期刊文献+
共找到187篇文章
< 1 2 10 >
每页显示 20 50 100
Multi-Objective Hybrid Sailfish Optimization Algorithm for Planetary Gearbox and Mechanical Engineering Design Optimization Problems
1
作者 Miloš Sedak Maja Rosic Božidar Rosic 《Computer Modeling in Engineering & Sciences》 2025年第2期2111-2145,共35页
This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Op... This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain. 展开更多
关键词 multi-objective optimization planetary gearbox gear efficiency sailfish optimization differential evolution hybrid algorithms
在线阅读 下载PDF
HYBRID MULTI-OBJECTIVE GRADIENT ALGORITHM FOR INVERSE PLANNING OF IMRT
2
作者 李国丽 盛大宁 +3 位作者 王俊椋 景佳 王超 闫冰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第1期97-101,共5页
The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to an... The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to analyze the efficiency of the algorithm. In the simulation case of the water phantom, the algorithm is applied to an inverse planning process of intensity modulated radiation treatment (IMRT). The objective functions of planning target volume (PTV) and normal tissue (NT) are based on the average dose distribution. The obtained intensity profile shows that the hybrid multi-objective gradient algorithm saves the computational time and has good accuracy, thus meeting the requirements of practical applications. 展开更多
关键词 gradient methods inverse planning multi-objective optimization hybrid gradient algorithm
暂未订购
CCHP-Type Micro-Grid Scheduling Optimization Based on Improved Multi-Objective Grey Wolf Optimizer
3
作者 Yu Zhang Sheng Wang +1 位作者 Fanming Zeng Yijie Lin 《Energy Engineering》 2025年第3期1137-1151,共15页
With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm impro... With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm improvement.To reduce the operational costs of micro-grid systems and the energy abandonment rate of renewable energy,while simultaneously enhancing user satisfaction on the demand side,this paper introduces an improvedmultiobjective Grey Wolf Optimizer based on Cauchy variation.The proposed approach incorporates a Cauchy variation strategy during the optimizer’s search phase to expand its exploration range and minimize the likelihood of becoming trapped in local optima.At the same time,adoptingmultiple energy storage methods to improve the consumption rate of renewable energy.Subsequently,under different energy balance orders,themulti-objective particle swarmalgorithm,multi-objective grey wolf optimizer,and Cauchy’s variant of the improvedmulti-objective grey wolf optimizer are used for example simulation,solving the Pareto solution set of the model and comparing.The analysis of the results reveals that,compared to the original optimizer,the improved optimizer decreases the daily cost by approximately 100 yuan,and reduces the energy abandonment rate to zero.Meanwhile,it enhances user satisfaction and ensures the stable operation of the micro-grid. 展开更多
关键词 multi-objective optimization algorithm hybrid energy storage MICRO-GRID CCHP
在线阅读 下载PDF
Improved NSGA-Ⅱ Multi-objective Genetic Algorithm Based on Hybridization-encouraged Mechanism 被引量:9
4
作者 Sun Yijie Shen Gongzhang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第6期540-549,共10页
To improve performances of multi-objective optimization algorithms, such as convergence and diversity, a hybridization- encouraged mechanism is proposed and realized in elitist nondominated sorting genetic algorithm ... To improve performances of multi-objective optimization algorithms, such as convergence and diversity, a hybridization- encouraged mechanism is proposed and realized in elitist nondominated sorting genetic algorithm (NSGA-Ⅱ). This mechanism uses the normalized distance to evaluate the difference among genes in a population. Three possible modes of crossover operators--"Max Distance", "Min-Max Distance", and "Neighboring-Max"--are suggested and analyzed. The mode of "Neighboring-Max", which not only takes advantage of hybridization but also improves the distribution of the population near Pareto optimal front, is chosen and used in NSGA-Ⅱ on the basis of hybridization-encouraged mechanism (short for HEM-based NSGA-Ⅱ). To prove the HEM-based algorithm, several problems are studied by using standard NSGA-Ⅱ and the presented method. Different evaluation criteria are also used to judge these algorithms in terms of distribution of solutions, convergence, diversity, and quality of solutions. The numerical results indicate that the application of hybridization-encouraged mechanism could effectively improve the performances of genetic algorithm. Finally, as an example in engineering practices, the presented method is used to design a longitudinal flight control system, which demonstrates the obtainability of a reasonable and correct Pareto front. 展开更多
关键词 multi-objective optimization genetic algorithms DIVERSITY hybridIZATION CROSSOVER
原文传递
Multiple-Objective Optimization and Design of Series-Parallel Systems Using Novel Hybrid Genetic Algorithm Meta-Heuristic Approach
5
作者 Essa Abrahim Abdulgader Saleem Thien-My Dao Zhaoheng Liu 《World Journal of Engineering and Technology》 2018年第3期532-555,共24页
In this study, we develop a new meta-heuristic-based approach to solve a multi-objective optimization problem, namely the reliability-redundancy allocation problem (RRAP). Further, we develop a new simulation process ... In this study, we develop a new meta-heuristic-based approach to solve a multi-objective optimization problem, namely the reliability-redundancy allocation problem (RRAP). Further, we develop a new simulation process to generate practical tools for designing reliable series-parallel systems. Because the?RRAP is an NP-hard problem, conventional techniques or heuristics cannot be used to find the optimal solution. We propose a genetic algorithm (GA)-based hybrid meta-heuristic algorithm, namely the hybrid genetic algorithm (HGA), to find the optimal solution. A simulation process based on the HGA is developed to obtain different alternative solutions that are required to generate application tools for optimal design of reliable series-parallel systems. Finally, a practical case study regarding security control of a gas turbine in the overspeed state is presented to validate the proposed algorithm. 展开更多
关键词 multi-objective Optimization Reliability-Redundancy ALLOCATION OVERSPEED Gas TURBINE hybrid Genetic algorithm
在线阅读 下载PDF
Multi-objective Trajectory Planning Method based on the Improved Elitist Non-dominated Sorting Genetic Algorithm 被引量:3
6
作者 Zesheng Wang Yanbiao Li +3 位作者 Kun Shuai Wentao Zhu Bo Chen Ke Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第1期70-84,共15页
Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-ob... Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-objective trajectory planning approach based on an improved elitist non-dominated sorting genetic algorithm(INSGA-II)is proposed.Trajectory function is planned with a new composite polynomial that by combining of quintic polynomials with cubic Bezier curves.Then,an INSGA-II,by introducing three genetic operators:ranking group selection(RGS),direction-based crossover(DBX)and adaptive precision-controllable mutation(APCM),is developed to optimize travelling time and torque fluctuation.Inverted generational distance,hypervolume and optimizer overhead are selected to evaluate the convergence,diversity and computational effort of algorithms.The optimal solution is determined via fuzzy comprehensive evaluation to obtain the optimal trajectory.Taking a serial-parallel hybrid manipulator as instance,the velocity and acceleration profiles obtained using this composite polynomial are compared with those obtained using a quintic B-spline method.The effectiveness and practicability of the proposed method are verified by simulation results.This research proposes a trajectory optimization method which can offer a better solution with efficiency and stability for a point-to-point task of robot manipulators. 展开更多
关键词 hybrid manipulator Bezier curve Improved optimization algorithm Trajectory planning multi-objective optimization
在线阅读 下载PDF
A Multi-Objective Hybrid Genetic Based Optimization for External Beam Radiation 被引量:3
7
作者 李国丽 宋钢 +2 位作者 吴宜灿 张建 王群京 《Plasma Science and Technology》 SCIE EI CAS CSCD 2006年第2期234-236,共3页
A multi-objective hybrid genetic based optimization algorithm is proposed according to the multi-objective property of inverse planning. It is based on hybrid adaptive genetic algorithm which combines the simulated an... A multi-objective hybrid genetic based optimization algorithm is proposed according to the multi-objective property of inverse planning. It is based on hybrid adaptive genetic algorithm which combines the simulated annealing, uses adaptive crossover and mutation, and adopts niched tournament selection. The result of the test calculation demonstrates that an excellent converging speed can be achieved using this approach. 展开更多
关键词 inverse planning multi-objective optimization genetic algorithm hybrid
在线阅读 下载PDF
Recent Advancements in the Optimization Capacity Configuration and Coordination Operation Strategy of Wind-Solar Hybrid Storage System 被引量:1
8
作者 Hongliang Hao Caifeng Wen +5 位作者 Feifei Xue Hao Qiu Ning Yang Yuwen Zhang Chaoyu Wang Edwin E.Nyakilla 《Energy Engineering》 EI 2025年第1期285-306,共22页
Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe... Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems. 展开更多
关键词 Electric-thermal hybrid storage modal decomposition multi-objective genetic algorithm capacity optimization allocation operation strategy
在线阅读 下载PDF
基于JPS和变半径RS曲线的Hybrid A^(*)路径规划算法
9
作者 张博强 张成龙 +1 位作者 冯天培 高向川 《郑州大学学报(工学版)》 北大核心 2025年第2期19-25,共7页
为解决混合A^(*)(Hybrid A^(*))算法在高分辨率地图和复杂场景下搜索效率低、耗费时间长的问题,通过对影响传统Hybrid A^(*)算法搜索效率的因素进行分析,提出了J-Hybrid A^(*)算法。首先,在Hybrid A^(*)算法扩展节点前,使用跳点搜索(JPS... 为解决混合A^(*)(Hybrid A^(*))算法在高分辨率地图和复杂场景下搜索效率低、耗费时间长的问题,通过对影响传统Hybrid A^(*)算法搜索效率的因素进行分析,提出了J-Hybrid A^(*)算法。首先,在Hybrid A^(*)算法扩展节点前,使用跳点搜索(JPS)算法进行起点到终点的路径搜索,将该路径进行拉直处理后作为计算节点启发值的基础;其次,设计了新的启发函数,在Hybrid A^(*)算法扩展前就能完成所有节点启发值的计算,减少了Hybrid A^(*)扩展节点时计算启发值所需的时间;最后,将RS曲线由最小转弯半径搜索改为变半径RS曲线搜索,使RS曲线能够更早搜索到一条无碰撞路径,进一步提升了Hybrid A^(*)算法的搜索效率。仿真结果表明:所提J-Hybrid A^(*)算法在简单环境中比传统Hybrid A^(*)算法和反向Hybrid A^(*)算法用时分别缩短68%、21%,在复杂环境中缩短59%、27%。在不同分辨率地图场景中,随着地图分辨率的提高,规划效率显著提升。实车实验表明:所提J-Hybrid A^(*)算法相较于传统Hybrid A^(*)算法和反向Hybrid A^(*)算法的搜索用时分别减少88%、82%,有效提升了Hybrid A^(*)算法的搜索效率、缩短了路径规划所需时间。 展开更多
关键词 hybrid A^(*)算法 启发函数 JPS算法 RS曲线 路径规划
在线阅读 下载PDF
Hybrid Task Scheduling Algorithm for Makespan Optimisation in Cloud Computing: A Performance Evaluation
10
作者 Abdulrahman M.Abdulghani 《Journal on Artificial Intelligence》 2024年第1期241-259,共19页
Cloud computing has rapidly evolved into a critical technology,seamlessly integrating into various aspects of daily life.As user demand for cloud services continues to surge,the need for efficient virtualization and r... Cloud computing has rapidly evolved into a critical technology,seamlessly integrating into various aspects of daily life.As user demand for cloud services continues to surge,the need for efficient virtualization and resource management becomes paramount.At the core of this efficiency lies task scheduling,a complex process that determines how tasks are allocated and executed across cloud resources.While extensive research has been conducted in the area of task scheduling,optimizing multiple objectives simultaneously remains a significant challenge due to the NP(Non-deterministic Polynomial)Complete nature of the problem.This study aims to address these challenges by providing a comprehensive review and experimental analysis of task scheduling approaches,with a particular focus on hybrid techniques that offer promising solutions.Utilizing the CloudSim simulation toolkit,we evaluated the performance of three hybrid algorithms:Estimation of Distribution Algorithm-Genetic Algorithm(EDA-GA),Hybrid Genetic Algorithm-Ant Colony Optimization(HGA-ACO),and Improved Discrete Particle Swarm Optimization(IDPSO).Our experimental results demonstrate that these hybrid methods significantly outperform traditional standalone algorithms in reducing Makespan,which is a critical measure of task completion time.Notably,the IDPSO algorithm exhibited superior performance,achieving a Makespan of just 0.64 milliseconds for a set of 150 tasks.These findings underscore the potential of hybrid algorithms to enhance task scheduling efficiency in cloud computing environments.This paper concludes with a discussion of the implications of our findings and offers recommendations for future research aimed at further improving task scheduling strategies,particularly in the context of increasingly complex and dynamic cloud environments. 展开更多
关键词 MAKESPAN multi-objective optimisation task scheduling cloud computing hybrid algorithms
在线阅读 下载PDF
Heuristic Algorithm for Minimizing the Electricity Cost of Smart House
11
作者 Mohamed Arikiez Faisal Alotaibi +2 位作者 Farouq Gdhaidh Radwan Khershif Salahedin Rehan 《Journal of Energy and Power Engineering》 2017年第4期254-268,共15页
This framework proposes a heuristic algorithm based on LP (linear programming) for optimizing the electricity cost in large residential buildings, in a smart grid environment. Our heuristic tackles large multi-objec... This framework proposes a heuristic algorithm based on LP (linear programming) for optimizing the electricity cost in large residential buildings, in a smart grid environment. Our heuristic tackles large multi-objective energy allocation problem (large number of appliances and high time resolution). The primary goal is to reduce the electricity bills, and discomfort factor. Also, increase the utilization of domestic renewable energy, and reduce the running time of the optimization algorithm. Our heuristic algorithm uses linear programming relaxation, and two rounding strategies. The first technique, called CR (cumulative rounding), is designed for thermostatic appliances such as air conditioners and electric heaters, and the second approach, called MCR (minimum cost rounding), is designed for other interruptible appliances. The results show that the proposed heuristic algorithm can be used to solve large MILP (mixed integer linear programming) problems and gives a decent suboptimal solution in polynomial time. 展开更多
关键词 Smart grid mixed integer linear programming LP relaxation demand side management demand response multi-objective optimization heuristic allocation algorithm.
在线阅读 下载PDF
Implementation of Hybrid Genetic Algorithm for CLSC Network Design Problem—A Case Study on Fashion Leather Goods Industry
12
作者 Muthusamy Aravendan Ramasamy Panneerselvam 《American Journal of Operations Research》 2016年第4期300-316,共17页
The implementation of closed loop supply chain system is becoming essential for fashion leather products industry to ensure an economically sustainable business model and eco-friendly industrial practice as demanded b... The implementation of closed loop supply chain system is becoming essential for fashion leather products industry to ensure an economically sustainable business model and eco-friendly industrial practice as demanded by the environmental regulations, consumer awareness and the prevailing social consciousness. In this context, this research work addresses a closed loop supply chain network problem of fashion leather goods industry, with an objective of minimizing the total cost of the entire supply chain and also reducing the total waste from the end of life product returns. The research work commenced with a literature review on the reverse and closed loop supply chain network design problems of fashion and leather goods industry dealt in the past. Then, the identified CLSCND problem is solved using a mathematical model based on Mixed Integer Non-Linear Programme (MINLP) and then a suitable Hybrid Genetic Algorithm (HGA) developed for the CLSCND is implemented for obtaining optimum solution. Both the MINLP model and HGA are customized as per the CLSCND problem chosen and implemented for the industrial case of an Indian Fashion Leather Goods Industry. Finally, the solutions obtained for MINLP model in LINGO 15 and for HGA in VB.NET platform are compared and presented. The optimum solution obtained from the suitable HGA is illustrated as an optimum shipment pattern for the closed loop supply chain network design problem of the fashion leather goods industry case. 展开更多
关键词 Industry Case CLSC Fashion Products Leather Goods Luggage Goods hybrid Genetic algorithm (HGA) META-heuristicS MINLP Network Design Reverse Supply Chain
在线阅读 下载PDF
考虑多充电桩排队和时间窗的电动货车路径规划
13
作者 胡路 乐诗彤 朱娟秀 《西南交通大学学报》 北大核心 2025年第2期299-307,共9页
在带时间窗的电动货车路径规划问题(EVRPTW)中,电动货车(EV)在前往充电站充电时可能需要排队.为研究不同充电站配置方案对车辆路径和系统性能的影响,首先构建排队模型,刻画充电站中的排队现象;在EVRPTW基础上,综合考虑电量和流量约束,... 在带时间窗的电动货车路径规划问题(EVRPTW)中,电动货车(EV)在前往充电站充电时可能需要排队.为研究不同充电站配置方案对车辆路径和系统性能的影响,首先构建排队模型,刻画充电站中的排队现象;在EVRPTW基础上,综合考虑电量和流量约束,建立路径优化模型,并将充电站排队模型嵌入其中;优化目标包括最小化车辆耗电成本、司机工资、时间窗惩罚成本、充电桩总成本;为求解该模型,提出一种结合节约里程(C-W)和改进大邻域搜索(LNS)的混合启发式算法,其中,充电站的系统性能指标采用递归算法获得.18组实验结果表明:同步增加充电桩数量可将车辆单次充电的平均排队时间控制在1~5 min,并有效减少2.6%~21.0%的总成本;增加充电站数量可缩短排队时间,但会增加整体路径总成本;当客户时间窗较短或服务时间较长时,充电桩数量变化对时间窗满足的影响更为显著. 展开更多
关键词 物流 电动货车 充电站 混合启发式算法 递归算法
在线阅读 下载PDF
部分充电策略下电动车-无人机协同配送路径优化 被引量:2
14
作者 陈诚 罗泽龙 +3 位作者 杜帅举 纪晓燕 应晨阳 吴杭玲 《长沙理工大学学报(自然科学版)》 2025年第1期142-153,共12页
【目的】为提升农村物流配送效率和服务水平,建立绿色可持续的农村物流配送模式,研究部分充电策略下有时间窗的电动车-无人机绿色配送路径优化问题。【方法】首先,以电动车和无人机的固定成本、行驶成本、充电成本和碳排放成本构成的总... 【目的】为提升农村物流配送效率和服务水平,建立绿色可持续的农村物流配送模式,研究部分充电策略下有时间窗的电动车-无人机绿色配送路径优化问题。【方法】首先,以电动车和无人机的固定成本、行驶成本、充电成本和碳排放成本构成的总配送成本最小化为目标,构建路径优化数学模型。然后,针对问题特点设计了基于大邻域搜索算法和变邻域下降算法的混合算法并进行求解。最后,通过数值分析试验,验证了模型的合理性和算法的有效性。【结果】对不同配送模式的配送成本及其组成进行对比发现:在配送网络中纳入充电站节点能使总成本降低14.97%,引入无人机协同配送能使总成本降低35.25%,而同时引入充电站和无人机能实现42.03%的成本节省。对电动车和无人机电池容量进行敏感性分析发现:加大电动车电池容量能显著降低总配送成本,主要体现在途中充电绕行里程的减少上;随着无人机电池容量的增大,无人机服务客户数也会增加,从而提高了配送效率,降低了电动车行驶成本、充电成本以及碳排放成本。【结论】本研究成果能为农村电动车-无人机协同配送路径优化决策及低碳可持续性农村物流配送体系的构建提供理论参考。 展开更多
关键词 农村物流 电动车-无人机协同配送 部分充电策略 混合启发式算法 碳排放 时间窗
在线阅读 下载PDF
三峡-葛洲坝枢纽引航道和船闸群协同调度的多目标混合启发式算法
15
作者 张煜 郑倩倩 +2 位作者 李然 田宏伟 刘顺 《同济大学学报(自然科学版)》 北大核心 2025年第9期1444-1456,共13页
为提升三峡‒葛洲坝枢纽通航效率,研究了带同步移泊过程的引航道和船闸群协同调度问题(CSP⁃AC&SLG)。考虑船舶干舷高度和掌船技能,构建以水资源利用率最大化、平均船舶等待时间最小化及平均船舶总能耗最小化为目标的CSP⁃AC&SLG... 为提升三峡‒葛洲坝枢纽通航效率,研究了带同步移泊过程的引航道和船闸群协同调度问题(CSP⁃AC&SLG)。考虑船舶干舷高度和掌船技能,构建以水资源利用率最大化、平均船舶等待时间最小化及平均船舶总能耗最小化为目标的CSP⁃AC&SLG数学模型,并采用多目标混合启发式算法(MOHHA)进行求解。MOHHA采用双链编码方案和分阶段成组右移解码机制实现个体表述和求解,并引入模糊关联熵分析法评估多目标解,同时嵌入自适应参数调整策略和变邻域模拟退火提升算法求解能力。仿真结果表明,MOHHA能够求解CSP⁃AC&SLG,实现了通航效率提升和船舶能耗节约的双重目标。 展开更多
关键词 三峡‒葛洲坝枢纽 同步移泊过程 引航道和船闸群协同作业 多目标混合启发式算法
在线阅读 下载PDF
考虑共同配送的县乡村三级物流研究
16
作者 许菱 万艳红 钟少君 《物流科技》 2025年第8期7-13,共7页
共同配送是有效解决农村物流配送成本高、效率低等问题的重要途径。县乡村三级物流中层级间耦合性强、效率要求高,对共同配送提出了新的挑战。研究考虑以总成本最小化为目标建立县乡村三级物流共同配送模型,并设计三阶段启发式算法对模... 共同配送是有效解决农村物流配送成本高、效率低等问题的重要途径。县乡村三级物流中层级间耦合性强、效率要求高,对共同配送提出了新的挑战。研究考虑以总成本最小化为目标建立县乡村三级物流共同配送模型,并设计三阶段启发式算法对模型进行分阶段求解。第一阶段设计了一种混合编码方式的遗传算法来确定乡镇共同配送中心的位置与数量,第二阶段针对乡镇多个共同配送中心的问题,提出了一种改进的头脑风暴算法来优化第二层级的配送路径;第三阶段采用模拟退火算法确定从县级共同中转中心到乡镇共同配送中心的配送路径。最后结合具体算例对模型进行分析,验证了县乡村三级物流共同配送模型的有效性。 展开更多
关键词 共同配送 三阶段启发式算法 混合编码 县乡村三级物流
在线阅读 下载PDF
突发传染病环境下生鲜配送的选址-路径问题 被引量:1
17
作者 张杰 李妍峰 《中国管理科学》 北大核心 2025年第3期196-208,共13页
为有效解决突发传染病背景下生鲜商品的“无接触”配送问题,在综合考虑传染病影响、商品易腐性、温控特性、站点选址和车辆-无人机协同配送路径规划的情况下,提出了基于传染病背景下生鲜配送的选址-路径问优化问题。首先,构建由车辆-无... 为有效解决突发传染病背景下生鲜商品的“无接触”配送问题,在综合考虑传染病影响、商品易腐性、温控特性、站点选址和车辆-无人机协同配送路径规划的情况下,提出了基于传染病背景下生鲜配送的选址-路径问优化问题。首先,构建由车辆-无人机配送的运输成本、配送站点运营固定成本、冷藏车辆温控成本组成的总成本最小以及配送过程中生鲜商品价值损失最小的双目标优化模型。然后,根据问题特征提出一种两阶段混合启发式算法进行求解。改进的K-means三维聚类算法执行聚类方案内和不同聚类方案间的迭代优化,解决了配送站点选址问题;ENSGA-Ⅱ混合算法通过扫描算子生成初始解、基于NSGA-Ⅱ主循环框架嵌入灵活的存储结构和相应的禁忌搜索准则,求解了车辆-无人机路径规划问题。最后,基于算例分析和灵敏度分析探讨了生鲜配送选址-路径优化方案,生鲜商品配送的温控设置和无人机载重量选择。并通过与ε约束法、MOPSO算法和NSGAⅡ算法的比较分析,进一步验证了模型和两阶段混合启发式算法的有效性和可行性。 展开更多
关键词 生鲜商品 温度控制 两阶段混合启发式算法 配送站点选址 车辆-无人机路径
原文传递
带收益和时间窗的多行程卡车-无人机协同配送问题 被引量:1
18
作者 罗永琪 陈彦如 冉茂亮 《控制与决策》 北大核心 2025年第6期1817-1826,共10页
为了推动低空经济发展,提高企业经济效益和“最后一公里”配送效率,提出考虑客户收益和时间窗的多行程卡车-无人机协同配送问题.首先,以最大化利润为目标建立基础的混合整数规划模型(MIP),并融入有效不等式来减少基础模型的松弛度.然后... 为了推动低空经济发展,提高企业经济效益和“最后一公里”配送效率,提出考虑客户收益和时间窗的多行程卡车-无人机协同配送问题.首先,以最大化利润为目标建立基础的混合整数规划模型(MIP),并融入有效不等式来减少基础模型的松弛度.然后,提出一种高效的混合启发式算法求解该问题,同时,考虑到具有时间窗特征的卡车-无人机路径较为复杂,可行性判断耗时高,设计一种基于Segment的有效评估方法来加速路径的可行性检查,以提高算法的求解效率.实验结果表明:有效不等式可将精确求解器——Gurobi求解模型的速度提高44%;其次,在不同规模的算例中,所提出混合启发式算法在求解效率和质量方面均优于Gurobi与两类启发式对比算法,并表现出良好的稳定性;此外,通过嵌入Segment有效评估方法可减少算法95%的求解时间. 展开更多
关键词 低空经济 卡车-无人机协同配送 客户收益 有效不等式 混合启发式算法 有效评估方法
原文传递
集成工人和AGV的多要素柔性作业车间调度方法
19
作者 方遒 宋豪杰 +2 位作者 卢弘 毛建旭 王耀南 《机械工程学报》 北大核心 2025年第18期330-343,共14页
面向集成多种生产要素的智能车间,实现各类资源高效调度以完成任务,对提高生产效率具有重要意义和价值。针对一类考虑多要素的柔性作业车间调度问题,提出一种高效的混合进化算法。首先,基于对问题背景和多要素运行情况的分析,以最小化... 面向集成多种生产要素的智能车间,实现各类资源高效调度以完成任务,对提高生产效率具有重要意义和价值。针对一类考虑多要素的柔性作业车间调度问题,提出一种高效的混合进化算法。首先,基于对问题背景和多要素运行情况的分析,以最小化最大完工时间为目标,构建了含工件、机器、AGV和工人四种生产要素的柔性作业车间调度模型。然后,针对模型中不同决策变量的特点,提出结合启发式和随机式的混合初始化策略,以生成高质量的初始种群。根据个体的四层编码结构,设计基于经典遗传算子的全局搜索方法。针对易于陷入局部最优解的困境,提出记忆机制导向的多邻域局部搜索方法,以增强算法的局部搜索能力。最后,基于标准测试集生成了多组适用的算例,并设计一系列试验以验证算法的性能。试验结果表明,混合初始化策略和多邻域局部搜索能够有效地改善算法性能。与领域中多种先进的算法比较,所提算法在调度方案质量上更具优越性。 展开更多
关键词 多生产要素 柔性作业车间调度 混合进化算法 启发式初始化 多邻域局部搜索
原文传递
基于混合决策机制的自适应生产调度优化与仿真
20
作者 纪志成 全震 王艳 《系统仿真学报》 北大核心 2025年第7期1791-1803,共13页
为求解以最大完工时间、平均延迟时间、瓶颈机器加工负载率为目标的柔性生产调度优化问题,针对机器分配与任务排序的决策复杂度与约束特征,提出了以二维染色体编码机器分配、启发式规则评估任务排序优先级的混合决策机制调度算法,以增... 为求解以最大完工时间、平均延迟时间、瓶颈机器加工负载率为目标的柔性生产调度优化问题,针对机器分配与任务排序的决策复杂度与约束特征,提出了以二维染色体编码机器分配、启发式规则评估任务排序优先级的混合决策机制调度算法,以增强对决策优化的适应水平。为了进一步改善所提调度方法的性能,制定了以等待调度任务所需加工时长分布为依据的自适应规则策略,实现决策对调度场景的动态适应性,提升全局优化的综合优势水平。实验结果表明:该方法提高了调度问题求解的寻优效率,提供更加占据主导地位的非支配解集。 展开更多
关键词 柔性生产调度 混合决策机制 自适应规则策略 进化算法 遗传规划超启发式
原文传递
上一页 1 2 10 下一页 到第
使用帮助 返回顶部