Data-driven approaches are extensively employed to model complex chemical engineering processes, such as hydrotreating, to address the challenges of mechanism-based methods demanding deep process understanding. Howeve...Data-driven approaches are extensively employed to model complex chemical engineering processes, such as hydrotreating, to address the challenges of mechanism-based methods demanding deep process understanding. However, the development of such models requires specialized expertise in data science, limiting their broader application. Large language models (LLMs), such as GPT-4, have demonstrated potential in supporting and guiding research efforts. This work presents a novel AI-assisted framework where GPT-4, through well-engineered prompts, facilitates the construction and explanation of multi-objective neural networks. These models predict hydrotreating products properties (such as distillation range), including refined diesel and refined gas oil, using feedstock properties, operating conditions, and recycle hydrogen composition. Gradient-weighted class activation mapping was employed to identify key features influencing the output variables. This work illustrates an innovative AI-guided paradigm for chemical engineering applications, and the designed prompts hold promise for adaptation to other complex processes.展开更多
Many sludge curing technologies often have problems like long curing time,high cost,and low efficiency in the condition of low temperature,The compressive strength,moisture content and temperature are defined as the c...Many sludge curing technologies often have problems like long curing time,high cost,and low efficiency in the condition of low temperature,The compressive strength,moisture content and temperature are defined as the constraint conditions,and solidified cost,pH,COD,NH4+-N concentration are defined as the objective functions.The response surface analysis is used to obtain a variety of response expressions of factors,and the multi-objective optimization model of fast-solidification sludge is established.Then,the curing agent formulas are optimized.After three-day conserving,the curing sludge could meet the landfill conditions.展开更多
Cracking furnace is the core device for ethylene production. In practice, multiple ethylene furnaces are usually run in parallel. The scheduling of the entire cracking furnace system has great significance when multip...Cracking furnace is the core device for ethylene production. In practice, multiple ethylene furnaces are usually run in parallel. The scheduling of the entire cracking furnace system has great significance when multiple feeds are simultaneously processed in multiple cracking furnaces with the changing of operating cost and yield of product. In this paper, given the requirements of both profit and energy saving in actual production process, a multi-objective optimization model contains two objectives, maximizing the average benefits and minimizing the average coking amount was proposed. The model can be abstracted as a multi-objective mixed integer non- linear programming problem. Considering the mixed integer decision variables of this multi-objective problem, an improved hybrid encoding non-dominated sorting genetic algorithm with mixed discrete variables (MDNSGA-II) is used to solve the Pareto optimal front of this model, the algorithm adopted crossover and muta- tion strategy with multi-operators, which overcomes the deficiency that normal genetic algorithm cannot handle the optimization problem with mixed variables. Finally, using an ethylene plant with multiple cracking furnaces as an example to illustrate the effectiveness of the scheduling results by comparing the optimization results of multi-objective and single objective model.展开更多
In this paper, we propose a fine-grained grid-based multi-objective model which aims at optimizing base station antennas' configurations, such as transmit power, antenna tilt and antenna azimuth, in order to upgra...In this paper, we propose a fine-grained grid-based multi-objective model which aims at optimizing base station antennas' configurations, such as transmit power, antenna tilt and antenna azimuth, in order to upgrading network performance in cellular networks. As the model is non-convex, non-smooth and discrete and computationally expensive, we use decomposition method to solve the MOP problem. We mainly focus on addressing the scalarized sub-problem after decomposition. For the scalarized sub-problem, we propose an enhanced difference method. First, difference of each component is calculated, which provides the guidance of optimization. Then an OPSO is applied to search the optimal step length. The method is applied to GSM network optimization on an area in Beijing. The effect of the application shows that proposed method has a good performance, and is effective/efficient to solve mobile network optimization problems.展开更多
Dear Editor,This letter proposes a novel Nash bargaining solution-based multiobjective model predictive control(MPC)scheme to deal with the interaction force control and the path-following problem of the constrained i...Dear Editor,This letter proposes a novel Nash bargaining solution-based multiobjective model predictive control(MPC)scheme to deal with the interaction force control and the path-following problem of the constrained interactive robot.Considering the elastic interaction force model,a mechanical trade-off always exists between the interaction force and position,which means that neither force nor path following can satisfy their desired demands completely.Based on this consideration,two irreconcilable control specifications,the force object function and the position track object function,are proposed,and a new multi-objective MPC scheme is then designed.展开更多
Hydrocracking is one of the most important petroleum refining processes that converts heavy oils into gases,naphtha,diesel,and other products through cracking reactions.Multi-objective optimization algorithms can help...Hydrocracking is one of the most important petroleum refining processes that converts heavy oils into gases,naphtha,diesel,and other products through cracking reactions.Multi-objective optimization algorithms can help refining enterprises determine the optimal operating parameters to maximize product quality while ensuring product yield,or to increase product yield while reducing energy consumption.This paper presents a multi-objective optimization scheme for hydrocracking based on an improved SPEA2-PE algorithm,which combines path evolution operator and adaptive step strategy to accelerate the convergence speed and improve the computational accuracy of the algorithm.The reactor model used in this article is simulated based on a twenty-five lumped kinetic model.Through model and test function verification,the proposed optimization scheme exhibits significant advantages in the multiobjective optimization process of hydrocracking.展开更多
This study proposes a multi-objective optimization framework for electric winches in fiber-reinforced plastic(FRP)fishing vessels to address critical limitations of conventional designs,including excessive weight,mate...This study proposes a multi-objective optimization framework for electric winches in fiber-reinforced plastic(FRP)fishing vessels to address critical limitations of conventional designs,including excessive weight,material inefficiency,and performance redundancy.By integrating surrogate modeling techniques with a multi-objective genetic algorithm(MOGA),we have developed a systematic approach that encompasses parametric modeling,finite element analysis under extreme operational conditions,and multi-fidelity performance evaluation.Through a 10-t electric winch case study,the methodology’s effectiveness is demonstrated via parametric characterization of structural integrity,stiffness behavior,and mass distribution.The comparative analysis identified optimal surrogate models for predicting key performance metrics,which enabled the construction of a robust multi-objective optimization model.The MOGA-derived Pareto solutions produced a design configuration achieving 7.86%mass reduction,2.01%safety factor improvement,and 23.97%deformation mitigation.Verification analysis confirmed the optimization scheme’s reliability in balancing conflicting design requirements.This research establishes a generalized framework for marine deck machinery modernization,particularly addressing the structural compatibility challenges in FRP vessel retrofitting.The proposed methodology demonstrates significant potential for facilitating sustainable upgrades of fishing vessel equipment through systematic performance optimization.展开更多
The rapid and increasing growth in the volume and number of cyber threats from malware is not a real danger;the real threat lies in the obfuscation of these cyberattacks,as they constantly change their behavior,making...The rapid and increasing growth in the volume and number of cyber threats from malware is not a real danger;the real threat lies in the obfuscation of these cyberattacks,as they constantly change their behavior,making detection more difficult.Numerous researchers and developers have devoted considerable attention to this topic;however,the research field has not yet been fully saturated with high-quality studies that address these problems.For this reason,this paper presents a novel multi-objective Markov-enhanced adaptive whale optimization(MOMEAWO)cybersecurity model to improve the classification of binary and multi-class malware threats through the proposed MOMEAWO approach.The proposed MOMEAWO cybersecurity model aims to provide an innovative solution for analyzing,detecting,and classifying the behavior of obfuscated malware within their respective families.The proposed model includes three classification types:Binary classification and multi-class classification(e.g.,four families and 16 malware families).To evaluate the performance of this model,we used a recently published dataset called the Canadian Institute for Cybersecurity Malware Memory Analysis(CIC-MalMem-2022)that contains balanced data.The results show near-perfect accuracy in binary classification and high accuracy in multi-class classification compared with related work using the same dataset.展开更多
The belief rule-based(BRB)system has been popular in complexity system modeling due to its good interpretability.However,the current mainstream optimization methods of the BRB systems only focus on modeling accuracy b...The belief rule-based(BRB)system has been popular in complexity system modeling due to its good interpretability.However,the current mainstream optimization methods of the BRB systems only focus on modeling accuracy but ignore the interpretability.The single-objective optimization strategy has been applied in the interpretability-accuracy trade-off by inte-grating accuracy and interpretability into an optimization objec-tive.But the integration has a greater impact on optimization results with strong subjectivity.Thus,a multi-objective optimiza-tion framework in the modeling of BRB systems with inter-pretability-accuracy trade-off is proposed in this paper.Firstly,complexity and accuracy are taken as two independent opti-mization goals,and uniformity as a constraint to give the mathe-matical description.Secondly,a classical multi-objective opti-mization algorithm,nondominated sorting genetic algorithm II(NSGA-II),is utilized as an optimization tool to give a set of BRB systems with different accuracy and complexity.Finally,a pipeline leakage detection case is studied to verify the feasibility and effectiveness of the developed multi-objective optimization.The comparison illustrates that the proposed multi-objective optimization framework can effectively avoid the subjectivity of single-objective optimization,and has capability of joint optimiz-ing the structure and parameters of BRB systems with inter-pretability-accuracy trade-off.展开更多
Management of the electrical grid is becoming more complex due to the increased penetration of alternative energy generation technologies and a broadening diversity of electric loads.This complexity creates challenges...Management of the electrical grid is becoming more complex due to the increased penetration of alternative energy generation technologies and a broadening diversity of electric loads.This complexity creates challenges in balancing demand and generation that can increase the potential for grid instabilities.One effective way to address this issue is to leverage previously unexploited demand flexibility through advanced control strategies.In this work,we propose an advanced control method,called adaptive neural parameter-varying model predictive control(ANPV-MPC),to control the temperature and energy consumption of a building via its Heating,Ventilation,and Air Conditioning system.ANPV-MPC combines key ideas in varying parameter-control,adaptive control,and online learning strategies to bridge the gap between computationally efficient linear model predictive control and more accurate nonlinear model predictive control.The novelty in ANPV-MPC is the use of a physics-inspired Bayesian neural network to estimate the coefficients of the parameter-varying linear control model.The Bayesian neural network additionally provides uncertainty estimates,triggering online training to capture evolving building system conditions.We show that ANPV-MPC can approximate the building system dynamics with a 28.39%higher accuracy than traditional linear model predictive control,resulting in 36.23%better control performance without increasing complexity of the optimal control problem.ANPV-MPC also adapts in real time to previously unseen conditions using online learning,further improving its performance.展开更多
An important decision for policy makers is selecting strategic petroleum reserve sites. However, policy makers may not choose the most suitable and efficient locations for strategic petroleum reserve(SPR) due to the...An important decision for policy makers is selecting strategic petroleum reserve sites. However, policy makers may not choose the most suitable and efficient locations for strategic petroleum reserve(SPR) due to the complexity in the choice of sites. This paper proposes a multi-objective programming model to determine the optimal locations for China's SPR storage sites. This model considers not only the minimum response time but also the minimum transportation cost based on a series of reasonable assumptions and constraint conditions. The factors influencing SPR sites are identified to determine potential demand points and candidate storage sites. Estimation and suggestions are made for the selection of China's future SPR storage sites based on the results of this model. When the number of petroleum storage sites is less than or equals 25 and the maximum capacity of storage sites is restricted to 10 million tonnes, the model's result best fit for the current layout scheme selected thirteen storage sites in four scenarios. Considering the current status of SPR in China,Tianjin, Qingdao, Dalian, Daqing and Zhanjiang, Chengdu,Xi'an, and Yueyang are suggested to be the candidate locations for the third phase of the construction plan. The locations of petroleum storage sites suggested in this work could be used as a reference for decision makers.展开更多
In order to solve the problem of weighting factors selection in the conventional finite-control-set model predictive control for a grid-connected three-level inverter,an improved multi-objective model predictive contr...In order to solve the problem of weighting factors selection in the conventional finite-control-set model predictive control for a grid-connected three-level inverter,an improved multi-objective model predictive control without weighting factors based on hierarchical optimization is proposed.Four control objectives are considered in this strategy.The grid current and neutral-point voltage of the DC-link are taken as the objectives in the first optimization hierarchy,and by using fuzzy satisfaction decision,several feasible candidates of voltage vectors are determined.Then,the average switching frequency and common-mode voltage are optimized in the second hierarchy.The average ranking criterion is introduced to sort the objective functions,and the best voltage vector is obtained to realize the coordinated control of multiple objectives.At last,the effectiveness of the proposed strategy is verified by simulation results.展开更多
The principal-subordinate hierarchical multi-objective programming model of initial water rights allocation was developed based on the principle of coordinated and sustainable development of different regions and wate...The principal-subordinate hierarchical multi-objective programming model of initial water rights allocation was developed based on the principle of coordinated and sustainable development of different regions and water sectors within a basin. With the precondition of strictly controlling maximum emissions rights, initial water rights were allocated between the first and the second levels of the hierarchy in order to promote fair and coordinated development across different regions of the basin and coordinated and efficient water use across different water sectors, realize the maximum comprehensive benefits to the basin, promote the unity of quantity and quality of initial water rights allocation, and eliminate water conflict across different regions and water sectors. According to interactive decision-making theory, a principal-subordinate hierarchical interactive iterative algorithm based on the satisfaction degree was developed and used to solve the initial water rights allocation model. A case study verified the validity of the model.展开更多
A vague-set-based fuzzy multi-objective decision making model is developed for evaluating bidding plans in a bid- ding purchase process. A group of decision-makers (DMs) first independently assess bidding plans accord...A vague-set-based fuzzy multi-objective decision making model is developed for evaluating bidding plans in a bid- ding purchase process. A group of decision-makers (DMs) first independently assess bidding plans according to their experience and preferences, and these assessments may be expressed as linguistic terms, which are then converted to fuzzy numbers. The resulting decision matrices are then transformed to objective membership grade matrices. The lower bound of satisfaction and upper bound of dissatisfaction are used to determine each bidding plan’s supporting, opposing, and neutral objective sets, which together determine the vague value of a bidding plan. Finally, a score function is employed to rank all bidding plans. A new score function based on vague sets is introduced in the model and a novel method is presented for calculating the lower bound of sat- isfaction and upper bound of dissatisfaction. In a vague-set-based fuzzy multi-objective decision making model, different valua- tions for upper and lower bounds of satisfaction usually lead to distinct ranking results. Therefore, it is crucial to effectively contain DMs’ arbitrariness and subjectivity when these values are determined.展开更多
For automated vehicles,comfortable driving will improve passengers’ satisfaction.Reducing fuel consumption brings economic profits for car owners,decreases the impact on the environment and increases energy sustainab...For automated vehicles,comfortable driving will improve passengers’ satisfaction.Reducing fuel consumption brings economic profits for car owners,decreases the impact on the environment and increases energy sustainability.In addition to comfort and fuel-economy,automated vehicles also have the basic requirements of safety and car-following.For this purpose,an adaptive cruise control (ACC) algorithm with multi-objectives is proposed based on a model predictive control (MPC) framework.In the proposed ACC algorithm,safety is guaranteed by constraining the inter-distance within a safe range; the requirements of comfort and car-following are considered to be the performance criteria and some optimal reference trajectories are introduced to increase fuel-economy.The performances of the proposed ACC algorithm are simulated and analyzed in five representative traffic scenarios and multiple experiments.The results show that not only are safety and car-following objectives satisfied,but also driving comfort and fuel-economy are improved significantly.展开更多
An integrated optimization strategy based on Kriging model and multi-objective particle swarm optimization(PSO) algorithm was constructed.As a new surrogate model technology,Kriging model has better fitting precision ...An integrated optimization strategy based on Kriging model and multi-objective particle swarm optimization(PSO) algorithm was constructed.As a new surrogate model technology,Kriging model has better fitting precision for nonlinear problem.The Kriging model was adopted to replace computer aided engineering(CAE) simulation as fitness function of multi-objective PSO algorithm,and the computation cost can be reduced greatly.By introducing multi-objective handling mechanism of crowding distance and mutation operator to multiobjective PSO algorithm,the entire Pareto front can be approximated better.It is shown that the multi-objective optimization strategy can get higher solving accuracy and computation efficiency under small sample.展开更多
Evolutionary algorithm is time-consuming because of the large number of evolutions and much times of finite element analysis, when it is used to optimize the wing structure of a certain high altitude long endurance un...Evolutionary algorithm is time-consuming because of the large number of evolutions and much times of finite element analysis, when it is used to optimize the wing structure of a certain high altitude long endurance unmanned aviation vehicle(UAV). In order to improve efficiency it is proposed to construct a model management framework to perform the multi-objective optimization design of wing structure. The sufficient accurate approximation models of objective and constraint functions in the wing structure optimization model are built when using the model management framework, therefore in the evolutionary algorithm a number of finite element analyses can he avoided and the satisfactory multi-objective optimization results of the wing structure of the high altitude long endurance UAV are obtained.展开更多
This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously a...This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.展开更多
As two independent problems,scheduling for parts fabrication line and sequencing for mixed-model assembly line have been addressed respectively by many researchers.However,these two problems should be considered simul...As two independent problems,scheduling for parts fabrication line and sequencing for mixed-model assembly line have been addressed respectively by many researchers.However,these two problems should be considered simultaneously to improve the efficiency of the whole fabrication/assembly systems.By far,little research effort is devoted to sequencing problems for mixed-model fabrication/assembly systems.This paper is concerned about the sequencing problems in pull production systems which are composed of one mixed-model assembly line with limited intermediate buffers and two flexible parts fabrication flow lines with identical parallel machines and limited intermediate buffers.Two objectives are considered simultaneously:minimizing the total variation in parts consumption in the assembly line and minimizing the total makespan cost in the fabrication/assembly system.The integrated optimization framework,mathematical models and the method to construct the complete schedules for the fabrication lines according to the production sequences for the first stage in fabrication lines are presented.Since the above problems are non-deterministic polynomial-hard(NP-hard),a modified multi-objective genetic algorithm is proposed for solving the models,in which a method to generate the production sequences for the fabrication lines from the production sequences for the assembly line and a method to generate the initial population are put forward,new selection,crossover and mutation operators are designed,and Pareto ranking method and sharing function method are employed to evaluate the individuals' fitness.The feasibility and efficiency of the multi-objective genetic algorithm is shown by computational comparison with a multi-objective simulated annealing algorithm.The sequencing problems for mixed-model production systems can be solved effectively by the proposed modified multi-objective genetic algorithm.展开更多
This paper introduces the Surrogate-assisted Multi-objective Grey Wolf Optimizer(SMOGWO)as a novel methodology for addressing the complex problem of empty-heavy train allocation,with a focus on line utilization balanc...This paper introduces the Surrogate-assisted Multi-objective Grey Wolf Optimizer(SMOGWO)as a novel methodology for addressing the complex problem of empty-heavy train allocation,with a focus on line utilization balance.By integrating surrogate models to approximate the objective functions,SMOGWO significantly improves the efficiency and accuracy of the optimization process.The effectiveness of this approach is evaluated using the CEC2009 multi-objective test function suite,where SMOGWO achieves a superiority rate of 76.67%compared to other leading multi-objective algorithms.Furthermore,the practical applicability of SMOGWO is demonstrated through a case study on empty and heavy train allocation,which validates its ability to balance line capacity,minimize transportation costs,and optimize the technical combination of heavy trains.The research highlights SMOGWO's potential as a robust solution for optimization challenges in railway transportation,offering valuable contributions toward enhancing operational efficiency and promoting sustainable development in the sector.展开更多
基金supported by the National Key Research and Development Program of China(2023YFA1507601)the National Natural Science Foundation of China(22278127,22378038)+2 种基金the Fundamental Research Funds for the Central Universities(2022ZFJH004)the Shanghai Pilot Program for Basic Research(22T01400100-18)the Natural Science Foundation of Liaoning Province,China(2024-MSBA-15).
文摘Data-driven approaches are extensively employed to model complex chemical engineering processes, such as hydrotreating, to address the challenges of mechanism-based methods demanding deep process understanding. However, the development of such models requires specialized expertise in data science, limiting their broader application. Large language models (LLMs), such as GPT-4, have demonstrated potential in supporting and guiding research efforts. This work presents a novel AI-assisted framework where GPT-4, through well-engineered prompts, facilitates the construction and explanation of multi-objective neural networks. These models predict hydrotreating products properties (such as distillation range), including refined diesel and refined gas oil, using feedstock properties, operating conditions, and recycle hydrogen composition. Gradient-weighted class activation mapping was employed to identify key features influencing the output variables. This work illustrates an innovative AI-guided paradigm for chemical engineering applications, and the designed prompts hold promise for adaptation to other complex processes.
基金Project(2009ZX07315-005) supported by the National Water Pollution Controlled and Treatment Great Special Fund of China
文摘Many sludge curing technologies often have problems like long curing time,high cost,and low efficiency in the condition of low temperature,The compressive strength,moisture content and temperature are defined as the constraint conditions,and solidified cost,pH,COD,NH4+-N concentration are defined as the objective functions.The response surface analysis is used to obtain a variety of response expressions of factors,and the multi-objective optimization model of fast-solidification sludge is established.Then,the curing agent formulas are optimized.After three-day conserving,the curing sludge could meet the landfill conditions.
基金Supported by the National Natural Science Foundation of China(21276078)"Shu Guang"project of Shanghai Municipal Education Commission,973 Program of China(2012CB720500)the Shanghai Science and Technology Program(13QH1401200)
文摘Cracking furnace is the core device for ethylene production. In practice, multiple ethylene furnaces are usually run in parallel. The scheduling of the entire cracking furnace system has great significance when multiple feeds are simultaneously processed in multiple cracking furnaces with the changing of operating cost and yield of product. In this paper, given the requirements of both profit and energy saving in actual production process, a multi-objective optimization model contains two objectives, maximizing the average benefits and minimizing the average coking amount was proposed. The model can be abstracted as a multi-objective mixed integer non- linear programming problem. Considering the mixed integer decision variables of this multi-objective problem, an improved hybrid encoding non-dominated sorting genetic algorithm with mixed discrete variables (MDNSGA-II) is used to solve the Pareto optimal front of this model, the algorithm adopted crossover and muta- tion strategy with multi-operators, which overcomes the deficiency that normal genetic algorithm cannot handle the optimization problem with mixed variables. Finally, using an ethylene plant with multiple cracking furnaces as an example to illustrate the effectiveness of the scheduling results by comparing the optimization results of multi-objective and single objective model.
文摘In this paper, we propose a fine-grained grid-based multi-objective model which aims at optimizing base station antennas' configurations, such as transmit power, antenna tilt and antenna azimuth, in order to upgrading network performance in cellular networks. As the model is non-convex, non-smooth and discrete and computationally expensive, we use decomposition method to solve the MOP problem. We mainly focus on addressing the scalarized sub-problem after decomposition. For the scalarized sub-problem, we propose an enhanced difference method. First, difference of each component is calculated, which provides the guidance of optimization. Then an OPSO is applied to search the optimal step length. The method is applied to GSM network optimization on an area in Beijing. The effect of the application shows that proposed method has a good performance, and is effective/efficient to solve mobile network optimization problems.
基金supported by the National Natural Science Foundation of China(62303095)the Natural Science Foundation of Sichuan Province(2023NSFSC0872).
文摘Dear Editor,This letter proposes a novel Nash bargaining solution-based multiobjective model predictive control(MPC)scheme to deal with the interaction force control and the path-following problem of the constrained interactive robot.Considering the elastic interaction force model,a mechanical trade-off always exists between the interaction force and position,which means that neither force nor path following can satisfy their desired demands completely.Based on this consideration,two irreconcilable control specifications,the force object function and the position track object function,are proposed,and a new multi-objective MPC scheme is then designed.
基金supported by National Key Research and Development Program of China (2023YFB3307800)National Natural Science Foundation of China (Key Program: 62136003, 62373155)+1 种基金Major Science and Technology Project of Xinjiang (No. 2022A01006-4)the Fundamental Research Funds for the Central Universities。
文摘Hydrocracking is one of the most important petroleum refining processes that converts heavy oils into gases,naphtha,diesel,and other products through cracking reactions.Multi-objective optimization algorithms can help refining enterprises determine the optimal operating parameters to maximize product quality while ensuring product yield,or to increase product yield while reducing energy consumption.This paper presents a multi-objective optimization scheme for hydrocracking based on an improved SPEA2-PE algorithm,which combines path evolution operator and adaptive step strategy to accelerate the convergence speed and improve the computational accuracy of the algorithm.The reactor model used in this article is simulated based on a twenty-five lumped kinetic model.Through model and test function verification,the proposed optimization scheme exhibits significant advantages in the multiobjective optimization process of hydrocracking.
基金supported by the Basic Public Welfare Research Program of Zhejiang Province(No.LGN22E050005).
文摘This study proposes a multi-objective optimization framework for electric winches in fiber-reinforced plastic(FRP)fishing vessels to address critical limitations of conventional designs,including excessive weight,material inefficiency,and performance redundancy.By integrating surrogate modeling techniques with a multi-objective genetic algorithm(MOGA),we have developed a systematic approach that encompasses parametric modeling,finite element analysis under extreme operational conditions,and multi-fidelity performance evaluation.Through a 10-t electric winch case study,the methodology’s effectiveness is demonstrated via parametric characterization of structural integrity,stiffness behavior,and mass distribution.The comparative analysis identified optimal surrogate models for predicting key performance metrics,which enabled the construction of a robust multi-objective optimization model.The MOGA-derived Pareto solutions produced a design configuration achieving 7.86%mass reduction,2.01%safety factor improvement,and 23.97%deformation mitigation.Verification analysis confirmed the optimization scheme’s reliability in balancing conflicting design requirements.This research establishes a generalized framework for marine deck machinery modernization,particularly addressing the structural compatibility challenges in FRP vessel retrofitting.The proposed methodology demonstrates significant potential for facilitating sustainable upgrades of fishing vessel equipment through systematic performance optimization.
文摘The rapid and increasing growth in the volume and number of cyber threats from malware is not a real danger;the real threat lies in the obfuscation of these cyberattacks,as they constantly change their behavior,making detection more difficult.Numerous researchers and developers have devoted considerable attention to this topic;however,the research field has not yet been fully saturated with high-quality studies that address these problems.For this reason,this paper presents a novel multi-objective Markov-enhanced adaptive whale optimization(MOMEAWO)cybersecurity model to improve the classification of binary and multi-class malware threats through the proposed MOMEAWO approach.The proposed MOMEAWO cybersecurity model aims to provide an innovative solution for analyzing,detecting,and classifying the behavior of obfuscated malware within their respective families.The proposed model includes three classification types:Binary classification and multi-class classification(e.g.,four families and 16 malware families).To evaluate the performance of this model,we used a recently published dataset called the Canadian Institute for Cybersecurity Malware Memory Analysis(CIC-MalMem-2022)that contains balanced data.The results show near-perfect accuracy in binary classification and high accuracy in multi-class classification compared with related work using the same dataset.
基金supported by the National Natural Science Foundation of China(71901212)the Science and Technology Innovation Program of Hunan Province(2020RC4046).
文摘The belief rule-based(BRB)system has been popular in complexity system modeling due to its good interpretability.However,the current mainstream optimization methods of the BRB systems only focus on modeling accuracy but ignore the interpretability.The single-objective optimization strategy has been applied in the interpretability-accuracy trade-off by inte-grating accuracy and interpretability into an optimization objec-tive.But the integration has a greater impact on optimization results with strong subjectivity.Thus,a multi-objective optimiza-tion framework in the modeling of BRB systems with inter-pretability-accuracy trade-off is proposed in this paper.Firstly,complexity and accuracy are taken as two independent opti-mization goals,and uniformity as a constraint to give the mathe-matical description.Secondly,a classical multi-objective opti-mization algorithm,nondominated sorting genetic algorithm II(NSGA-II),is utilized as an optimization tool to give a set of BRB systems with different accuracy and complexity.Finally,a pipeline leakage detection case is studied to verify the feasibility and effectiveness of the developed multi-objective optimization.The comparison illustrates that the proposed multi-objective optimization framework can effectively avoid the subjectivity of single-objective optimization,and has capability of joint optimiz-ing the structure and parameters of BRB systems with inter-pretability-accuracy trade-off.
基金supported by the Laboratory Directed Research and Development(LDRD)Program at NREL.
文摘Management of the electrical grid is becoming more complex due to the increased penetration of alternative energy generation technologies and a broadening diversity of electric loads.This complexity creates challenges in balancing demand and generation that can increase the potential for grid instabilities.One effective way to address this issue is to leverage previously unexploited demand flexibility through advanced control strategies.In this work,we propose an advanced control method,called adaptive neural parameter-varying model predictive control(ANPV-MPC),to control the temperature and energy consumption of a building via its Heating,Ventilation,and Air Conditioning system.ANPV-MPC combines key ideas in varying parameter-control,adaptive control,and online learning strategies to bridge the gap between computationally efficient linear model predictive control and more accurate nonlinear model predictive control.The novelty in ANPV-MPC is the use of a physics-inspired Bayesian neural network to estimate the coefficients of the parameter-varying linear control model.The Bayesian neural network additionally provides uncertainty estimates,triggering online training to capture evolving building system conditions.We show that ANPV-MPC can approximate the building system dynamics with a 28.39%higher accuracy than traditional linear model predictive control,resulting in 36.23%better control performance without increasing complexity of the optimal control problem.ANPV-MPC also adapts in real time to previously unseen conditions using online learning,further improving its performance.
基金supported by the National Natural Science Foundation of China (Nos. 71273277/71373285/71303258)the Philosophy and Social Sciences Major Research Project of the Ministry of Education (No. 11JZD048)
文摘An important decision for policy makers is selecting strategic petroleum reserve sites. However, policy makers may not choose the most suitable and efficient locations for strategic petroleum reserve(SPR) due to the complexity in the choice of sites. This paper proposes a multi-objective programming model to determine the optimal locations for China's SPR storage sites. This model considers not only the minimum response time but also the minimum transportation cost based on a series of reasonable assumptions and constraint conditions. The factors influencing SPR sites are identified to determine potential demand points and candidate storage sites. Estimation and suggestions are made for the selection of China's future SPR storage sites based on the results of this model. When the number of petroleum storage sites is less than or equals 25 and the maximum capacity of storage sites is restricted to 10 million tonnes, the model's result best fit for the current layout scheme selected thirteen storage sites in four scenarios. Considering the current status of SPR in China,Tianjin, Qingdao, Dalian, Daqing and Zhanjiang, Chengdu,Xi'an, and Yueyang are suggested to be the candidate locations for the third phase of the construction plan. The locations of petroleum storage sites suggested in this work could be used as a reference for decision makers.
基金Supported by the Key Research and Development Program of Hunan Province of China(2018GK2031)the Independent Research Project of State Key Laboratory of Advance Design and Manufacturing for Vehicle Body(71965005)+2 种基金the Innovative Construction Program of Hunan Province of China(2019RS1016)the 111 Project of China(B17016)the Excellent Innovation Youth Program of Changsha of China(KQ2009037).
文摘In order to solve the problem of weighting factors selection in the conventional finite-control-set model predictive control for a grid-connected three-level inverter,an improved multi-objective model predictive control without weighting factors based on hierarchical optimization is proposed.Four control objectives are considered in this strategy.The grid current and neutral-point voltage of the DC-link are taken as the objectives in the first optimization hierarchy,and by using fuzzy satisfaction decision,several feasible candidates of voltage vectors are determined.Then,the average switching frequency and common-mode voltage are optimized in the second hierarchy.The average ranking criterion is introduced to sort the objective functions,and the best voltage vector is obtained to realize the coordinated control of multiple objectives.At last,the effectiveness of the proposed strategy is verified by simulation results.
基金supported by the Public Welfare Industry Special Fund Project of the Ministry of Water Resources of China (Grant No. 200701028)the Humanities and Social Science Foundation Program of Hohai University (Grant No. 2008421411)
文摘The principal-subordinate hierarchical multi-objective programming model of initial water rights allocation was developed based on the principle of coordinated and sustainable development of different regions and water sectors within a basin. With the precondition of strictly controlling maximum emissions rights, initial water rights were allocated between the first and the second levels of the hierarchy in order to promote fair and coordinated development across different regions of the basin and coordinated and efficient water use across different water sectors, realize the maximum comprehensive benefits to the basin, promote the unity of quantity and quality of initial water rights allocation, and eliminate water conflict across different regions and water sectors. According to interactive decision-making theory, a principal-subordinate hierarchical interactive iterative algorithm based on the satisfaction degree was developed and used to solve the initial water rights allocation model. A case study verified the validity of the model.
基金Project (No. K81077) supported by the Department of Automation, Xiamen University, China
文摘A vague-set-based fuzzy multi-objective decision making model is developed for evaluating bidding plans in a bid- ding purchase process. A group of decision-makers (DMs) first independently assess bidding plans according to their experience and preferences, and these assessments may be expressed as linguistic terms, which are then converted to fuzzy numbers. The resulting decision matrices are then transformed to objective membership grade matrices. The lower bound of satisfaction and upper bound of dissatisfaction are used to determine each bidding plan’s supporting, opposing, and neutral objective sets, which together determine the vague value of a bidding plan. Finally, a score function is employed to rank all bidding plans. A new score function based on vague sets is introduced in the model and a novel method is presented for calculating the lower bound of sat- isfaction and upper bound of dissatisfaction. In a vague-set-based fuzzy multi-objective decision making model, different valua- tions for upper and lower bounds of satisfaction usually lead to distinct ranking results. Therefore, it is crucial to effectively contain DMs’ arbitrariness and subjectivity when these values are determined.
基金Project supported by the National Hi-Tech Research and Develop-ment Program (863) of China (No. 2006AA11Z204)the Qianji-ang Program of Zhejiang Province (No. 2009R10008)
文摘For automated vehicles,comfortable driving will improve passengers’ satisfaction.Reducing fuel consumption brings economic profits for car owners,decreases the impact on the environment and increases energy sustainability.In addition to comfort and fuel-economy,automated vehicles also have the basic requirements of safety and car-following.For this purpose,an adaptive cruise control (ACC) algorithm with multi-objectives is proposed based on a model predictive control (MPC) framework.In the proposed ACC algorithm,safety is guaranteed by constraining the inter-distance within a safe range; the requirements of comfort and car-following are considered to be the performance criteria and some optimal reference trajectories are introduced to increase fuel-economy.The performances of the proposed ACC algorithm are simulated and analyzed in five representative traffic scenarios and multiple experiments.The results show that not only are safety and car-following objectives satisfied,but also driving comfort and fuel-economy are improved significantly.
基金the National Natural Science Foundation of China (No. 50873060)
文摘An integrated optimization strategy based on Kriging model and multi-objective particle swarm optimization(PSO) algorithm was constructed.As a new surrogate model technology,Kriging model has better fitting precision for nonlinear problem.The Kriging model was adopted to replace computer aided engineering(CAE) simulation as fitness function of multi-objective PSO algorithm,and the computation cost can be reduced greatly.By introducing multi-objective handling mechanism of crowding distance and mutation operator to multiobjective PSO algorithm,the entire Pareto front can be approximated better.It is shown that the multi-objective optimization strategy can get higher solving accuracy and computation efficiency under small sample.
文摘Evolutionary algorithm is time-consuming because of the large number of evolutions and much times of finite element analysis, when it is used to optimize the wing structure of a certain high altitude long endurance unmanned aviation vehicle(UAV). In order to improve efficiency it is proposed to construct a model management framework to perform the multi-objective optimization design of wing structure. The sufficient accurate approximation models of objective and constraint functions in the wing structure optimization model are built when using the model management framework, therefore in the evolutionary algorithm a number of finite element analyses can he avoided and the satisfactory multi-objective optimization results of the wing structure of the high altitude long endurance UAV are obtained.
文摘This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.
基金supported by National Natural Science Foundation of China (Grant No.50875101)National Hi-tech Research and Development Program of China (863 Program,Grant No.2007AA04Z186)
文摘As two independent problems,scheduling for parts fabrication line and sequencing for mixed-model assembly line have been addressed respectively by many researchers.However,these two problems should be considered simultaneously to improve the efficiency of the whole fabrication/assembly systems.By far,little research effort is devoted to sequencing problems for mixed-model fabrication/assembly systems.This paper is concerned about the sequencing problems in pull production systems which are composed of one mixed-model assembly line with limited intermediate buffers and two flexible parts fabrication flow lines with identical parallel machines and limited intermediate buffers.Two objectives are considered simultaneously:minimizing the total variation in parts consumption in the assembly line and minimizing the total makespan cost in the fabrication/assembly system.The integrated optimization framework,mathematical models and the method to construct the complete schedules for the fabrication lines according to the production sequences for the first stage in fabrication lines are presented.Since the above problems are non-deterministic polynomial-hard(NP-hard),a modified multi-objective genetic algorithm is proposed for solving the models,in which a method to generate the production sequences for the fabrication lines from the production sequences for the assembly line and a method to generate the initial population are put forward,new selection,crossover and mutation operators are designed,and Pareto ranking method and sharing function method are employed to evaluate the individuals' fitness.The feasibility and efficiency of the multi-objective genetic algorithm is shown by computational comparison with a multi-objective simulated annealing algorithm.The sequencing problems for mixed-model production systems can be solved effectively by the proposed modified multi-objective genetic algorithm.
基金supported by the National Natural Science Foundation of China(Project No.5217232152102391)+2 种基金Sichuan Province Science and Technology Innovation Talent Project(2024JDRC0020)China Shenhua Energy Company Limited Technology Project(GJNY-22-7/2300-K1220053)Key science and technology projects in the transportation industry of the Ministry of Transport(2022-ZD7-132).
文摘This paper introduces the Surrogate-assisted Multi-objective Grey Wolf Optimizer(SMOGWO)as a novel methodology for addressing the complex problem of empty-heavy train allocation,with a focus on line utilization balance.By integrating surrogate models to approximate the objective functions,SMOGWO significantly improves the efficiency and accuracy of the optimization process.The effectiveness of this approach is evaluated using the CEC2009 multi-objective test function suite,where SMOGWO achieves a superiority rate of 76.67%compared to other leading multi-objective algorithms.Furthermore,the practical applicability of SMOGWO is demonstrated through a case study on empty and heavy train allocation,which validates its ability to balance line capacity,minimize transportation costs,and optimize the technical combination of heavy trains.The research highlights SMOGWO's potential as a robust solution for optimization challenges in railway transportation,offering valuable contributions toward enhancing operational efficiency and promoting sustainable development in the sector.