期刊文献+
共找到192篇文章
< 1 2 10 >
每页显示 20 50 100
Multi-Objective Hybrid Sailfish Optimization Algorithm for Planetary Gearbox and Mechanical Engineering Design Optimization Problems
1
作者 Miloš Sedak Maja Rosic Božidar Rosic 《Computer Modeling in Engineering & Sciences》 2025年第2期2111-2145,共35页
This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Op... This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain. 展开更多
关键词 multi-objective optimization planetary gearbox gear efficiency sailfish optimization differential evolution hybrid algorithms
在线阅读 下载PDF
HYBRID MULTI-OBJECTIVE GRADIENT ALGORITHM FOR INVERSE PLANNING OF IMRT
2
作者 李国丽 盛大宁 +3 位作者 王俊椋 景佳 王超 闫冰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第1期97-101,共5页
The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to an... The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to analyze the efficiency of the algorithm. In the simulation case of the water phantom, the algorithm is applied to an inverse planning process of intensity modulated radiation treatment (IMRT). The objective functions of planning target volume (PTV) and normal tissue (NT) are based on the average dose distribution. The obtained intensity profile shows that the hybrid multi-objective gradient algorithm saves the computational time and has good accuracy, thus meeting the requirements of practical applications. 展开更多
关键词 gradient methods inverse planning multi-objective optimization hybrid gradient algorithm
暂未订购
Improved NSGA-Ⅱ Multi-objective Genetic Algorithm Based on Hybridization-encouraged Mechanism 被引量:9
3
作者 Sun Yijie Shen Gongzhang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第6期540-549,共10页
To improve performances of multi-objective optimization algorithms, such as convergence and diversity, a hybridization- encouraged mechanism is proposed and realized in elitist nondominated sorting genetic algorithm ... To improve performances of multi-objective optimization algorithms, such as convergence and diversity, a hybridization- encouraged mechanism is proposed and realized in elitist nondominated sorting genetic algorithm (NSGA-Ⅱ). This mechanism uses the normalized distance to evaluate the difference among genes in a population. Three possible modes of crossover operators--"Max Distance", "Min-Max Distance", and "Neighboring-Max"--are suggested and analyzed. The mode of "Neighboring-Max", which not only takes advantage of hybridization but also improves the distribution of the population near Pareto optimal front, is chosen and used in NSGA-Ⅱ on the basis of hybridization-encouraged mechanism (short for HEM-based NSGA-Ⅱ). To prove the HEM-based algorithm, several problems are studied by using standard NSGA-Ⅱ and the presented method. Different evaluation criteria are also used to judge these algorithms in terms of distribution of solutions, convergence, diversity, and quality of solutions. The numerical results indicate that the application of hybridization-encouraged mechanism could effectively improve the performances of genetic algorithm. Finally, as an example in engineering practices, the presented method is used to design a longitudinal flight control system, which demonstrates the obtainability of a reasonable and correct Pareto front. 展开更多
关键词 multi-objective optimization genetic algorithms DIVERSITY hybridIZATION CROSSOVER
原文传递
Multiple-Objective Optimization and Design of Series-Parallel Systems Using Novel Hybrid Genetic Algorithm Meta-Heuristic Approach
4
作者 Essa Abrahim Abdulgader Saleem Thien-My Dao Zhaoheng Liu 《World Journal of Engineering and Technology》 2018年第3期532-555,共24页
In this study, we develop a new meta-heuristic-based approach to solve a multi-objective optimization problem, namely the reliability-redundancy allocation problem (RRAP). Further, we develop a new simulation process ... In this study, we develop a new meta-heuristic-based approach to solve a multi-objective optimization problem, namely the reliability-redundancy allocation problem (RRAP). Further, we develop a new simulation process to generate practical tools for designing reliable series-parallel systems. Because the?RRAP is an NP-hard problem, conventional techniques or heuristics cannot be used to find the optimal solution. We propose a genetic algorithm (GA)-based hybrid meta-heuristic algorithm, namely the hybrid genetic algorithm (HGA), to find the optimal solution. A simulation process based on the HGA is developed to obtain different alternative solutions that are required to generate application tools for optimal design of reliable series-parallel systems. Finally, a practical case study regarding security control of a gas turbine in the overspeed state is presented to validate the proposed algorithm. 展开更多
关键词 multi-objective Optimization Reliability-Redundancy ALLOCATION OVERSPEED Gas TURBINE hybrid Genetic algorithm
在线阅读 下载PDF
CCHP-Type Micro-Grid Scheduling Optimization Based on Improved Multi-Objective Grey Wolf Optimizer 被引量:1
5
作者 Yu Zhang Sheng Wang +1 位作者 Fanming Zeng Yijie Lin 《Energy Engineering》 2025年第3期1137-1151,共15页
With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm impro... With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm improvement.To reduce the operational costs of micro-grid systems and the energy abandonment rate of renewable energy,while simultaneously enhancing user satisfaction on the demand side,this paper introduces an improvedmultiobjective Grey Wolf Optimizer based on Cauchy variation.The proposed approach incorporates a Cauchy variation strategy during the optimizer’s search phase to expand its exploration range and minimize the likelihood of becoming trapped in local optima.At the same time,adoptingmultiple energy storage methods to improve the consumption rate of renewable energy.Subsequently,under different energy balance orders,themulti-objective particle swarmalgorithm,multi-objective grey wolf optimizer,and Cauchy’s variant of the improvedmulti-objective grey wolf optimizer are used for example simulation,solving the Pareto solution set of the model and comparing.The analysis of the results reveals that,compared to the original optimizer,the improved optimizer decreases the daily cost by approximately 100 yuan,and reduces the energy abandonment rate to zero.Meanwhile,it enhances user satisfaction and ensures the stable operation of the micro-grid. 展开更多
关键词 multi-objective optimization algorithm hybrid energy storage MICRO-GRID CCHP
在线阅读 下载PDF
Multi-objective Trajectory Planning Method based on the Improved Elitist Non-dominated Sorting Genetic Algorithm 被引量:4
6
作者 Zesheng Wang Yanbiao Li +3 位作者 Kun Shuai Wentao Zhu Bo Chen Ke Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第1期70-84,共15页
Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-ob... Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-objective trajectory planning approach based on an improved elitist non-dominated sorting genetic algorithm(INSGA-II)is proposed.Trajectory function is planned with a new composite polynomial that by combining of quintic polynomials with cubic Bezier curves.Then,an INSGA-II,by introducing three genetic operators:ranking group selection(RGS),direction-based crossover(DBX)and adaptive precision-controllable mutation(APCM),is developed to optimize travelling time and torque fluctuation.Inverted generational distance,hypervolume and optimizer overhead are selected to evaluate the convergence,diversity and computational effort of algorithms.The optimal solution is determined via fuzzy comprehensive evaluation to obtain the optimal trajectory.Taking a serial-parallel hybrid manipulator as instance,the velocity and acceleration profiles obtained using this composite polynomial are compared with those obtained using a quintic B-spline method.The effectiveness and practicability of the proposed method are verified by simulation results.This research proposes a trajectory optimization method which can offer a better solution with efficiency and stability for a point-to-point task of robot manipulators. 展开更多
关键词 hybrid manipulator Bezier curve Improved optimization algorithm Trajectory planning multi-objective optimization
在线阅读 下载PDF
A Multi-Objective Hybrid Genetic Based Optimization for External Beam Radiation 被引量:3
7
作者 李国丽 宋钢 +2 位作者 吴宜灿 张建 王群京 《Plasma Science and Technology》 SCIE EI CAS CSCD 2006年第2期234-236,共3页
A multi-objective hybrid genetic based optimization algorithm is proposed according to the multi-objective property of inverse planning. It is based on hybrid adaptive genetic algorithm which combines the simulated an... A multi-objective hybrid genetic based optimization algorithm is proposed according to the multi-objective property of inverse planning. It is based on hybrid adaptive genetic algorithm which combines the simulated annealing, uses adaptive crossover and mutation, and adopts niched tournament selection. The result of the test calculation demonstrates that an excellent converging speed can be achieved using this approach. 展开更多
关键词 inverse planning multi-objective optimization genetic algorithm hybrid
在线阅读 下载PDF
Heuristic Algorithm for Minimizing the Electricity Cost of Smart House
8
作者 Mohamed Arikiez Faisal Alotaibi +2 位作者 Farouq Gdhaidh Radwan Khershif Salahedin Rehan 《Journal of Energy and Power Engineering》 2017年第4期254-268,共15页
This framework proposes a heuristic algorithm based on LP (linear programming) for optimizing the electricity cost in large residential buildings, in a smart grid environment. Our heuristic tackles large multi-objec... This framework proposes a heuristic algorithm based on LP (linear programming) for optimizing the electricity cost in large residential buildings, in a smart grid environment. Our heuristic tackles large multi-objective energy allocation problem (large number of appliances and high time resolution). The primary goal is to reduce the electricity bills, and discomfort factor. Also, increase the utilization of domestic renewable energy, and reduce the running time of the optimization algorithm. Our heuristic algorithm uses linear programming relaxation, and two rounding strategies. The first technique, called CR (cumulative rounding), is designed for thermostatic appliances such as air conditioners and electric heaters, and the second approach, called MCR (minimum cost rounding), is designed for other interruptible appliances. The results show that the proposed heuristic algorithm can be used to solve large MILP (mixed integer linear programming) problems and gives a decent suboptimal solution in polynomial time. 展开更多
关键词 Smart grid mixed integer linear programming LP relaxation demand side management demand response multi-objective optimization heuristic allocation algorithm.
在线阅读 下载PDF
Recent Advancements in the Optimization Capacity Configuration and Coordination Operation Strategy of Wind-Solar Hybrid Storage System 被引量:1
9
作者 Hongliang Hao Caifeng Wen +5 位作者 Feifei Xue Hao Qiu Ning Yang Yuwen Zhang Chaoyu Wang Edwin E.Nyakilla 《Energy Engineering》 EI 2025年第1期285-306,共22页
Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe... Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems. 展开更多
关键词 Electric-thermal hybrid storage modal decomposition multi-objective genetic algorithm capacity optimization allocation operation strategy
在线阅读 下载PDF
基于JPS和变半径RS曲线的Hybrid A^(*)路径规划算法
10
作者 张博强 张成龙 +1 位作者 冯天培 高向川 《郑州大学学报(工学版)》 北大核心 2025年第2期19-25,共7页
为解决混合A^(*)(Hybrid A^(*))算法在高分辨率地图和复杂场景下搜索效率低、耗费时间长的问题,通过对影响传统Hybrid A^(*)算法搜索效率的因素进行分析,提出了J-Hybrid A^(*)算法。首先,在Hybrid A^(*)算法扩展节点前,使用跳点搜索(JPS... 为解决混合A^(*)(Hybrid A^(*))算法在高分辨率地图和复杂场景下搜索效率低、耗费时间长的问题,通过对影响传统Hybrid A^(*)算法搜索效率的因素进行分析,提出了J-Hybrid A^(*)算法。首先,在Hybrid A^(*)算法扩展节点前,使用跳点搜索(JPS)算法进行起点到终点的路径搜索,将该路径进行拉直处理后作为计算节点启发值的基础;其次,设计了新的启发函数,在Hybrid A^(*)算法扩展前就能完成所有节点启发值的计算,减少了Hybrid A^(*)扩展节点时计算启发值所需的时间;最后,将RS曲线由最小转弯半径搜索改为变半径RS曲线搜索,使RS曲线能够更早搜索到一条无碰撞路径,进一步提升了Hybrid A^(*)算法的搜索效率。仿真结果表明:所提J-Hybrid A^(*)算法在简单环境中比传统Hybrid A^(*)算法和反向Hybrid A^(*)算法用时分别缩短68%、21%,在复杂环境中缩短59%、27%。在不同分辨率地图场景中,随着地图分辨率的提高,规划效率显著提升。实车实验表明:所提J-Hybrid A^(*)算法相较于传统Hybrid A^(*)算法和反向Hybrid A^(*)算法的搜索用时分别减少88%、82%,有效提升了Hybrid A^(*)算法的搜索效率、缩短了路径规划所需时间。 展开更多
关键词 hybrid A^(*)算法 启发函数 JPS算法 RS曲线 路径规划
在线阅读 下载PDF
Hybrid Task Scheduling Algorithm for Makespan Optimisation in Cloud Computing: A Performance Evaluation
11
作者 Abdulrahman M.Abdulghani 《Journal on Artificial Intelligence》 2024年第1期241-259,共19页
Cloud computing has rapidly evolved into a critical technology,seamlessly integrating into various aspects of daily life.As user demand for cloud services continues to surge,the need for efficient virtualization and r... Cloud computing has rapidly evolved into a critical technology,seamlessly integrating into various aspects of daily life.As user demand for cloud services continues to surge,the need for efficient virtualization and resource management becomes paramount.At the core of this efficiency lies task scheduling,a complex process that determines how tasks are allocated and executed across cloud resources.While extensive research has been conducted in the area of task scheduling,optimizing multiple objectives simultaneously remains a significant challenge due to the NP(Non-deterministic Polynomial)Complete nature of the problem.This study aims to address these challenges by providing a comprehensive review and experimental analysis of task scheduling approaches,with a particular focus on hybrid techniques that offer promising solutions.Utilizing the CloudSim simulation toolkit,we evaluated the performance of three hybrid algorithms:Estimation of Distribution Algorithm-Genetic Algorithm(EDA-GA),Hybrid Genetic Algorithm-Ant Colony Optimization(HGA-ACO),and Improved Discrete Particle Swarm Optimization(IDPSO).Our experimental results demonstrate that these hybrid methods significantly outperform traditional standalone algorithms in reducing Makespan,which is a critical measure of task completion time.Notably,the IDPSO algorithm exhibited superior performance,achieving a Makespan of just 0.64 milliseconds for a set of 150 tasks.These findings underscore the potential of hybrid algorithms to enhance task scheduling efficiency in cloud computing environments.This paper concludes with a discussion of the implications of our findings and offers recommendations for future research aimed at further improving task scheduling strategies,particularly in the context of increasingly complex and dynamic cloud environments. 展开更多
关键词 MAKESPAN multi-objective optimisation task scheduling cloud computing hybrid algorithms
在线阅读 下载PDF
Implementation of Hybrid Genetic Algorithm for CLSC Network Design Problem—A Case Study on Fashion Leather Goods Industry
12
作者 Muthusamy Aravendan Ramasamy Panneerselvam 《American Journal of Operations Research》 2016年第4期300-316,共17页
The implementation of closed loop supply chain system is becoming essential for fashion leather products industry to ensure an economically sustainable business model and eco-friendly industrial practice as demanded b... The implementation of closed loop supply chain system is becoming essential for fashion leather products industry to ensure an economically sustainable business model and eco-friendly industrial practice as demanded by the environmental regulations, consumer awareness and the prevailing social consciousness. In this context, this research work addresses a closed loop supply chain network problem of fashion leather goods industry, with an objective of minimizing the total cost of the entire supply chain and also reducing the total waste from the end of life product returns. The research work commenced with a literature review on the reverse and closed loop supply chain network design problems of fashion and leather goods industry dealt in the past. Then, the identified CLSCND problem is solved using a mathematical model based on Mixed Integer Non-Linear Programme (MINLP) and then a suitable Hybrid Genetic Algorithm (HGA) developed for the CLSCND is implemented for obtaining optimum solution. Both the MINLP model and HGA are customized as per the CLSCND problem chosen and implemented for the industrial case of an Indian Fashion Leather Goods Industry. Finally, the solutions obtained for MINLP model in LINGO 15 and for HGA in VB.NET platform are compared and presented. The optimum solution obtained from the suitable HGA is illustrated as an optimum shipment pattern for the closed loop supply chain network design problem of the fashion leather goods industry case. 展开更多
关键词 Industry Case CLSC Fashion Products Leather Goods Luggage Goods hybrid Genetic algorithm (HGA) META-heuristicS MINLP Network Design Reverse Supply Chain
在线阅读 下载PDF
带强制工期约束的混合柔性流水线调度
13
作者 轩华 李坤博 曹颖 《郑州大学学报(工学版)》 北大核心 2026年第1期49-57,共9页
针对每阶段包含不相关并行机的混合柔性流水线问题,考虑强制工期和运输时间,以最小化总加权完成时间为目标建立整数规划模型,结合改进遗传算法和邻域搜索策略,提出一种人工蜂群算法和鲸鱼优化算法的混合算法以获取近优解。算法采用基于... 针对每阶段包含不相关并行机的混合柔性流水线问题,考虑强制工期和运输时间,以最小化总加权完成时间为目标建立整数规划模型,结合改进遗传算法和邻域搜索策略,提出一种人工蜂群算法和鲸鱼优化算法的混合算法以获取近优解。算法采用基于工件号编码以及NEH启发式法生成初始工件序列集,雇佣蜂阶段引入改进遗传算法产生更优质的工件序列,跟随蜂阶段利用5种邻域搜索策略以得到更好的邻域序列,在侦察蜂阶段设计基于最差解的鲸鱼优化算法提高算法搜索能力。仿真实验测试了混合人工蜂群和鲸鱼优化算法内改进项的有效性以及不同规模的算例。实验结果表明:所提出的混合算法具有较好的求解性能。 展开更多
关键词 混合柔性流水线 强制工期 ABC-WOA混合算法 NEH启发式法
在线阅读 下载PDF
Multi-objective parameter optimization for a single-shaft series-parallel plug-in hybrid electric bus using genetic algorithm 被引量:5
14
作者 CHEN Zheng ZHOU LiYan +2 位作者 SUN Yong MA ZiLin HAN ZongQi 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第8期1176-1185,共10页
Recently, the single-shaft series-parallel powertrain of Plug-in Hybrid Electric Bus (PHEB) has become one of the most popu- lar powertrains due to its alterable operating modes, excellent fuel economy and strong ad... Recently, the single-shaft series-parallel powertrain of Plug-in Hybrid Electric Bus (PHEB) has become one of the most popu- lar powertrains due to its alterable operating modes, excellent fuel economy and strong adaptability for driving cycles. Never- theless, for configuring the PHEB with single-shaft series-parallel powertrain in the development stage, it still faces greater challenge than other configurations when choosing and matching the main component parameters. Motivated by this issue, a comprehensive multi-objectives optimization strategy based on Genetic Algorithm (GA) is developed for the PHEB with the typical powertrain. First, considering repeatability and regularity of bus route, the methods of off-line data processing and mathematical statistics are adopted, to obtain a representative driving cycle, which could well reflect the general characteristic of the real-world bus route. Then, the economical optimization objective is defined, which is consist of manufacturing costs of the key components and energy consumption, and combined with the dynamical optimization objective, a multi-objective op- timization function is put forward. Meanwhile, GA algorithm is used to optimize the parameters, for the optimal components combination of the novel series-parallel powertrain. Finally, a comparison with the prototype is carried out to verify the per- formance of the optimized powertrain along driving cycles. Simulation results indicate that the parameters of powertrain com- ponents obtained by the proposed comprehensive multi-objectives optimization strategy might get better fuel economy, meanwhile ensure the dynamic performance of PHEB. In contrast to the original, the costs declined by 18%. Hence, the strat- egy would provide a theoretical guidance on parameter selection for PHEB manufacturers. 展开更多
关键词 multi-objective parameter optimization single-shaft series-parallel powertrain plug-in hybrid electric bus (PHEB) genetic algorithm (GA) driving cycle city bus route
原文传递
Minimizing makespan in a two-stage hybrid flow shop scheduling problem with open shop in one stage 被引量:1
15
作者 DONG Jian-ming HU Jue-liang CHEN Yong 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2013年第3期358-368,共11页
This paper considers a scheduling problem in two-stage hybrid flow shop, where the first stage consists of two machines formed an open shop and the other stage has only one machine. The objective is to minimize the ma... This paper considers a scheduling problem in two-stage hybrid flow shop, where the first stage consists of two machines formed an open shop and the other stage has only one machine. The objective is to minimize the makespan, i.e., the maximum completion time of all jobs. We first show the problem is NP-hard in the strong sense, then we present two heuristics to solve the problem. Computational experiments show that the combined algorithm of the two heuristics performs well on randomly generated problem instances. 展开更多
关键词 hybrid flow shop open shop heuristic algorithm.
在线阅读 下载PDF
An Improved Hyperplane Assisted Multiobjective Optimization for Distributed Hybrid Flow Shop Scheduling Problem in Glass Manufacturing Systems
16
作者 Yadian Geng Junqing Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第1期241-266,共26页
To solve the distributed hybrid flow shop scheduling problem(DHFS)in raw glass manufacturing systems,we investigated an improved hyperplane assisted evolutionary algorithm(IhpaEA).Two objectives are simultaneously con... To solve the distributed hybrid flow shop scheduling problem(DHFS)in raw glass manufacturing systems,we investigated an improved hyperplane assisted evolutionary algorithm(IhpaEA).Two objectives are simultaneously considered,namely,the maximum completion time and the total energy consumptions.Firstly,each solution is encoded by a three-dimensional vector,i.e.,factory assignment,scheduling,and machine assignment.Subsequently,an efficient initialization strategy embeds two heuristics are developed,which can increase the diversity of the population.Then,to improve the global search abilities,a Pareto-based crossover operator is designed to take more advantage of non-dominated solutions.Furthermore,a local search heuristic based on three parts encoding is embedded to enhance the searching performance.To enhance the local search abilities,the cooperation of the search operator is designed to obtain better non-dominated solutions.Finally,the experimental results demonstrate that the proposed algorithm is more efficient than the other three state-of-the-art algorithms.The results show that the Pareto optimal solution set obtained by the improved algorithm is superior to that of the traditional multiobjective algorithm in terms of diversity and convergence of the solution. 展开更多
关键词 Distributed hybrid flow shop energy consumption hyperplane-assisted multi-objective algorithm glass manufacturing system
在线阅读 下载PDF
Hybrid Flow Shop with Setup Times Scheduling Problem
17
作者 Mahdi Jemmali Lotfi Hidri 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期563-577,共15页
The two-stage hybridflow shop problem under setup times is addressed in this paper.This problem is NP-Hard.on the other hand,the studied problem is modeling different real-life applications especially in manufacturing... The two-stage hybridflow shop problem under setup times is addressed in this paper.This problem is NP-Hard.on the other hand,the studied problem is modeling different real-life applications especially in manufacturing and high performance-computing.Tackling this kind of problem requires the development of adapted algorithms.In this context,a metaheuristic using the genetic algorithm and three heuristics are proposed in this paper.These approximate solutions are using the optimal solution of the parallel machines under release and delivery times.Indeed,these solutions are iterative procedures focusing each time on a particular stage where a parallel machines problem is called to be solved.The general solution is then a concatenation of all the solutions in each stage.In addition,three lower bounds based on the relaxation method are provided.These lower bounds present a means to evaluate the efficiency of the developed algorithms throughout the measurement of the relative gap.An experimental result is discussed to evaluate the performance of the developed algorithms.In total,8960 instances are implemented and tested to show the results given by the proposed lower bounds and heuristics.Several indicators are given to compare between algorithms.The results illustrated in this paper show the performance of the developed algorithms in terms of gap and running time. 展开更多
关键词 hybridflow shop genetic algorithm setup times heuristicS lower bound
在线阅读 下载PDF
Three-Objective Programming with Continuous Variable Genetic Algorithm
18
作者 Adugna Fita 《Applied Mathematics》 2014年第21期3297-3310,共14页
The subject area of multiobjective optimization deals with the investigation of optimization problems that possess more than one objective function. Usually, there does not exist a single solution that optimizes all f... The subject area of multiobjective optimization deals with the investigation of optimization problems that possess more than one objective function. Usually, there does not exist a single solution that optimizes all functions simultaneously;quite the contrary, we have solution set that is called nondominated set and elements of this set are usually infinite. It is from this set decision made by taking elements of nondominated set as alternatives, which is given by analysts. Since it is important for the decision maker to obtain as much information as possible about this set, our research objective is to determine a well-defined and meaningful approximation of the solution set for linear and nonlinear three objective optimization problems. In this paper a continuous variable genetic algorithm is used to find approximate near optimal solution set. Objective functions are considered as fitness function without modification. Initial solution was generated within box constraint and solutions will be kept in feasible region during mutation and recombination. 展开更多
关键词 CHROMOSOME CROSSOVER heuristicS Mutation Optimization Population Ranking Genetic algorithms multi-objective PARETO Optimal Solutions PARENT Selection
暂未订购
A hybrid optimization approach for the heterogeneous vehicle routing problem with multiple depots cooperative operation
19
作者 Liu Jiansheng Tan Wenyue +1 位作者 Jiang Hai Yu Gong 《High Technology Letters》 EI CAS 2020年第1期108-117,共10页
With the challenge of great growing of transport diversity for the automobile enterprises, the heterogeneous vehicle routing problem with multiple depots, multiple types of finished vehicles and multiple types of tran... With the challenge of great growing of transport diversity for the automobile enterprises, the heterogeneous vehicle routing problem with multiple depots, multiple types of finished vehicles and multiple types of transport vehicles in finished vehicle logistics(HVRPMD) is modelled and solved. A multi-objective optimization model for HVRPMD is presented considering loading constraints to minimize the total cost and minimize the number of transport vehicles. Then a hybrid heuristic algorithm based on genetic algorithm and particle swarm optimization(GA-PSO) is developed. Moreover, a case study is used to evaluate the effectiveness of this algorithm. By comparing the GA-PSO algorithm with the traditional GA algorithm, the simulation results demonstrate the proposed GA-PSO algorithm is able to better support the HVRPMD problem in practice. Contributions of the paper are the modelling and solving of a complex HVRPMD in logistics industry. 展开更多
关键词 finished VEHICLE logistics(FVL) VEHICLE routing problem(VRP) hybrid heuristic algorithm multiple FACTORY DEPOT
在线阅读 下载PDF
Multi-Objective Evolutionary Framework for High-Precision Community Detection in Complex Networks
20
作者 Asal Jameel Khudhair Amenah Dahim Abbood 《Computers, Materials & Continua》 2026年第1期1453-1483,共31页
Community detection is one of the most fundamental applications in understanding the structure of complicated networks.Furthermore,it is an important approach to identifying closely linked clusters of nodes that may r... Community detection is one of the most fundamental applications in understanding the structure of complicated networks.Furthermore,it is an important approach to identifying closely linked clusters of nodes that may represent underlying patterns and relationships.Networking structures are highly sensitive in social networks,requiring advanced techniques to accurately identify the structure of these communities.Most conventional algorithms for detecting communities perform inadequately with complicated networks.In addition,they miss out on accurately identifying clusters.Since single-objective optimization cannot always generate accurate and comprehensive results,as multi-objective optimization can.Therefore,we utilized two objective functions that enable strong connections between communities and weak connections between them.In this study,we utilized the intra function,which has proven effective in state-of-the-art research studies.We proposed a new inter-function that has demonstrated its effectiveness by making the objective of detecting external connections between communities is to make them more distinct and sparse.Furthermore,we proposed a Multi-Objective community strength enhancement algorithm(MOCSE).The proposed algorithm is based on the framework of the Multi-Objective Evolutionary Algorithm with Decomposition(MOEA/D),integrated with a new heuristic mutation strategy,community strength enhancement(CSE).The results demonstrate that the model is effective in accurately identifying community structures while also being computationally efficient.The performance measures used to evaluate the MOEA/D algorithm in our work are normalized mutual information(NMI)and modularity(Q).It was tested using five state-of-the-art algorithms on social networks,comprising real datasets(Zachary,Dolphin,Football,Krebs,SFI,Jazz,and Netscience),as well as twenty synthetic datasets.These results provide the robustness and practical value of the proposed algorithm in multi-objective community identification. 展开更多
关键词 multi-objective optimization evolutionary algorithms community detection heuristic metaheuristic hybrid social network models
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部