The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capabi...The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capability for nodal-power control.To maintain the system frequency and voltage magnitude around rated values,a new multi-objective optimization model for both voltage and frequency control is proposed.Moreover,a great similarity between the multiobjective optimization and game problems appears.To reduce the strong subjectivity of the traditional methods,the idea and method of the game theory are introduced into the solution.According to the present situational data and analysis of the voltage and frequency sensitivities to nodal-power variations,the design variables involved in the voltage and frequency control are classified into two strategy spaces for players using hierarchical clustering.Finally,the effectiveness and rationality of the proposed control are verified in MATLAB.展开更多
Multi-objective optimization for the optimum shape design is introduced in aerodynamics using the Game theory. Based on the control theory, the employed optimizer and the negative feedback are used to implement the co...Multi-objective optimization for the optimum shape design is introduced in aerodynamics using the Game theory. Based on the control theory, the employed optimizer and the negative feedback are used to implement the constraints. All the constraints are satisfied implicitly and automatically in the design. Furthermore,the above methodology is combined with a formulation derived from the Game theory to treat multi-point airfoil optimization. Airfoil shapes are optimized according to various aerodynamics criteria. In the symmetric Nash game, each “player” is responsible for one criterion, and the Nash equilibrium provides a solution to the multipoint optimization. Design results confirm the efficiency of the method.展开更多
A multi-objective evolutionary optimization method (combining genetic algorithms(GAs)and game theory(GT))is presented for high lift multi-airfoil systems in aerospace engineering.Due to large dimension global op-timiz...A multi-objective evolutionary optimization method (combining genetic algorithms(GAs)and game theory(GT))is presented for high lift multi-airfoil systems in aerospace engineering.Due to large dimension global op-timization problems and the increasing importance of low cost distributed parallel environments,it is a natural idea to replace a globar optimization by decentralized local sub-optimizations using GT which introduces the notion of games associated to an optimization problem.The GT/GAs combined optimization method is used for recon-struction and optimization problems by high lift multi-air-foil desing.Numerical results are favorably compared with single global GAs.The method shows teh promising robustness and efficient parallel properties of coupled GAs with different game scenarios for future advanced multi-disciplinary aerospace techmologies.展开更多
The rapid advance of Connected-Automated Vehicles(CAVs)has led to the emergence of diverse delaysensitive and energy-constrained vehicular applications.Given the high dynamics of vehicular networks,unmanned aerial veh...The rapid advance of Connected-Automated Vehicles(CAVs)has led to the emergence of diverse delaysensitive and energy-constrained vehicular applications.Given the high dynamics of vehicular networks,unmanned aerial vehicles-assisted mobile edge computing(UAV-MEC)has gained attention in providing computing resources to vehicles and optimizing system costs.We model the computing offloading problem as a multi-objective optimization challenge aimed at minimizing both task processing delay and energy consumption.We propose a three-stage hybrid offloading scheme called Dynamic Vehicle Clustering Game-based Multi-objective Whale Optimization Algorithm(DVCG-MWOA)to address this problem.A novel dynamic clustering algorithm is designed based on vehiclemobility and task offloading efficiency requirements,where each UAV independently serves as the cluster head for a vehicle cluster and adjusts its position at the end of each timeslot in response to vehiclemovement.Within eachUAV-led cluster,cooperative game theory is applied to allocate computing resourceswhile respecting delay constraints,ensuring efficient resource utilization.To enhance offloading efficiency,we improve the multi-objective whale optimization algorithm(MOWOA),resulting in the MWOA.This enhanced algorithm determines the optimal allocation of pending tasks to different edge computing devices and the resource utilization ratio of each device,ultimately achieving a Pareto-optimal solution set for delay and energy consumption.Experimental results demonstrate that the proposed joint offloading scheme significantly reduces both delay and energy consumption compared to existing approaches,offering superior performance for vehicular networks.展开更多
Power flow optimization control,which governs the energy flow among engine,battery,and motor,plays a very important role in plug-in hybrid electric vehicles(PHEVs).Its performance directly affects the fuel economy of ...Power flow optimization control,which governs the energy flow among engine,battery,and motor,plays a very important role in plug-in hybrid electric vehicles(PHEVs).Its performance directly affects the fuel economy of PHEVs.For the purpose of improving fuel economy,the electric system including battery and motor will be frequently scheduled,which would affect battery life.Therefore,a multi-objective optimization mechanism taking fuel economy and battery life into account is necessary,which is also a research focus in field of hybrid vehicles.Motivated by this issue,this paper proposes a multi-objective power flow optimization control strategy for a power split PHEV using game theory.Firstly,since the demand power of driver which is necessary for the power flow optimization control,cannot be known in advance,the demand power of driver can be modelled using a Markov chain to obtain predicted demand power.Secondly,based on the predicted demand power,the multi-objective optimization control problem is transformed into a game problem.A novel non-cooperative game model between engine and battery is established,and the benefit function with fuel economy and battery life as the optimization objective is proposed.Thirdly,under the premise of satisfying various constraints,the participants of the above game maximize their own benefit function to obtain the Nash equilibrium,which comprises of optimal power split scheme.Finally,the proposed strategy is verified compared with two baseline strategies,and results show that the proposed strategy can reduce equivalent fuel consumption by about 15%compared with baseline strategy 1,and achieve similar fuel economy while greatly extend battery life simultaneously compared with baseline strategy 2.展开更多
Task allocation is a key aspect of Unmanned Aerial Vehicle(UAV)swarm collaborative operations.With an continuous increase of UAVs’scale and the complexity and uncertainty of tasks,existing methods have poor performan...Task allocation is a key aspect of Unmanned Aerial Vehicle(UAV)swarm collaborative operations.With an continuous increase of UAVs’scale and the complexity and uncertainty of tasks,existing methods have poor performance in computing efficiency,robustness,and realtime allocation,and there is a lack of theoretical analysis on the convergence and optimality of the solution.This paper presents a novel intelligent framework for distributed decision-making based on the evolutionary game theory to address task allocation for a UAV swarm system in uncertain scenarios.A task allocation model is designed with the local utility of an individual and the global utility of the system.Then,the paper analytically derives a potential function in the networked evolutionary potential game and proves that the optimal solution of the task allocation problem is a pure strategy Nash equilibrium of a finite strategy game.Additionally,a PayOff-based Time-Variant Log-linear Learning Algorithm(POTVLLA)is proposed,which includes a novel learning strategy based on payoffs for an individual and a time-dependent Boltzmann parameter.The former aims to reduce the system’s computational burden and enhance the individual’s effectiveness,while the latter can ensure that the POTVLLA converges to the optimal Nash equilibrium with a probability of one.Numerical simulation results show that the approach is optimal,robust,scalable,and fast adaptable to environmental changes,even in some realistic situations where some UAVs or tasks are likely to be lost and increased,further validating the effectiveness and superiority of the proposed framework and algorithm.展开更多
针对高维多目标进化算法(Many-objective Optimization Evolutionary Algorithm,简称MaOEA)在求解工程问题时存在的选择压力低、收敛性与多样性难以平衡等问题,提出一种基于区域划分博弈的高维多目标进化算法(Many-objective Evolutiona...针对高维多目标进化算法(Many-objective Optimization Evolutionary Algorithm,简称MaOEA)在求解工程问题时存在的选择压力低、收敛性与多样性难以平衡等问题,提出一种基于区域划分博弈的高维多目标进化算法(Many-objective Evolutionary Algorithm based on Game with Region Division,简称MaOEA-Game),该算法在环境选择阶段设计了分区协同选择策略和分区删除策略,并以种群目标函数值和平衡适应度估计作为收益函数,推动解集快速逼近真实Pareto前沿。实验结果显示,相较于其他四种算法,MaOEA-Game在处理基准测试问题DTLZ上优势显著,能够为云计算任务调度模型提供更优的解决方案,有效提升了算法求解性能。展开更多
针对量子蚁群算法求解组合优化问题时易陷入局部最优和收敛速度慢的问题,提出一种基于博弈论的量子蚁群算法(quantum ant colony algorithm based on the game theory,GQACA)。算法采用重复博弈模型,在重复博弈中产生一个博弈序列,使得...针对量子蚁群算法求解组合优化问题时易陷入局部最优和收敛速度慢的问题,提出一种基于博弈论的量子蚁群算法(quantum ant colony algorithm based on the game theory,GQACA)。算法采用重复博弈模型,在重复博弈中产生一个博弈序列,使得每次博弈都能够产生最大效益,并得到相应博弈过程的纳什均衡。利用典型的5个标准测试函数对GQACA算法寻优性能进行试验测试。试验结果表明:GQACA算法的收敛精度和稳定性均要优于量子蚁群算法(quantum ant colony algorithm,QACA)和蚁群算法(ant colony algorithm,ACA)。展开更多
基金the National Key Research and Development Program of China(Basic Research Class)(No.2017YFB0903000)the National Natural Science Foundation of China(No.U1909201).
文摘The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capability for nodal-power control.To maintain the system frequency and voltage magnitude around rated values,a new multi-objective optimization model for both voltage and frequency control is proposed.Moreover,a great similarity between the multiobjective optimization and game problems appears.To reduce the strong subjectivity of the traditional methods,the idea and method of the game theory are introduced into the solution.According to the present situational data and analysis of the voltage and frequency sensitivities to nodal-power variations,the design variables involved in the voltage and frequency control are classified into two strategy spaces for players using hierarchical clustering.Finally,the effectiveness and rationality of the proposed control are verified in MATLAB.
文摘Multi-objective optimization for the optimum shape design is introduced in aerodynamics using the Game theory. Based on the control theory, the employed optimizer and the negative feedback are used to implement the constraints. All the constraints are satisfied implicitly and automatically in the design. Furthermore,the above methodology is combined with a formulation derived from the Game theory to treat multi-point airfoil optimization. Airfoil shapes are optimized according to various aerodynamics criteria. In the symmetric Nash game, each “player” is responsible for one criterion, and the Nash equilibrium provides a solution to the multipoint optimization. Design results confirm the efficiency of the method.
文摘A multi-objective evolutionary optimization method (combining genetic algorithms(GAs)and game theory(GT))is presented for high lift multi-airfoil systems in aerospace engineering.Due to large dimension global op-timization problems and the increasing importance of low cost distributed parallel environments,it is a natural idea to replace a globar optimization by decentralized local sub-optimizations using GT which introduces the notion of games associated to an optimization problem.The GT/GAs combined optimization method is used for recon-struction and optimization problems by high lift multi-air-foil desing.Numerical results are favorably compared with single global GAs.The method shows teh promising robustness and efficient parallel properties of coupled GAs with different game scenarios for future advanced multi-disciplinary aerospace techmologies.
基金funded by Shandong University of Technology Doctoral Program in Science and Technology,grant number 4041422007.
文摘The rapid advance of Connected-Automated Vehicles(CAVs)has led to the emergence of diverse delaysensitive and energy-constrained vehicular applications.Given the high dynamics of vehicular networks,unmanned aerial vehicles-assisted mobile edge computing(UAV-MEC)has gained attention in providing computing resources to vehicles and optimizing system costs.We model the computing offloading problem as a multi-objective optimization challenge aimed at minimizing both task processing delay and energy consumption.We propose a three-stage hybrid offloading scheme called Dynamic Vehicle Clustering Game-based Multi-objective Whale Optimization Algorithm(DVCG-MWOA)to address this problem.A novel dynamic clustering algorithm is designed based on vehiclemobility and task offloading efficiency requirements,where each UAV independently serves as the cluster head for a vehicle cluster and adjusts its position at the end of each timeslot in response to vehiclemovement.Within eachUAV-led cluster,cooperative game theory is applied to allocate computing resourceswhile respecting delay constraints,ensuring efficient resource utilization.To enhance offloading efficiency,we improve the multi-objective whale optimization algorithm(MOWOA),resulting in the MWOA.This enhanced algorithm determines the optimal allocation of pending tasks to different edge computing devices and the resource utilization ratio of each device,ultimately achieving a Pareto-optimal solution set for delay and energy consumption.Experimental results demonstrate that the proposed joint offloading scheme significantly reduces both delay and energy consumption compared to existing approaches,offering superior performance for vehicular networks.
基金the National Natural Science Foundation of China(Grant Nos.51975048,U1764257 and 51705480)the Beijing Institute of Technology Research Fund Program for Young Scholars。
文摘Power flow optimization control,which governs the energy flow among engine,battery,and motor,plays a very important role in plug-in hybrid electric vehicles(PHEVs).Its performance directly affects the fuel economy of PHEVs.For the purpose of improving fuel economy,the electric system including battery and motor will be frequently scheduled,which would affect battery life.Therefore,a multi-objective optimization mechanism taking fuel economy and battery life into account is necessary,which is also a research focus in field of hybrid vehicles.Motivated by this issue,this paper proposes a multi-objective power flow optimization control strategy for a power split PHEV using game theory.Firstly,since the demand power of driver which is necessary for the power flow optimization control,cannot be known in advance,the demand power of driver can be modelled using a Markov chain to obtain predicted demand power.Secondly,based on the predicted demand power,the multi-objective optimization control problem is transformed into a game problem.A novel non-cooperative game model between engine and battery is established,and the benefit function with fuel economy and battery life as the optimization objective is proposed.Thirdly,under the premise of satisfying various constraints,the participants of the above game maximize their own benefit function to obtain the Nash equilibrium,which comprises of optimal power split scheme.Finally,the proposed strategy is verified compared with two baseline strategies,and results show that the proposed strategy can reduce equivalent fuel consumption by about 15%compared with baseline strategy 1,and achieve similar fuel economy while greatly extend battery life simultaneously compared with baseline strategy 2.
基金co-supported by the National Natural Science Foundation of China(Nos.71971115 and 62173305)the Postgraduate Research and Practice Innovation Program of Jiangsu Province,China(No.KYCX22_0366).
文摘Task allocation is a key aspect of Unmanned Aerial Vehicle(UAV)swarm collaborative operations.With an continuous increase of UAVs’scale and the complexity and uncertainty of tasks,existing methods have poor performance in computing efficiency,robustness,and realtime allocation,and there is a lack of theoretical analysis on the convergence and optimality of the solution.This paper presents a novel intelligent framework for distributed decision-making based on the evolutionary game theory to address task allocation for a UAV swarm system in uncertain scenarios.A task allocation model is designed with the local utility of an individual and the global utility of the system.Then,the paper analytically derives a potential function in the networked evolutionary potential game and proves that the optimal solution of the task allocation problem is a pure strategy Nash equilibrium of a finite strategy game.Additionally,a PayOff-based Time-Variant Log-linear Learning Algorithm(POTVLLA)is proposed,which includes a novel learning strategy based on payoffs for an individual and a time-dependent Boltzmann parameter.The former aims to reduce the system’s computational burden and enhance the individual’s effectiveness,while the latter can ensure that the POTVLLA converges to the optimal Nash equilibrium with a probability of one.Numerical simulation results show that the approach is optimal,robust,scalable,and fast adaptable to environmental changes,even in some realistic situations where some UAVs or tasks are likely to be lost and increased,further validating the effectiveness and superiority of the proposed framework and algorithm.
文摘针对高维多目标进化算法(Many-objective Optimization Evolutionary Algorithm,简称MaOEA)在求解工程问题时存在的选择压力低、收敛性与多样性难以平衡等问题,提出一种基于区域划分博弈的高维多目标进化算法(Many-objective Evolutionary Algorithm based on Game with Region Division,简称MaOEA-Game),该算法在环境选择阶段设计了分区协同选择策略和分区删除策略,并以种群目标函数值和平衡适应度估计作为收益函数,推动解集快速逼近真实Pareto前沿。实验结果显示,相较于其他四种算法,MaOEA-Game在处理基准测试问题DTLZ上优势显著,能够为云计算任务调度模型提供更优的解决方案,有效提升了算法求解性能。
文摘针对量子蚁群算法求解组合优化问题时易陷入局部最优和收敛速度慢的问题,提出一种基于博弈论的量子蚁群算法(quantum ant colony algorithm based on the game theory,GQACA)。算法采用重复博弈模型,在重复博弈中产生一个博弈序列,使得每次博弈都能够产生最大效益,并得到相应博弈过程的纳什均衡。利用典型的5个标准测试函数对GQACA算法寻优性能进行试验测试。试验结果表明:GQACA算法的收敛精度和稳定性均要优于量子蚁群算法(quantum ant colony algorithm,QACA)和蚁群算法(ant colony algorithm,ACA)。