Amphibious vehicles are more prone to attitude instability compared to ships,making it crucial to develop effective methods for monitoring instability risks.However,large inclination events,which can lead to instabili...Amphibious vehicles are more prone to attitude instability compared to ships,making it crucial to develop effective methods for monitoring instability risks.However,large inclination events,which can lead to instability,occur frequently in both experimental and operational data.This infrequency causes events to be overlooked by existing prediction models,which lack the precision to accurately predict inclination attitudes in amphibious vehicles.To address this gap in predicting attitudes near extreme inclination points,this study introduces a novel loss function,termed generalized extreme value loss.Subsequently,a deep learning model for improved waterborne attitude prediction,termed iInformer,was developed using a Transformer-based approach.During the embedding phase,a text prototype is created based on the vehicle’s operation log data is constructed to help the model better understand the vehicle’s operating environment.Data segmentation techniques are used to highlight local data variation features.Furthermore,to mitigate issues related to poor convergence and slow training speeds caused by the extreme value loss function,a teacher forcing mechanism is integrated into the model,enhancing its convergence capabilities.Experimental results validate the effectiveness of the proposed method,demonstrating its ability to handle data imbalance challenges.Specifically,the model achieves over a 60%improvement in root mean square error under extreme value conditions,with significant improvements observed across additional metrics.展开更多
In terms of tandem cold mill productivity and product quality, a multi-objective optimization model of rolling schedule based on cost fimction was proposed to determine the stand reductions, inter-stand tensions and r...In terms of tandem cold mill productivity and product quality, a multi-objective optimization model of rolling schedule based on cost fimction was proposed to determine the stand reductions, inter-stand tensions and rolling speeds for a specified product. The proposed schedule optimization model consists of several single cost fi.mctions, which take rolling force, motor power, inter-stand tension and stand reduction into consideration. The cost function, which can evaluate how far the rolling parameters are from the ideal values, was minimized using the Nelder-Mead simplex method. The proposed rolling schedule optimization method has been applied successfully to the 5-stand tandem cold mill in Tangsteel, and the results from a case study show that the proposed method is superior to those based on empirical formulae.展开更多
In shale gas mining,the inter-fracture interference effect will significantly occur if the actual well deviates from the planned trajectory.To reduce production loss,operators want to get back on the planned trajector...In shale gas mining,the inter-fracture interference effect will significantly occur if the actual well deviates from the planned trajectory.To reduce production loss,operators want to get back on the planned trajectory economically and safely.Based on this,a multi-objective optimization model of deviationcorrection trajectory is established considering the production loss evaluation.Firstly,the functional relationship between the production envelope and the fracturing depth is constructed,and the production loss is obtained by combining the calculation method of volume flow.Based on the proposed“double-arc”trajectory design method,the production loss of the fracture on the deviation-correction trajectory is obtained.Finally,combined with the well profile energy evaluation,a new optimization model of deviation-correction trajectory is established.The results demonstrate that after optimizing the fracturing depth,the production loss of the deviation-correction trajectory is reduced by 13.2%.The maximum curvature value results in a trajectory with a minimum production loss yet a maximum well profile energy.The proposed model reduces the well profile energy by 15.6%compared with the existing model.It is proved that the proposed model can reduce the probability of drilling accidents and achieve high gas production in the later mining stage.This study fully considers various factors affecting horizontal wells in the fracturing area,which can provide theoretical guidance for the design of deviationcorrection trajectory.展开更多
In the last decade,space solar power satellites(SSPSs)have been conceived to support net-zero carbon emissions and have attracted considerable attention.Electric energy is transmitted to the ground via a microwave pow...In the last decade,space solar power satellites(SSPSs)have been conceived to support net-zero carbon emissions and have attracted considerable attention.Electric energy is transmitted to the ground via a microwave power beam,a technology known as microwave power transmission(MPT).Due to the vast transmission distance of tens of thousands of kilometers,the power transmitting antenna array must span up to 1 kilometer in diameter.At the same time,the size of the rectifying array on the ground should extend over a few kilometers.This makes the MPT system of SSPSs significantly larger than the existing aerospace engineering system.To design and operate a rational MPT system,comprehensive optimization is required.Taking the space MPT system engineering into consideration,a novel multi-objective optimization function is proposed and further analyzed.The multi-objective optimization problem is modeled mathematically.Beam collection efficiency(BCE)is the primary factor,followed by the thermal management capability.Some tapers,designed to solve the conflict between BCE and the thermal problem,are reviewed.In addition to these two factors,rectenna design complexity is included as a functional factor in the optimization objective.Weight coefficients are assigned to these factors to prioritize them.Radiating planar arrays with different aperture illumination fields are studied,and their performances are compared using the multi-objective optimization function.Transmitting array size,rectifying array size,transmission distance,and transmitted power remaine constant in various cases,ensuring fair comparisons.The analysis results show that the proposed optimization function is effective in optimizing and selecting the MPT system architecture.It is also noted that the multi-objective optimization function can be expanded to include other factors in the future.展开更多
The multi-objective optimization of backfill effect based on response surface methodology and desirability function(RSM-DF)was conducted.Firstly,the test results show that the uniaxial compressive strength(UCS)increas...The multi-objective optimization of backfill effect based on response surface methodology and desirability function(RSM-DF)was conducted.Firstly,the test results show that the uniaxial compressive strength(UCS)increases with cement sand ratio(CSR),slurry concentration(SC),and curing age(CA),while flow resistance(FR)increases with SC and backfill flow rate(BFR),and decreases with CSR.Then the regression models of UCS and FR as response values were established through RSM.Multi-factor interaction found that CSR-CA impacted UCS most,while SC-BFR impacted FR most.By introducing the desirability function,the optimal backfill parameters were obtained based on RSM-DF(CSR is 1:6.25,SC is 69%,CA is 11.5 d,and BFR is 90 m^(3)/h),showing close results of Design Expert and high reliability for optimization.For a copper mine in China,RSM-DF optimization will reduce cement consumption by 4758 t per year,increase tailings consumption by about 6700 t,and reduce CO_(2)emission by about 4758 t.Thus,RSM-DF provides a new approach for backfill parameters optimization,which has important theoretical and practical values.展开更多
To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solve...To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solved.In this work,a radial-basis function(RBF)neural network was used to mine the potential changes of a greenhouse environment,a temperature error model was established,a multi-objective optimization function of energy consumption was constructed and the corresponding decision parameters were optimized by using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-Ⅱ).The simulation results showed that RBF could clarify the nonlinear relationship among the greenhouse environment variables and decision parameters and the greenhouse temperature.The NSGA-Ⅱcould well search for the Pareto solution for the objective functions.The experimental results showed that after 40 min of combined control of sunshades and sprays,the temperature was reduced from 31℃to 25℃,and the power consumption was 0.5 MJ.Compared with tire three days of July 24,July 25 and July 26,2017,the energy consumption of the controlled production greenhouse was reduced by 37.5%,9.1%and 28.5%,respectively.展开更多
In this paper, we present an algorithm to solve the inequality constrained multi-objective programming (MP) by using a penalty function with objective parameters and constraint penalty parameter. First, the penalty fu...In this paper, we present an algorithm to solve the inequality constrained multi-objective programming (MP) by using a penalty function with objective parameters and constraint penalty parameter. First, the penalty function with objective parameters and constraint penalty parameter for MP and the corresponding unconstraint penalty optimization problem (UPOP) is defined. Under some conditions, a Pareto efficient solution (or a weakly-efficient solution) to UPOP is proved to be a Pareto efficient solution (or a weakly-efficient solution) to MP. The penalty function is proved to be exact under a stable condition. Then, we design an algorithm to solve MP and prove its convergence. Finally, numerical examples show that the algorithm may help decision makers to find a satisfactory solution to MP.展开更多
This paper deals with the optimality conditions and dual theory of multi-objective programming problems involving generalized convexity. New classes of generalized type-I functions are introduced for arcwise connected...This paper deals with the optimality conditions and dual theory of multi-objective programming problems involving generalized convexity. New classes of generalized type-I functions are introduced for arcwise connected functions, and examples are given to show the existence of these functions. By utilizing the new concepts, several sufficient optimality conditions and Mond-Weir type duality results are proposed for non-differentiable multi-objective programming problem.展开更多
AIM: To explore the effects and mechanism of action of antidepressant mirtazapine in functional dyspepsia(FD) patients with weight loss.METHODS: Sixty depressive FD patients with weight loss were randomly divided into...AIM: To explore the effects and mechanism of action of antidepressant mirtazapine in functional dyspepsia(FD) patients with weight loss.METHODS: Sixty depressive FD patients with weight loss were randomly divided into a mirtazapine group(MG), a paroxetine group(PG) or a conventional therapy group(CG) for an 8-wk clinical trial. Adverse effects and treatment response were recorded. The Nepean Dyspepsia Index-symptom(NDSI) checklist and the 17-item Hamilton Rating Scale of Depression(HAMD-17) were used to evaluate dyspepsia and depressive symptoms, respectively. The body composition analyzer was used to measure body weight and fat. Serum hormone levels were measured by ELISA.RESULTS:(1) After 2 wk of treatment, NDSI scores were significantly lower for the MG than for the PG and CG;(2) After 4 or 8 wk of treatment, HAMD-17 scores were significantly lower for the MG and PG than for the CG;(3) After 8 wk of treatment, patients in the MG experienced a weight gain of 3.58 ± 1.57 kg, which was significantly higher than that observed for patients in the PG and CG. Body fat increased by 2.77 ± 0.14kg, the body fat ratio rose by 4%, and the visceral fat area increased by 7.56 ± 2.25 cm2; and(4) For the MG, serum hormone levels of ghrelin, neuropeptide Y(NPY), motilin(MTL) and gastrin(GAS) were significantly upregulated; in contrast, those of leptin, 5-hydroxytryptamine(5-HT) and cholecystokinin(CCK) were significantly downregulated. CONCLUSION: Mirtazapine not only alleviates symptoms associated with dyspepsia and depression linked to FD in patients with weight loss but also significantly increases body weight(mainly the visceral fat in body fat). The likely mechanism of mirtazapine action is regulation of brain-gut or gastrointestinal hormone levels.展开更多
LINEX(linear and exponential) loss function is a useful asymmetric loss function. The purpose of using a LINEX loss function in credibility models is to solve the problem of very high premium by suing a symmetric quad...LINEX(linear and exponential) loss function is a useful asymmetric loss function. The purpose of using a LINEX loss function in credibility models is to solve the problem of very high premium by suing a symmetric quadratic loss function in most of classical credibility models. The Bayes premium and the credibility premium are derived under LINEX loss function. The consistency of Bayes premium and credibility premium were also checked. Finally, the simulation was introduced to show the differences between the credibility estimator we derived and the classical one.展开更多
The 6-DOF manipulator provides a new option for traditional shipbuilding for its advantages of vast working space,low power consumption,and excellent flexibility.However,the rotation of the end effector along the tool...The 6-DOF manipulator provides a new option for traditional shipbuilding for its advantages of vast working space,low power consumption,and excellent flexibility.However,the rotation of the end effector along the tool axis is functionally redundant when using a robotic arm for five-axis machining.In the process of ship construction,the performance of the parts’protective coating needs to bemachined tomeet the Performance Standard of Protective Coatings(PSPC).The arbitrary redundancy configuration in path planning will result in drastic fluctuations in the robot joint angle,greatly reducing machining quality and efficiency.There have been some studies on singleobjective optimization of redundant variables,However,the quality and efficiency of milling are not affected by a single factor,it is usually influenced by several factors,such as the manipulator stiffness,the joint motion smoothness,and the energy consumption.To solve this problem,this paper proposed a new path optimization method for the industrial robot when it is used for five-axis machining.The path smoothness performance index and the energy consumption index are established based on the joint acceleration and the joint velocity,respectively.The path planning issue is formulated as a constrained multi-objective optimization problem by taking into account the constraints of joint limits and singularity avoidance.Then,the path is split into multiple segments for optimization to avoid the slow convergence rate caused by the high dimension.An algorithm combining the non-dominated sorting genetic algorithm(NSGA-II)and the differential evolution(DE)algorithm is employed to solve the above optimization problem.The simulations validate the effectiveness of the algorithm,showing the improvement of smoothness and the reduction of energy consumption.展开更多
A vague-set-based fuzzy multi-objective decision making model is developed for evaluating bidding plans in a bid- ding purchase process. A group of decision-makers (DMs) first independently assess bidding plans accord...A vague-set-based fuzzy multi-objective decision making model is developed for evaluating bidding plans in a bid- ding purchase process. A group of decision-makers (DMs) first independently assess bidding plans according to their experience and preferences, and these assessments may be expressed as linguistic terms, which are then converted to fuzzy numbers. The resulting decision matrices are then transformed to objective membership grade matrices. The lower bound of satisfaction and upper bound of dissatisfaction are used to determine each bidding plan’s supporting, opposing, and neutral objective sets, which together determine the vague value of a bidding plan. Finally, a score function is employed to rank all bidding plans. A new score function based on vague sets is introduced in the model and a novel method is presented for calculating the lower bound of sat- isfaction and upper bound of dissatisfaction. In a vague-set-based fuzzy multi-objective decision making model, different valua- tions for upper and lower bounds of satisfaction usually lead to distinct ranking results. Therefore, it is crucial to effectively contain DMs’ arbitrariness and subjectivity when these values are determined.展开更多
With the advancement of combat equipment technology and combat concepts,new requirements have been put forward for air defense operations during a group target attack.To achieve high-efficiency and lowloss defensive o...With the advancement of combat equipment technology and combat concepts,new requirements have been put forward for air defense operations during a group target attack.To achieve high-efficiency and lowloss defensive operations,a reasonable air defense weapon assignment strategy is a key step.In this paper,a multi-objective and multi-constraints weapon target assignment(WTA)model is established that aims to minimize the defensive resource loss,minimize total weapon consumption,and minimize the target residual effectiveness.An optimization framework of air defense weapon mission scheduling based on the multiobjective artificial bee colony(MOABC)algorithm is proposed.The solution for point-to-point saturated attack targets at different operational scales is achieved by encoding the nectar with real numbers.Simulations are performed for an imagined air defense scenario,where air defense weapons are saturated.The non-dominated solution sets are obtained by the MOABC algorithm to meet the operational demand.In the case where there are more weapons than targets,more diverse assignment schemes can be selected.According to the inverse generation distance(IGD)index,the convergence and diversity for the solutions of the non-dominated sorting genetic algorithm III(NSGA-III)algorithm and the MOABC algorithm are compared and analyzed.The results prove that the MOABC algorithm has better convergence and the solutions are more evenly distributed among the solution space.展开更多
To assist readers to have a comprehensive understanding, the classical and intelligent methods roundly based on precursory research achievements are summarized in this paper. First, basic conception and description ab...To assist readers to have a comprehensive understanding, the classical and intelligent methods roundly based on precursory research achievements are summarized in this paper. First, basic conception and description about multi-objective (MO) optimization are introduced. Then some definitions and related terminologies are given. Furthermore several MO optimization methods including classical and current intelligent methods are discussed one by one succinctly. Finally evaluations on advantages and disadvantages about these methods are made at the end of the paper.展开更多
This study investigates the vibration and acoustic properties of porous foam functionally graded(FG)plates under the influence of the temperature field.The dynamics equations of the system are established based on Ham...This study investigates the vibration and acoustic properties of porous foam functionally graded(FG)plates under the influence of the temperature field.The dynamics equations of the system are established based on Hamilton's principle by using the higher-order shear deformation theory under the linear displacement-strain assumption.The displacement shape function is assumed according to the four-sided simply-supported(SSSS)boundary condition,and the characteristic equations of the system are derived by combining the motion control equations.The theoretical model of vibro-acoustic coupling is established by using the acoustic theory and fluid-structure coupling solution method under the simple harmonic acoustic wave.The system's natural frequency and sound transmission loss(STL)are obtained through programming calculations and compared with the literature and COMSOL simulation to verify the validity and reliability of the theoretical model.The effects of various factors,such as temperature,porosity coefficients,gradient index,core thickness,width-to-thickness ratio on the vibration,and STL characteristics of the system,are discussed.The results provide a theoretical basis for the application of porous foam FG plates in engineering to optimize vibration and sound transmission properties.展开更多
The deep learning model is overfitted and the accuracy of the test set is reduced when the deep learning model is trained in the network intrusion detection parameters, due to the traditional loss function convergence...The deep learning model is overfitted and the accuracy of the test set is reduced when the deep learning model is trained in the network intrusion detection parameters, due to the traditional loss function convergence problem. Firstly, we utilize a network model architecture combining Gelu activation function and deep neural network;Secondly, the cross-entropy loss function is improved to a weighted cross entropy loss function, and at last it is applied to intrusion detection to improve the accuracy of intrusion detection. In order to compare the effect of the experiment, the KDDcup99 data set, which is commonly used in intrusion detection, is selected as the experimental data and use accuracy, precision, recall and F1-score as evaluation parameters. The experimental results show that the model using the weighted cross-entropy loss function combined with the Gelu activation function under the deep neural network architecture improves the evaluation parameters by about 2% compared with the ordinary cross-entropy loss function model. Experiments prove that the weighted cross-entropy loss function can enhance the model’s ability to discriminate samples.展开更多
Selective logging is well-recognized as an effective practice in sustainable forest management.However,the ecological efficiency or resilience of the residual stand is often in doubt.Recovery time depends on operation...Selective logging is well-recognized as an effective practice in sustainable forest management.However,the ecological efficiency or resilience of the residual stand is often in doubt.Recovery time depends on operational variables,diversity,and forest structure.Selective logging is excellent but is open to changes.This may be resolved by mathematical programming and this study integrates the economic-ecological aspects in multi-objective function by applying two evolutionary algorithms.The function maximizes remaining stand diversity,merchantable logs,and the inverse of distance between trees for harvesting and log landings points.The Brazilian rainforest database(566 trees)was used to simulate our 216-ha model.The log landing design has a maximum volume limit of 500 m3.The nondominated sorting genetic algorithm was applied to solve the main optimization problem.In parallel,a sub-problem(p-facility allocation)was solved for landing allocation by a genetic algorithm.Pareto frontier analysis was applied to distinguish the gradientsα-economic,β-ecological,andγ-equilibrium.As expected,the solutions have high diameter changes in the residual stand(average removal of approximately 16 m^(3) ha^(-1)).All solutions showed a grouping of trees selected for harvesting,although there was no formation of large clearings(percentage of canopy removal<7%,with an average of 2.5 ind ha^(-1)).There were no differences in floristic composition by preferentially selecting species with greater frequency in the initial stand for harvesting.This implies a lower impact on the demographic rates of the remaining stand.The methodology should support projects of reduced impact logging by using spatial-diversity information to guide better practices in tropical forests.展开更多
Recently,the evolution of Generative Adversarial Networks(GANs)has embarked on a journey of revolutionizing the field of artificial and computational intelligence.To improve the generating ability of GANs,various loss...Recently,the evolution of Generative Adversarial Networks(GANs)has embarked on a journey of revolutionizing the field of artificial and computational intelligence.To improve the generating ability of GANs,various loss functions are introduced to measure the degree of similarity between the samples generated by the generator and the real data samples,and the effectiveness of the loss functions in improving the generating ability of GANs.In this paper,we present a detailed survey for the loss functions used in GANs,and provide a critical analysis on the pros and cons of these loss functions.First,the basic theory of GANs along with the training mechanism are introduced.Then,the most commonly used loss functions in GANs are introduced and analyzed.Third,the experimental analyses and comparison of these loss functions are presented in different GAN architectures.Finally,several suggestions on choosing suitable loss functions for image synthesis tasks are given.展开更多
Path loss prediction models are vital for accurate signal propagation in wireless channels. Empirical and deterministic models used in path loss predictions have not produced optimal results. In this paper, we introdu...Path loss prediction models are vital for accurate signal propagation in wireless channels. Empirical and deterministic models used in path loss predictions have not produced optimal results. In this paper, we introduced machine learning algorithms to path loss predictions because it offers a flexible network architecture and extensive data can be used. We introduced support vector regression (SVR) and radial basis function (RBF) models to path loss predictions in the investigated environments. The SVR model was able to process several input parameters without introducing complexity to the network architecture. The RBF on its part provides a good function approximation. Hyperparameter tuning of the machine learning models was carried out in order to achieve optimal results. The performances of the SVR and RBF models were compared and result validated using the root-mean squared error (RMSE). The two machine learning algorithms were also compared with the Cost-231, SUI, Egli, Freespace, Cost-231 W-I models. The analytical models overpredicted path loss. Overall, the machine learning models predicted path loss with greater accuracy than the empirical models. The SVR model performed best across all the indices with RMSE values of 1.378 dB, 1.4523 dB, 2.1568 dB in rural, suburban and urban settings respectively and should therefore be adopted for signal propagation in the investigated environments and beyond.展开更多
The effective energy loss functions for Al have been derived from differential i nverse inelastic mean free path based on the extended Landau approach. It has be en revealed that the effective energy loss function is ...The effective energy loss functions for Al have been derived from differential i nverse inelastic mean free path based on the extended Landau approach. It has be en revealed that the effective energy loss function is very close in value to th e theoretical surface energy loss function in the lower energy loss region but g radually approaches the theoretical bulk energy loss function in the higher ener gy loss region. Moreover, the intensity corresponding to surface excitation in e ffective energy loss functions decreases with the increase of primary electron e nergy. These facts show that the present effective energy loss function describe s not only surface excitation but also bulk excitation. At last, REELS spectra s imulated by Monte Carlo method based on use of the effective energy loss functio ns has reproduced the experimental REELS spectra with considerable success.展开更多
基金Supported by the National Defense Basic Scientific Research Program of China.
文摘Amphibious vehicles are more prone to attitude instability compared to ships,making it crucial to develop effective methods for monitoring instability risks.However,large inclination events,which can lead to instability,occur frequently in both experimental and operational data.This infrequency causes events to be overlooked by existing prediction models,which lack the precision to accurately predict inclination attitudes in amphibious vehicles.To address this gap in predicting attitudes near extreme inclination points,this study introduces a novel loss function,termed generalized extreme value loss.Subsequently,a deep learning model for improved waterborne attitude prediction,termed iInformer,was developed using a Transformer-based approach.During the embedding phase,a text prototype is created based on the vehicle’s operation log data is constructed to help the model better understand the vehicle’s operating environment.Data segmentation techniques are used to highlight local data variation features.Furthermore,to mitigate issues related to poor convergence and slow training speeds caused by the extreme value loss function,a teacher forcing mechanism is integrated into the model,enhancing its convergence capabilities.Experimental results validate the effectiveness of the proposed method,demonstrating its ability to handle data imbalance challenges.Specifically,the model achieves over a 60%improvement in root mean square error under extreme value conditions,with significant improvements observed across additional metrics.
基金Project(51074051)supported by the National Natural Science Foundation of ChinaProject(N110307001)supported by the Fundamental Research Funds for the Central Universities,China
文摘In terms of tandem cold mill productivity and product quality, a multi-objective optimization model of rolling schedule based on cost fimction was proposed to determine the stand reductions, inter-stand tensions and rolling speeds for a specified product. The proposed schedule optimization model consists of several single cost fi.mctions, which take rolling force, motor power, inter-stand tension and stand reduction into consideration. The cost function, which can evaluate how far the rolling parameters are from the ideal values, was minimized using the Nelder-Mead simplex method. The proposed rolling schedule optimization method has been applied successfully to the 5-stand tandem cold mill in Tangsteel, and the results from a case study show that the proposed method is superior to those based on empirical formulae.
基金financial support from the Natural Science Foundation of China(No.42002307)Fundamental Research Funds for the Central Universities(No.2652019070)National Key Research and Development Program of China(No.2018YFC0603405)
文摘In shale gas mining,the inter-fracture interference effect will significantly occur if the actual well deviates from the planned trajectory.To reduce production loss,operators want to get back on the planned trajectory economically and safely.Based on this,a multi-objective optimization model of deviationcorrection trajectory is established considering the production loss evaluation.Firstly,the functional relationship between the production envelope and the fracturing depth is constructed,and the production loss is obtained by combining the calculation method of volume flow.Based on the proposed“double-arc”trajectory design method,the production loss of the fracture on the deviation-correction trajectory is obtained.Finally,combined with the well profile energy evaluation,a new optimization model of deviation-correction trajectory is established.The results demonstrate that after optimizing the fracturing depth,the production loss of the deviation-correction trajectory is reduced by 13.2%.The maximum curvature value results in a trajectory with a minimum production loss yet a maximum well profile energy.The proposed model reduces the well profile energy by 15.6%compared with the existing model.It is proved that the proposed model can reduce the probability of drilling accidents and achieve high gas production in the later mining stage.This study fully considers various factors affecting horizontal wells in the fracturing area,which can provide theoretical guidance for the design of deviationcorrection trajectory.
文摘In the last decade,space solar power satellites(SSPSs)have been conceived to support net-zero carbon emissions and have attracted considerable attention.Electric energy is transmitted to the ground via a microwave power beam,a technology known as microwave power transmission(MPT).Due to the vast transmission distance of tens of thousands of kilometers,the power transmitting antenna array must span up to 1 kilometer in diameter.At the same time,the size of the rectifying array on the ground should extend over a few kilometers.This makes the MPT system of SSPSs significantly larger than the existing aerospace engineering system.To design and operate a rational MPT system,comprehensive optimization is required.Taking the space MPT system engineering into consideration,a novel multi-objective optimization function is proposed and further analyzed.The multi-objective optimization problem is modeled mathematically.Beam collection efficiency(BCE)is the primary factor,followed by the thermal management capability.Some tapers,designed to solve the conflict between BCE and the thermal problem,are reviewed.In addition to these two factors,rectenna design complexity is included as a functional factor in the optimization objective.Weight coefficients are assigned to these factors to prioritize them.Radiating planar arrays with different aperture illumination fields are studied,and their performances are compared using the multi-objective optimization function.Transmitting array size,rectifying array size,transmission distance,and transmitted power remaine constant in various cases,ensuring fair comparisons.The analysis results show that the proposed optimization function is effective in optimizing and selecting the MPT system architecture.It is also noted that the multi-objective optimization function can be expanded to include other factors in the future.
基金Funded by the Deep Underground National Science&Technology Major Project gram of China(No.2024ZD1003704)the National Natural Science Foundation of China(Nos.51834001 and 52374111)。
文摘The multi-objective optimization of backfill effect based on response surface methodology and desirability function(RSM-DF)was conducted.Firstly,the test results show that the uniaxial compressive strength(UCS)increases with cement sand ratio(CSR),slurry concentration(SC),and curing age(CA),while flow resistance(FR)increases with SC and backfill flow rate(BFR),and decreases with CSR.Then the regression models of UCS and FR as response values were established through RSM.Multi-factor interaction found that CSR-CA impacted UCS most,while SC-BFR impacted FR most.By introducing the desirability function,the optimal backfill parameters were obtained based on RSM-DF(CSR is 1:6.25,SC is 69%,CA is 11.5 d,and BFR is 90 m^(3)/h),showing close results of Design Expert and high reliability for optimization.For a copper mine in China,RSM-DF optimization will reduce cement consumption by 4758 t per year,increase tailings consumption by about 6700 t,and reduce CO_(2)emission by about 4758 t.Thus,RSM-DF provides a new approach for backfill parameters optimization,which has important theoretical and practical values.
基金Supported by the National"Thirteenth Five-year Plan"National Key Program(2016YFD0701301)the Heilongjiang Provincial Achievement Transformation Fund Project(NB08B-011)。
文摘To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solved.In this work,a radial-basis function(RBF)neural network was used to mine the potential changes of a greenhouse environment,a temperature error model was established,a multi-objective optimization function of energy consumption was constructed and the corresponding decision parameters were optimized by using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-Ⅱ).The simulation results showed that RBF could clarify the nonlinear relationship among the greenhouse environment variables and decision parameters and the greenhouse temperature.The NSGA-Ⅱcould well search for the Pareto solution for the objective functions.The experimental results showed that after 40 min of combined control of sunshades and sprays,the temperature was reduced from 31℃to 25℃,and the power consumption was 0.5 MJ.Compared with tire three days of July 24,July 25 and July 26,2017,the energy consumption of the controlled production greenhouse was reduced by 37.5%,9.1%and 28.5%,respectively.
文摘In this paper, we present an algorithm to solve the inequality constrained multi-objective programming (MP) by using a penalty function with objective parameters and constraint penalty parameter. First, the penalty function with objective parameters and constraint penalty parameter for MP and the corresponding unconstraint penalty optimization problem (UPOP) is defined. Under some conditions, a Pareto efficient solution (or a weakly-efficient solution) to UPOP is proved to be a Pareto efficient solution (or a weakly-efficient solution) to MP. The penalty function is proved to be exact under a stable condition. Then, we design an algorithm to solve MP and prove its convergence. Finally, numerical examples show that the algorithm may help decision makers to find a satisfactory solution to MP.
文摘This paper deals with the optimality conditions and dual theory of multi-objective programming problems involving generalized convexity. New classes of generalized type-I functions are introduced for arcwise connected functions, and examples are given to show the existence of these functions. By utilizing the new concepts, several sufficient optimality conditions and Mond-Weir type duality results are proposed for non-differentiable multi-objective programming problem.
文摘AIM: To explore the effects and mechanism of action of antidepressant mirtazapine in functional dyspepsia(FD) patients with weight loss.METHODS: Sixty depressive FD patients with weight loss were randomly divided into a mirtazapine group(MG), a paroxetine group(PG) or a conventional therapy group(CG) for an 8-wk clinical trial. Adverse effects and treatment response were recorded. The Nepean Dyspepsia Index-symptom(NDSI) checklist and the 17-item Hamilton Rating Scale of Depression(HAMD-17) were used to evaluate dyspepsia and depressive symptoms, respectively. The body composition analyzer was used to measure body weight and fat. Serum hormone levels were measured by ELISA.RESULTS:(1) After 2 wk of treatment, NDSI scores were significantly lower for the MG than for the PG and CG;(2) After 4 or 8 wk of treatment, HAMD-17 scores were significantly lower for the MG and PG than for the CG;(3) After 8 wk of treatment, patients in the MG experienced a weight gain of 3.58 ± 1.57 kg, which was significantly higher than that observed for patients in the PG and CG. Body fat increased by 2.77 ± 0.14kg, the body fat ratio rose by 4%, and the visceral fat area increased by 7.56 ± 2.25 cm2; and(4) For the MG, serum hormone levels of ghrelin, neuropeptide Y(NPY), motilin(MTL) and gastrin(GAS) were significantly upregulated; in contrast, those of leptin, 5-hydroxytryptamine(5-HT) and cholecystokinin(CCK) were significantly downregulated. CONCLUSION: Mirtazapine not only alleviates symptoms associated with dyspepsia and depression linked to FD in patients with weight loss but also significantly increases body weight(mainly the visceral fat in body fat). The likely mechanism of mirtazapine action is regulation of brain-gut or gastrointestinal hormone levels.
基金Supported by the NNSF of China(71001046)Supported by the NSF of Jiangxi Province(20114BAB211004)
文摘LINEX(linear and exponential) loss function is a useful asymmetric loss function. The purpose of using a LINEX loss function in credibility models is to solve the problem of very high premium by suing a symmetric quadratic loss function in most of classical credibility models. The Bayes premium and the credibility premium are derived under LINEX loss function. The consistency of Bayes premium and credibility premium were also checked. Finally, the simulation was introduced to show the differences between the credibility estimator we derived and the classical one.
文摘The 6-DOF manipulator provides a new option for traditional shipbuilding for its advantages of vast working space,low power consumption,and excellent flexibility.However,the rotation of the end effector along the tool axis is functionally redundant when using a robotic arm for five-axis machining.In the process of ship construction,the performance of the parts’protective coating needs to bemachined tomeet the Performance Standard of Protective Coatings(PSPC).The arbitrary redundancy configuration in path planning will result in drastic fluctuations in the robot joint angle,greatly reducing machining quality and efficiency.There have been some studies on singleobjective optimization of redundant variables,However,the quality and efficiency of milling are not affected by a single factor,it is usually influenced by several factors,such as the manipulator stiffness,the joint motion smoothness,and the energy consumption.To solve this problem,this paper proposed a new path optimization method for the industrial robot when it is used for five-axis machining.The path smoothness performance index and the energy consumption index are established based on the joint acceleration and the joint velocity,respectively.The path planning issue is formulated as a constrained multi-objective optimization problem by taking into account the constraints of joint limits and singularity avoidance.Then,the path is split into multiple segments for optimization to avoid the slow convergence rate caused by the high dimension.An algorithm combining the non-dominated sorting genetic algorithm(NSGA-II)and the differential evolution(DE)algorithm is employed to solve the above optimization problem.The simulations validate the effectiveness of the algorithm,showing the improvement of smoothness and the reduction of energy consumption.
基金Project (No. K81077) supported by the Department of Automation, Xiamen University, China
文摘A vague-set-based fuzzy multi-objective decision making model is developed for evaluating bidding plans in a bid- ding purchase process. A group of decision-makers (DMs) first independently assess bidding plans according to their experience and preferences, and these assessments may be expressed as linguistic terms, which are then converted to fuzzy numbers. The resulting decision matrices are then transformed to objective membership grade matrices. The lower bound of satisfaction and upper bound of dissatisfaction are used to determine each bidding plan’s supporting, opposing, and neutral objective sets, which together determine the vague value of a bidding plan. Finally, a score function is employed to rank all bidding plans. A new score function based on vague sets is introduced in the model and a novel method is presented for calculating the lower bound of sat- isfaction and upper bound of dissatisfaction. In a vague-set-based fuzzy multi-objective decision making model, different valua- tions for upper and lower bounds of satisfaction usually lead to distinct ranking results. Therefore, it is crucial to effectively contain DMs’ arbitrariness and subjectivity when these values are determined.
基金supported by the National Natural Science Foundation of China(71771216).
文摘With the advancement of combat equipment technology and combat concepts,new requirements have been put forward for air defense operations during a group target attack.To achieve high-efficiency and lowloss defensive operations,a reasonable air defense weapon assignment strategy is a key step.In this paper,a multi-objective and multi-constraints weapon target assignment(WTA)model is established that aims to minimize the defensive resource loss,minimize total weapon consumption,and minimize the target residual effectiveness.An optimization framework of air defense weapon mission scheduling based on the multiobjective artificial bee colony(MOABC)algorithm is proposed.The solution for point-to-point saturated attack targets at different operational scales is achieved by encoding the nectar with real numbers.Simulations are performed for an imagined air defense scenario,where air defense weapons are saturated.The non-dominated solution sets are obtained by the MOABC algorithm to meet the operational demand.In the case where there are more weapons than targets,more diverse assignment schemes can be selected.According to the inverse generation distance(IGD)index,the convergence and diversity for the solutions of the non-dominated sorting genetic algorithm III(NSGA-III)algorithm and the MOABC algorithm are compared and analyzed.The results prove that the MOABC algorithm has better convergence and the solutions are more evenly distributed among the solution space.
文摘To assist readers to have a comprehensive understanding, the classical and intelligent methods roundly based on precursory research achievements are summarized in this paper. First, basic conception and description about multi-objective (MO) optimization are introduced. Then some definitions and related terminologies are given. Furthermore several MO optimization methods including classical and current intelligent methods are discussed one by one succinctly. Finally evaluations on advantages and disadvantages about these methods are made at the end of the paper.
基金Project supported by the National Natural Science Foundation of China(No.11972082)。
文摘This study investigates the vibration and acoustic properties of porous foam functionally graded(FG)plates under the influence of the temperature field.The dynamics equations of the system are established based on Hamilton's principle by using the higher-order shear deformation theory under the linear displacement-strain assumption.The displacement shape function is assumed according to the four-sided simply-supported(SSSS)boundary condition,and the characteristic equations of the system are derived by combining the motion control equations.The theoretical model of vibro-acoustic coupling is established by using the acoustic theory and fluid-structure coupling solution method under the simple harmonic acoustic wave.The system's natural frequency and sound transmission loss(STL)are obtained through programming calculations and compared with the literature and COMSOL simulation to verify the validity and reliability of the theoretical model.The effects of various factors,such as temperature,porosity coefficients,gradient index,core thickness,width-to-thickness ratio on the vibration,and STL characteristics of the system,are discussed.The results provide a theoretical basis for the application of porous foam FG plates in engineering to optimize vibration and sound transmission properties.
文摘The deep learning model is overfitted and the accuracy of the test set is reduced when the deep learning model is trained in the network intrusion detection parameters, due to the traditional loss function convergence problem. Firstly, we utilize a network model architecture combining Gelu activation function and deep neural network;Secondly, the cross-entropy loss function is improved to a weighted cross entropy loss function, and at last it is applied to intrusion detection to improve the accuracy of intrusion detection. In order to compare the effect of the experiment, the KDDcup99 data set, which is commonly used in intrusion detection, is selected as the experimental data and use accuracy, precision, recall and F1-score as evaluation parameters. The experimental results show that the model using the weighted cross-entropy loss function combined with the Gelu activation function under the deep neural network architecture improves the evaluation parameters by about 2% compared with the ordinary cross-entropy loss function model. Experiments prove that the weighted cross-entropy loss function can enhance the model’s ability to discriminate samples.
基金supported by the Coordenacao de Aperfeicoamento de Pessoal de Nível Superior–Brasil (CAPES)–Finance Code 001the Postgraduate Programme in Forest Engineering of the Federal University of Lavras (PPGEF/UFLA)and Group of Optimization and Planning (GOPLAN/UFLA/LEMAF-Forest Management Research Lab)。
文摘Selective logging is well-recognized as an effective practice in sustainable forest management.However,the ecological efficiency or resilience of the residual stand is often in doubt.Recovery time depends on operational variables,diversity,and forest structure.Selective logging is excellent but is open to changes.This may be resolved by mathematical programming and this study integrates the economic-ecological aspects in multi-objective function by applying two evolutionary algorithms.The function maximizes remaining stand diversity,merchantable logs,and the inverse of distance between trees for harvesting and log landings points.The Brazilian rainforest database(566 trees)was used to simulate our 216-ha model.The log landing design has a maximum volume limit of 500 m3.The nondominated sorting genetic algorithm was applied to solve the main optimization problem.In parallel,a sub-problem(p-facility allocation)was solved for landing allocation by a genetic algorithm.Pareto frontier analysis was applied to distinguish the gradientsα-economic,β-ecological,andγ-equilibrium.As expected,the solutions have high diameter changes in the residual stand(average removal of approximately 16 m^(3) ha^(-1)).All solutions showed a grouping of trees selected for harvesting,although there was no formation of large clearings(percentage of canopy removal<7%,with an average of 2.5 ind ha^(-1)).There were no differences in floristic composition by preferentially selecting species with greater frequency in the initial stand for harvesting.This implies a lower impact on the demographic rates of the remaining stand.The methodology should support projects of reduced impact logging by using spatial-diversity information to guide better practices in tropical forests.
文摘Recently,the evolution of Generative Adversarial Networks(GANs)has embarked on a journey of revolutionizing the field of artificial and computational intelligence.To improve the generating ability of GANs,various loss functions are introduced to measure the degree of similarity between the samples generated by the generator and the real data samples,and the effectiveness of the loss functions in improving the generating ability of GANs.In this paper,we present a detailed survey for the loss functions used in GANs,and provide a critical analysis on the pros and cons of these loss functions.First,the basic theory of GANs along with the training mechanism are introduced.Then,the most commonly used loss functions in GANs are introduced and analyzed.Third,the experimental analyses and comparison of these loss functions are presented in different GAN architectures.Finally,several suggestions on choosing suitable loss functions for image synthesis tasks are given.
文摘Path loss prediction models are vital for accurate signal propagation in wireless channels. Empirical and deterministic models used in path loss predictions have not produced optimal results. In this paper, we introduced machine learning algorithms to path loss predictions because it offers a flexible network architecture and extensive data can be used. We introduced support vector regression (SVR) and radial basis function (RBF) models to path loss predictions in the investigated environments. The SVR model was able to process several input parameters without introducing complexity to the network architecture. The RBF on its part provides a good function approximation. Hyperparameter tuning of the machine learning models was carried out in order to achieve optimal results. The performances of the SVR and RBF models were compared and result validated using the root-mean squared error (RMSE). The two machine learning algorithms were also compared with the Cost-231, SUI, Egli, Freespace, Cost-231 W-I models. The analytical models overpredicted path loss. Overall, the machine learning models predicted path loss with greater accuracy than the empirical models. The SVR model performed best across all the indices with RMSE values of 1.378 dB, 1.4523 dB, 2.1568 dB in rural, suburban and urban settings respectively and should therefore be adopted for signal propagation in the investigated environments and beyond.
基金This work was supported by the National Natural Science Foundation of China(No.10025420,No.20075026,No.60306006 and No.90206009)the post-doctoral fellowship provided by a Grant-in-Aid for Creative Scientific Research of Japanese govermment(No.13GS0022).The authors would also like to thank Dr.H.Yoshikawa,National Institute for Materials Science of Japan,and Dr.T.Nagatomi,Osaka University,for their helpful comments.
文摘The effective energy loss functions for Al have been derived from differential i nverse inelastic mean free path based on the extended Landau approach. It has be en revealed that the effective energy loss function is very close in value to th e theoretical surface energy loss function in the lower energy loss region but g radually approaches the theoretical bulk energy loss function in the higher ener gy loss region. Moreover, the intensity corresponding to surface excitation in e ffective energy loss functions decreases with the increase of primary electron e nergy. These facts show that the present effective energy loss function describe s not only surface excitation but also bulk excitation. At last, REELS spectra s imulated by Monte Carlo method based on use of the effective energy loss functio ns has reproduced the experimental REELS spectra with considerable success.