then control was carried out according to the harmony degree and harmony degree entropy by applying synergy theory. The application of the methodology to reservoir system in the Yellow River was reported in this paper through a case study. 展开更多
关键词 reservoir system operationAL control SYNERGY theory HARMONY degree HARMONY DEGREE entropy.
原文传递
A multi-objective optimization problem research for amphibious operational mission of shipboard helicopters 被引量:1
9
作者 Wei HAN Yulin WANG +2 位作者 Xichao SU Bing WAN Yujie LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第9期256-279,共24页
Airborne landing with shipboard helicopters gradually replaces surface landing to dominate joint amphibious operations.A problem with shipboard helicopter mission planning is conducted in the context of amphibious ope... Airborne landing with shipboard helicopters gradually replaces surface landing to dominate joint amphibious operations.A problem with shipboard helicopter mission planning is conducted in the context of amphibious operations.First,the typical missions of shipborne helicopters in amphibious operations are analyzed.An Amphibious Operational Mission Planning Model for Shipboard Helicopters(AOMPMSH)is established,with the objectives of minimizing the completion time of the amphibious campaign and minimizing troop and helicopter losses,taking the available operational resources and the order of the mission sub-phases into account.Then,a simulationbased amphibious operations effectiveness assessment model is constructed to calculate the optimization objectives of AOMPMSH by simulating the campaign development with an amphibious objective area situation transfer model and simulating the engagement process with a modified Lanchester model.A reference point based multi-objective optimization algorithm is designed to solve the proposed AOMPMSH.The population iteration mechanism employs an initial population generation method and a local search method to solve the problem of vast definition space.The population ranking selection mechanism employs a population distribution based reference point generation method to solve the problem of population irregular distribution.Finally,a simulation case with the background of a battalion-scaled amphibious campaign is presented.The calculation results verify the rationality of the proposed model and the superiority of the designed algorithm and have some reference value for the operational applications of shipboard helicopters in amphibious operations. 展开更多
关键词 Amphibious operations Lanchester equation Vertical landing Shipboard helicopters Mission planning multi-objective optimization
原文传递
Non-dominated sorting culture differential evolution algorithm for multi-objective optimal operation of Wind-Solar-Hydro complementary power generation system 被引量:4
10
作者 Guanjun Liu Hui Qin +2 位作者 Rui Tian Lingyun Tang Jie Li 《Global Energy Interconnection》 2019年第4期368-374,共7页
Due to the intermittency and instability of Wind-Solar energy and easy compensation of hydropower, this study proposes a Wind-Solar-Hydro power optimal scheduling model. This model is aimed at maximizing the total sys... Due to the intermittency and instability of Wind-Solar energy and easy compensation of hydropower, this study proposes a Wind-Solar-Hydro power optimal scheduling model. This model is aimed at maximizing the total system power generation and the minimum ten-day joint output. To effectively optimize the multi-objective model, a new algorithm named non-dominated sorting culture differential evolution algorithm(NSCDE) is proposed. The feasibility of NSCDE was verified through several well-known benchmark problems. It was then applied to the Jinping Wind-Solar-Hydro complementary power generation system. The results demonstrate that NSCDE can provide decision makers a series of optimized scheduling schemes. 展开更多
关键词 Wind-Solar-Hydro COMPLEMENTARY power generation system Scheduling strategy multi-objective optimization CULTURE algorithm
在线阅读 下载PDF
Optimal Operation of Multi-Objective Hydropower Reservoir with Ecology Consideration 被引量:1
11
作者 Xuewen Wu Xianfeng Huang +1 位作者 Guohua Fang Fei Kong 《Journal of Water Resource and Protection》 2011年第12期904-911,共8页
Aiming at the problem that traditional optimal operation of hydropower reservoir pays little attention to ecology, an optimal operation model of multi-objective hydropower reservoir with ecology consideration is estab... Aiming at the problem that traditional optimal operation of hydropower reservoir pays little attention to ecology, an optimal operation model of multi-objective hydropower reservoir with ecology consideration is established which combines the ecology and power generation. The model takes the maximum annual power generation benefit, the maximum output of the minimal output stage in the year and the minimum shortage of ecological water demand as objectives, and water quantity balance of reservoir, reservoir storage, discharge flow, output and so on as constraints. Chaotic genetic arithmetic is developed to solve the optimal model. An example is studied, showing that the annual generation of the proposed model is 8 million kW?h less than that model without ecology consideration, which is about 0.28 percent. But the proposed model is in favor of river ecology protection, and can promote the sustainable utilization of water resources. So it is worthy and necessary for the optimal operation of hydropower reservoir with ecology consideration. 展开更多
关键词 HYDROPOWER Station RESERVOIR Optimal operation CHAOTIC Genetic Algorithm ECOLOGY
暂未订购
Operation Optimal Control of Urban Rail Train Based on Multi-Objective Particle Swarm Optimization 被引量:1
12
作者 Liang Jin Qinghui Meng Shuang Liang 《Computer Systems Science & Engineering》 SCIE EI 2022年第7期387-395,共9页
The energy consumption of train operation occupies a large proportion of the total consumption of railway transportation.In order to improve the oper-ating energy utilization rate of trains,a multi-objective particle ... The energy consumption of train operation occupies a large proportion of the total consumption of railway transportation.In order to improve the oper-ating energy utilization rate of trains,a multi-objective particle swarm optimiza-tion(MPSO)algorithm with energy consumption,punctuality and parking accuracy as the objective and safety as the constraint is built.To accelerate its the convergence process,the train operation progression is divided into several modes according to the train speed-distance curve.A human-computer interactive particle swarm optimization algorithm is proposed,which presents the optimized results after a certain number of iterations to the decision maker,and the satisfac-tory outcomes can be obtained after a limited number of adjustments.The multi-objective particle swarm optimization(MPSO)algorithm is used to optimize the train operation process.An algorithm based on the important relationship between the objective and the preference information of the given reference points is sug-gested to overcome the shortcomings of the existing algorithms.These methods significantly increase the computational complexity and convergence of the algo-rithm.An adaptive fuzzy logic system that can simultaneously utilize experience information andfield data information is proposed to adjust the consequences of off-line optimization in real time,thereby eliminating the influence of uncertainty on train operation.After optimization and adjustment,the whole running time has been increased by 0.5 s,the energy consumption has been reduced by 12%,the parking accuracy has been increased by 8%,and the comprehensive performance has been enhanced. 展开更多
关键词 Particle swarm optimization multi-objective urban rail train optimal control
在线阅读 下载PDF
Analysis of Energy Storage Operation Configuration of Power System Based on Multi-Objective Optimization 被引量:1
13
作者 Linyao Zhou Tengfei Ma 《Journal of Electronic Research and Application》 2022年第4期13-37,共25页
Driven by the goal of“carbon neutrality,”the increase in use of renewable energy power systems will be inevitable in the future.Uncontrolled output power and random volatility make it difficult to balance power in r... Driven by the goal of“carbon neutrality,”the increase in use of renewable energy power systems will be inevitable in the future.Uncontrolled output power and random volatility make it difficult to balance power in real time during system operation.Therefore,energy storage is considered to be an effective way to ensure the real-time balance of system power.However,cost of energy storage is relatively expensive.As a solution,energy storage can be used to balance the system power in order to reduce system operating costs.Taking the high proportion of wind power systems as an example,the impact of the“supply side”low-carbon transformation on the economics and reliability of power system operation is explored.In order to solve the problem of power system operation configuration optimization under the background of“carbon neutrality,”this paper establishes a multi-objective programming model. 展开更多
关键词 multi-objective planning Energy storage analysis Carbon-neutral Carbon neutrality multi-objective programming model
在线阅读 下载PDF
Study on Optimization of Urban Rail Train Operation Control Curve Based on Improved Multi-Objective Genetic Algorithm
14
作者 Xiaokan Wang Qiong Wang 《Journal on Internet of Things》 2021年第1期1-9,共9页
A multi-objective improved genetic algorithm is constructed to solve the train operation simulation model of urban rail train and find the optimal operation curve.In the train control system,the conversion point of op... A multi-objective improved genetic algorithm is constructed to solve the train operation simulation model of urban rail train and find the optimal operation curve.In the train control system,the conversion point of operating mode is the basic of gene encoding and the chromosome composed of multiple genes represents a control scheme,and the initial population can be formed by the way.The fitness function can be designed by the design requirements of the train control stop error,time error and energy consumption.the effectiveness of new individual can be ensured by checking the validity of the original individual when its in the process of selection,crossover and mutation,and the optimal algorithm will be joined all the operators to make the new group not eliminate on the best individual of the last generation.The simulation result shows that the proposed genetic algorithm comparing with the optimized multi-particle simulation model can reduce more than 10%energy consumption,it can provide a large amount of sub-optimal solution and has obvious optimization effect. 展开更多
关键词 multi-objective improved genetic algorithm urban rail train train operation simulation multi particle optimization model
在线阅读 下载PDF
An Improved Multi-Objective Hybrid Genetic-Simulated Annealing Algorithm for AGV Scheduling under Composite Operation Mode
15
作者 Jiamin Xiang Ying Zhang +1 位作者 Xiaohua Cao Zhigang Zhou 《Computers, Materials & Continua》 SCIE EI 2023年第12期3443-3466,共24页
This paper presents an improved hybrid algorithm and a multi-objective model to tackle the scheduling problem of multiple Automated Guided Vehicles(AGVs)under the composite operation mode.The multi-objective model aim... This paper presents an improved hybrid algorithm and a multi-objective model to tackle the scheduling problem of multiple Automated Guided Vehicles(AGVs)under the composite operation mode.The multi-objective model aims to minimize the maximum completion time,the total distance covered by AGVs,and the distance traveled while empty-loaded.The improved hybrid algorithm combines the improved genetic algorithm(GA)and the simulated annealing algorithm(SA)to strengthen the local search ability of the algorithm and improve the stability of the calculation results.Based on the characteristics of the composite operation mode,the authors introduce the combined coding and parallel decoding mode and calculate the fitness function with the grey entropy parallel analysis method to solve the multi-objective problem.The grey entropy parallel analysis method is a combination of the grey correlation analysis method and the entropy weighting method to solve multi-objective solving problems.A task advance evaluation strategy is proposed in the process of crossover and mutation operator to guide the direction of crossover and mutation.The computational experiments results show that the improved hybrid algorithm is better than the GA and the genetic algorithm with task advance evaluation strategy(AEGA)in terms of convergence speed and solution results,and the effectiveness of the multi-objective solution is proved.All three objectives are optimized and the proposed algorithm has an optimization of 7.6%respectively compared with the GA and 3.4%compared with the AEGA in terms of the objective of maximum completion time. 展开更多
关键词 AGV scheduling composite operation mode genetic algorithm simulated annealing algorithm task advance evaluation strategy
在线阅读 下载PDF
Multi-objective Optimal Generation Dispatch With Consideration of Operation Risk 被引量:4
16
作者 QIU Wei ZHANG Jianhua +2 位作者 LIU Nian ZHU Xingyang LIU Lihua 《中国电机工程学报》 EI CSCD 北大核心 2012年第22期I0009-I0009,共1页
关键词 多目标优化 发电调度 操作 风险 经济调度 经济发展 燃料成本 安全约束
原文传递
INTEGRATED OPERATOR GENETIC ALGORITHM FOR SOLVING MULTI-OBJECTIVE FLEXIBLE JOB-SHOP SCHEDULING
17
作者 袁坤 朱剑英 +1 位作者 鞠全勇 王有远 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第4期278-282,共5页
In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objectiv... In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload. 展开更多
关键词 flexible job-shop integrated operator genetic algorithm multi-objective optimization job-shop scheduling
在线阅读 下载PDF
Initiative Optimization Operation Strategy and Multi-objective Energy Management Method for Combined Cooling Heating and Power 被引量:4
18
作者 Feng Zhao Chenghui Zhang Bo Sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第4期385-393,共9页
This paper proposed an initiative optimization operation strategy and multi-objective energy management method for combined cooling heating and power U+0028 CCHP U+0029 with storage systems. Initially, the initiative ... This paper proposed an initiative optimization operation strategy and multi-objective energy management method for combined cooling heating and power U+0028 CCHP U+0029 with storage systems. Initially, the initiative optimization operation strategy of CCHP system in the cooling season, the heating season and the transition season was formulated. The energy management of CCHP system was optimized by the multi-objective optimization model with maximum daily energy efficiency, minimum daily carbon emissions and minimum daily operation cost based on the proposed initiative optimization operation strategy. Furthermore, the pareto optimal solution set was solved by using the niche particle swarm multi-objective optimization algorithm. Ultimately, the most satisfactory energy management scheme was obtained by using the technique for order preference by similarity to ideal solution U+0028 TOPSIS U+0029 method. A case study of CCHP system used in a hospital in the north of China validated the effectiveness of this method. The results showed that the satisfactory energy management scheme of CCHP system was obtained based on this initiative optimization operation strategy and multi-objective energy management method. The CCHP system has achieved better energy efficiency, environmental protection and economic benefits. © 2014 Chinese Association of Automation. 展开更多
关键词 CARBON COOLING Cooling systems Energy efficiency Energy management HEATING Multiobjective optimization OPTIMIZATION Pareto principle
在线阅读 下载PDF
Recent Advancements in the Optimization Capacity Configuration and Coordination Operation Strategy of Wind-Solar Hybrid Storage System 被引量:1
19
作者 Hongliang Hao Caifeng Wen +5 位作者 Feifei Xue Hao Qiu Ning Yang Yuwen Zhang Chaoyu Wang Edwin E.Nyakilla 《Energy Engineering》 EI 2025年第1期285-306,共22页
Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe... Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems. 展开更多
关键词 Electric-thermal hybrid storage modal decomposition multi-objective genetic algorithm capacity optimization allocation operation strategy
在线阅读 下载PDF
Do Search and Selection Operators Play Important Roles in Multi-Objective Evolutionary Algorithms:A Case Study 被引量:1
20
作者 Yan Zhen-yu, Kang Li-shan, Lin Guang-ming ,He MeiState Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, Hubei, ChinaSchool of Computer Science, UC, UNSW Australian Defence Force Academy, Northcott Drive, Canberra, ACT 2600 AustraliaCapital Bridge Securities Co. ,Ltd, Floor 42, Jinmao Tower, Shanghai 200030, China 《Wuhan University Journal of Natural Sciences》 CAS 2003年第S1期195-201,共7页
Multi-objective Evolutionary Algorithm (MOEA) is becoming a hot research area and quite a few aspects of MOEAs have been studied and discussed. However there are still few literatures discussing the roles of search an... Multi-objective Evolutionary Algorithm (MOEA) is becoming a hot research area and quite a few aspects of MOEAs have been studied and discussed. However there are still few literatures discussing the roles of search and selection operators in MOEAs. This paper studied their roles by solving a case of discrete Multi-objective Optimization Problem (MOP): Multi-objective TSP with a new MOEA. In the new MOEA, We adopt an efficient search operator, which has the properties of both crossover and mutation, to generate the new individuals and chose two selection operators: Family Competition and Population Competition with probabilities to realize selection. The simulation experiments showed that this new MOEA could get good uniform solutions representing the Pareto Front and outperformed SPEA in almost every simulation run on this problem. Furthermore, we analyzed its convergence property using finite Markov chain and proved that it could converge to Pareto Front with probability 1. We also find that the convergence property of MOEAs has much relationship with search and selection operators. 展开更多
关键词 multi-objective evolutionary algorithm convergence property analysis search operator selection operator Markov chain
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部