This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Op...This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain.展开更多
The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to an...The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to analyze the efficiency of the algorithm. In the simulation case of the water phantom, the algorithm is applied to an inverse planning process of intensity modulated radiation treatment (IMRT). The objective functions of planning target volume (PTV) and normal tissue (NT) are based on the average dose distribution. The obtained intensity profile shows that the hybrid multi-objective gradient algorithm saves the computational time and has good accuracy, thus meeting the requirements of practical applications.展开更多
With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm impro...With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm improvement.To reduce the operational costs of micro-grid systems and the energy abandonment rate of renewable energy,while simultaneously enhancing user satisfaction on the demand side,this paper introduces an improvedmultiobjective Grey Wolf Optimizer based on Cauchy variation.The proposed approach incorporates a Cauchy variation strategy during the optimizer’s search phase to expand its exploration range and minimize the likelihood of becoming trapped in local optima.At the same time,adoptingmultiple energy storage methods to improve the consumption rate of renewable energy.Subsequently,under different energy balance orders,themulti-objective particle swarmalgorithm,multi-objective grey wolf optimizer,and Cauchy’s variant of the improvedmulti-objective grey wolf optimizer are used for example simulation,solving the Pareto solution set of the model and comparing.The analysis of the results reveals that,compared to the original optimizer,the improved optimizer decreases the daily cost by approximately 100 yuan,and reduces the energy abandonment rate to zero.Meanwhile,it enhances user satisfaction and ensures the stable operation of the micro-grid.展开更多
To improve performances of multi-objective optimization algorithms, such as convergence and diversity, a hybridization- encouraged mechanism is proposed and realized in elitist nondominated sorting genetic algorithm ...To improve performances of multi-objective optimization algorithms, such as convergence and diversity, a hybridization- encouraged mechanism is proposed and realized in elitist nondominated sorting genetic algorithm (NSGA-Ⅱ). This mechanism uses the normalized distance to evaluate the difference among genes in a population. Three possible modes of crossover operators--"Max Distance", "Min-Max Distance", and "Neighboring-Max"--are suggested and analyzed. The mode of "Neighboring-Max", which not only takes advantage of hybridization but also improves the distribution of the population near Pareto optimal front, is chosen and used in NSGA-Ⅱ on the basis of hybridization-encouraged mechanism (short for HEM-based NSGA-Ⅱ). To prove the HEM-based algorithm, several problems are studied by using standard NSGA-Ⅱ and the presented method. Different evaluation criteria are also used to judge these algorithms in terms of distribution of solutions, convergence, diversity, and quality of solutions. The numerical results indicate that the application of hybridization-encouraged mechanism could effectively improve the performances of genetic algorithm. Finally, as an example in engineering practices, the presented method is used to design a longitudinal flight control system, which demonstrates the obtainability of a reasonable and correct Pareto front.展开更多
In this study, we develop a new meta-heuristic-based approach to solve a multi-objective optimization problem, namely the reliability-redundancy allocation problem (RRAP). Further, we develop a new simulation process ...In this study, we develop a new meta-heuristic-based approach to solve a multi-objective optimization problem, namely the reliability-redundancy allocation problem (RRAP). Further, we develop a new simulation process to generate practical tools for designing reliable series-parallel systems. Because the?RRAP is an NP-hard problem, conventional techniques or heuristics cannot be used to find the optimal solution. We propose a genetic algorithm (GA)-based hybrid meta-heuristic algorithm, namely the hybrid genetic algorithm (HGA), to find the optimal solution. A simulation process based on the HGA is developed to obtain different alternative solutions that are required to generate application tools for optimal design of reliable series-parallel systems. Finally, a practical case study regarding security control of a gas turbine in the overspeed state is presented to validate the proposed algorithm.展开更多
Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-ob...Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-objective trajectory planning approach based on an improved elitist non-dominated sorting genetic algorithm(INSGA-II)is proposed.Trajectory function is planned with a new composite polynomial that by combining of quintic polynomials with cubic Bezier curves.Then,an INSGA-II,by introducing three genetic operators:ranking group selection(RGS),direction-based crossover(DBX)and adaptive precision-controllable mutation(APCM),is developed to optimize travelling time and torque fluctuation.Inverted generational distance,hypervolume and optimizer overhead are selected to evaluate the convergence,diversity and computational effort of algorithms.The optimal solution is determined via fuzzy comprehensive evaluation to obtain the optimal trajectory.Taking a serial-parallel hybrid manipulator as instance,the velocity and acceleration profiles obtained using this composite polynomial are compared with those obtained using a quintic B-spline method.The effectiveness and practicability of the proposed method are verified by simulation results.This research proposes a trajectory optimization method which can offer a better solution with efficiency and stability for a point-to-point task of robot manipulators.展开更多
A multi-objective hybrid genetic based optimization algorithm is proposed according to the multi-objective property of inverse planning. It is based on hybrid adaptive genetic algorithm which combines the simulated an...A multi-objective hybrid genetic based optimization algorithm is proposed according to the multi-objective property of inverse planning. It is based on hybrid adaptive genetic algorithm which combines the simulated annealing, uses adaptive crossover and mutation, and adopts niched tournament selection. The result of the test calculation demonstrates that an excellent converging speed can be achieved using this approach.展开更多
Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe...Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.展开更多
Cloud computing has rapidly evolved into a critical technology,seamlessly integrating into various aspects of daily life.As user demand for cloud services continues to surge,the need for efficient virtualization and r...Cloud computing has rapidly evolved into a critical technology,seamlessly integrating into various aspects of daily life.As user demand for cloud services continues to surge,the need for efficient virtualization and resource management becomes paramount.At the core of this efficiency lies task scheduling,a complex process that determines how tasks are allocated and executed across cloud resources.While extensive research has been conducted in the area of task scheduling,optimizing multiple objectives simultaneously remains a significant challenge due to the NP(Non-deterministic Polynomial)Complete nature of the problem.This study aims to address these challenges by providing a comprehensive review and experimental analysis of task scheduling approaches,with a particular focus on hybrid techniques that offer promising solutions.Utilizing the CloudSim simulation toolkit,we evaluated the performance of three hybrid algorithms:Estimation of Distribution Algorithm-Genetic Algorithm(EDA-GA),Hybrid Genetic Algorithm-Ant Colony Optimization(HGA-ACO),and Improved Discrete Particle Swarm Optimization(IDPSO).Our experimental results demonstrate that these hybrid methods significantly outperform traditional standalone algorithms in reducing Makespan,which is a critical measure of task completion time.Notably,the IDPSO algorithm exhibited superior performance,achieving a Makespan of just 0.64 milliseconds for a set of 150 tasks.These findings underscore the potential of hybrid algorithms to enhance task scheduling efficiency in cloud computing environments.This paper concludes with a discussion of the implications of our findings and offers recommendations for future research aimed at further improving task scheduling strategies,particularly in the context of increasingly complex and dynamic cloud environments.展开更多
This framework proposes a heuristic algorithm based on LP (linear programming) for optimizing the electricity cost in large residential buildings, in a smart grid environment. Our heuristic tackles large multi-objec...This framework proposes a heuristic algorithm based on LP (linear programming) for optimizing the electricity cost in large residential buildings, in a smart grid environment. Our heuristic tackles large multi-objective energy allocation problem (large number of appliances and high time resolution). The primary goal is to reduce the electricity bills, and discomfort factor. Also, increase the utilization of domestic renewable energy, and reduce the running time of the optimization algorithm. Our heuristic algorithm uses linear programming relaxation, and two rounding strategies. The first technique, called CR (cumulative rounding), is designed for thermostatic appliances such as air conditioners and electric heaters, and the second approach, called MCR (minimum cost rounding), is designed for other interruptible appliances. The results show that the proposed heuristic algorithm can be used to solve large MILP (mixed integer linear programming) problems and gives a decent suboptimal solution in polynomial time.展开更多
The implementation of closed loop supply chain system is becoming essential for fashion leather products industry to ensure an economically sustainable business model and eco-friendly industrial practice as demanded b...The implementation of closed loop supply chain system is becoming essential for fashion leather products industry to ensure an economically sustainable business model and eco-friendly industrial practice as demanded by the environmental regulations, consumer awareness and the prevailing social consciousness. In this context, this research work addresses a closed loop supply chain network problem of fashion leather goods industry, with an objective of minimizing the total cost of the entire supply chain and also reducing the total waste from the end of life product returns. The research work commenced with a literature review on the reverse and closed loop supply chain network design problems of fashion and leather goods industry dealt in the past. Then, the identified CLSCND problem is solved using a mathematical model based on Mixed Integer Non-Linear Programme (MINLP) and then a suitable Hybrid Genetic Algorithm (HGA) developed for the CLSCND is implemented for obtaining optimum solution. Both the MINLP model and HGA are customized as per the CLSCND problem chosen and implemented for the industrial case of an Indian Fashion Leather Goods Industry. Finally, the solutions obtained for MINLP model in LINGO 15 and for HGA in VB.NET platform are compared and presented. The optimum solution obtained from the suitable HGA is illustrated as an optimum shipment pattern for the closed loop supply chain network design problem of the fashion leather goods industry case.展开更多
基金supported by the Serbian Ministry of Education and Science under Grant No.TR35006 and COST Action:CA23155—A Pan-European Network of Ocean Tribology(OTC)The research of B.Rosic and M.Rosic was supported by the Serbian Ministry of Education and Science under Grant TR35029.
文摘This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain.
基金Supported by the National Basic Research Program of China ("973" Program)the National Natural Science Foundation of China (60872112, 10805012)+1 种基金the Natural Science Foundation of Zhejiang Province(Z207588)the College Science Research Project of Anhui Province (KJ2008B268)~~
文摘The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to analyze the efficiency of the algorithm. In the simulation case of the water phantom, the algorithm is applied to an inverse planning process of intensity modulated radiation treatment (IMRT). The objective functions of planning target volume (PTV) and normal tissue (NT) are based on the average dose distribution. The obtained intensity profile shows that the hybrid multi-objective gradient algorithm saves the computational time and has good accuracy, thus meeting the requirements of practical applications.
基金supported by the Open Fund of Guangxi Key Laboratory of Building New Energy and Energy Conservation(Project Number:Guike Energy 17-J-21-3).
文摘With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm improvement.To reduce the operational costs of micro-grid systems and the energy abandonment rate of renewable energy,while simultaneously enhancing user satisfaction on the demand side,this paper introduces an improvedmultiobjective Grey Wolf Optimizer based on Cauchy variation.The proposed approach incorporates a Cauchy variation strategy during the optimizer’s search phase to expand its exploration range and minimize the likelihood of becoming trapped in local optima.At the same time,adoptingmultiple energy storage methods to improve the consumption rate of renewable energy.Subsequently,under different energy balance orders,themulti-objective particle swarmalgorithm,multi-objective grey wolf optimizer,and Cauchy’s variant of the improvedmulti-objective grey wolf optimizer are used for example simulation,solving the Pareto solution set of the model and comparing.The analysis of the results reveals that,compared to the original optimizer,the improved optimizer decreases the daily cost by approximately 100 yuan,and reduces the energy abandonment rate to zero.Meanwhile,it enhances user satisfaction and ensures the stable operation of the micro-grid.
基金National Basic Research Program of China(5132004)
文摘To improve performances of multi-objective optimization algorithms, such as convergence and diversity, a hybridization- encouraged mechanism is proposed and realized in elitist nondominated sorting genetic algorithm (NSGA-Ⅱ). This mechanism uses the normalized distance to evaluate the difference among genes in a population. Three possible modes of crossover operators--"Max Distance", "Min-Max Distance", and "Neighboring-Max"--are suggested and analyzed. The mode of "Neighboring-Max", which not only takes advantage of hybridization but also improves the distribution of the population near Pareto optimal front, is chosen and used in NSGA-Ⅱ on the basis of hybridization-encouraged mechanism (short for HEM-based NSGA-Ⅱ). To prove the HEM-based algorithm, several problems are studied by using standard NSGA-Ⅱ and the presented method. Different evaluation criteria are also used to judge these algorithms in terms of distribution of solutions, convergence, diversity, and quality of solutions. The numerical results indicate that the application of hybridization-encouraged mechanism could effectively improve the performances of genetic algorithm. Finally, as an example in engineering practices, the presented method is used to design a longitudinal flight control system, which demonstrates the obtainability of a reasonable and correct Pareto front.
文摘In this study, we develop a new meta-heuristic-based approach to solve a multi-objective optimization problem, namely the reliability-redundancy allocation problem (RRAP). Further, we develop a new simulation process to generate practical tools for designing reliable series-parallel systems. Because the?RRAP is an NP-hard problem, conventional techniques or heuristics cannot be used to find the optimal solution. We propose a genetic algorithm (GA)-based hybrid meta-heuristic algorithm, namely the hybrid genetic algorithm (HGA), to find the optimal solution. A simulation process based on the HGA is developed to obtain different alternative solutions that are required to generate application tools for optimal design of reliable series-parallel systems. Finally, a practical case study regarding security control of a gas turbine in the overspeed state is presented to validate the proposed algorithm.
基金Supported by the Zhejiang Provincial Natural Science Foundation for Distinguished Young Scientists(Grant No.LR18E050003)the National Natural Science Foundation of China(Grant Nos.51975523,51905481)+2 种基金Natural Science Foundation of Zhejiang Province(Grant No.LY22E050012)the Students in Zhejiang Province Science and Technology Innovation Plan(Xinmiao Talents Program)(Grant No.2020R403054)the China Postdoctoral Science Foundation(Grant No.2020M671784)。
文摘Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-objective trajectory planning approach based on an improved elitist non-dominated sorting genetic algorithm(INSGA-II)is proposed.Trajectory function is planned with a new composite polynomial that by combining of quintic polynomials with cubic Bezier curves.Then,an INSGA-II,by introducing three genetic operators:ranking group selection(RGS),direction-based crossover(DBX)and adaptive precision-controllable mutation(APCM),is developed to optimize travelling time and torque fluctuation.Inverted generational distance,hypervolume and optimizer overhead are selected to evaluate the convergence,diversity and computational effort of algorithms.The optimal solution is determined via fuzzy comprehensive evaluation to obtain the optimal trajectory.Taking a serial-parallel hybrid manipulator as instance,the velocity and acceleration profiles obtained using this composite polynomial are compared with those obtained using a quintic B-spline method.The effectiveness and practicability of the proposed method are verified by simulation results.This research proposes a trajectory optimization method which can offer a better solution with efficiency and stability for a point-to-point task of robot manipulators.
基金supported by the Natural Science Foundation of Anhui Province (No. 0104360)
文摘A multi-objective hybrid genetic based optimization algorithm is proposed according to the multi-objective property of inverse planning. It is based on hybrid adaptive genetic algorithm which combines the simulated annealing, uses adaptive crossover and mutation, and adopts niched tournament selection. The result of the test calculation demonstrates that an excellent converging speed can be achieved using this approach.
基金supported by a Horizontal Project on the Development of a Hybrid Energy Storage Simulation Model for Wind Power Based on an RT-LAB Simulation System(PH2023000190)the Inner Mongolia Natural Science Foundation Project and the Optimization of Exergy Efficiency of a Hybrid Energy Storage System with Crossover Control for Wind Power(2023JQ04).
文摘Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.
文摘Cloud computing has rapidly evolved into a critical technology,seamlessly integrating into various aspects of daily life.As user demand for cloud services continues to surge,the need for efficient virtualization and resource management becomes paramount.At the core of this efficiency lies task scheduling,a complex process that determines how tasks are allocated and executed across cloud resources.While extensive research has been conducted in the area of task scheduling,optimizing multiple objectives simultaneously remains a significant challenge due to the NP(Non-deterministic Polynomial)Complete nature of the problem.This study aims to address these challenges by providing a comprehensive review and experimental analysis of task scheduling approaches,with a particular focus on hybrid techniques that offer promising solutions.Utilizing the CloudSim simulation toolkit,we evaluated the performance of three hybrid algorithms:Estimation of Distribution Algorithm-Genetic Algorithm(EDA-GA),Hybrid Genetic Algorithm-Ant Colony Optimization(HGA-ACO),and Improved Discrete Particle Swarm Optimization(IDPSO).Our experimental results demonstrate that these hybrid methods significantly outperform traditional standalone algorithms in reducing Makespan,which is a critical measure of task completion time.Notably,the IDPSO algorithm exhibited superior performance,achieving a Makespan of just 0.64 milliseconds for a set of 150 tasks.These findings underscore the potential of hybrid algorithms to enhance task scheduling efficiency in cloud computing environments.This paper concludes with a discussion of the implications of our findings and offers recommendations for future research aimed at further improving task scheduling strategies,particularly in the context of increasingly complex and dynamic cloud environments.
文摘This framework proposes a heuristic algorithm based on LP (linear programming) for optimizing the electricity cost in large residential buildings, in a smart grid environment. Our heuristic tackles large multi-objective energy allocation problem (large number of appliances and high time resolution). The primary goal is to reduce the electricity bills, and discomfort factor. Also, increase the utilization of domestic renewable energy, and reduce the running time of the optimization algorithm. Our heuristic algorithm uses linear programming relaxation, and two rounding strategies. The first technique, called CR (cumulative rounding), is designed for thermostatic appliances such as air conditioners and electric heaters, and the second approach, called MCR (minimum cost rounding), is designed for other interruptible appliances. The results show that the proposed heuristic algorithm can be used to solve large MILP (mixed integer linear programming) problems and gives a decent suboptimal solution in polynomial time.
文摘The implementation of closed loop supply chain system is becoming essential for fashion leather products industry to ensure an economically sustainable business model and eco-friendly industrial practice as demanded by the environmental regulations, consumer awareness and the prevailing social consciousness. In this context, this research work addresses a closed loop supply chain network problem of fashion leather goods industry, with an objective of minimizing the total cost of the entire supply chain and also reducing the total waste from the end of life product returns. The research work commenced with a literature review on the reverse and closed loop supply chain network design problems of fashion and leather goods industry dealt in the past. Then, the identified CLSCND problem is solved using a mathematical model based on Mixed Integer Non-Linear Programme (MINLP) and then a suitable Hybrid Genetic Algorithm (HGA) developed for the CLSCND is implemented for obtaining optimum solution. Both the MINLP model and HGA are customized as per the CLSCND problem chosen and implemented for the industrial case of an Indian Fashion Leather Goods Industry. Finally, the solutions obtained for MINLP model in LINGO 15 and for HGA in VB.NET platform are compared and presented. The optimum solution obtained from the suitable HGA is illustrated as an optimum shipment pattern for the closed loop supply chain network design problem of the fashion leather goods industry case.