In tunnel construction,tunnel boring machine(TBM)tunnelling typically relies on manual experience with sub-optimal control parameters,which can easily lead to inefficiency and high costs.This study proposed an intelli...In tunnel construction,tunnel boring machine(TBM)tunnelling typically relies on manual experience with sub-optimal control parameters,which can easily lead to inefficiency and high costs.This study proposed an intelligent decision-making method for TBM tunnelling control parameters based on multiobjective optimization(MOO).First,the effective TBM operation dataset is obtained through data preprocessing of the Songhua River(YS)tunnel project in China.Next,the proposed method begins with developing machine learning models for predicting TBM tunnelling performance parameters(i.e.total thrust and cutterhead torque),rock mass classification,and hazard risks(i.e.tunnel collapse and shield jamming).Then,considering three optimal objectives,(i.e.,penetration rate,rock-breaking energy consumption,and cutterhead hob wear),the MOO framework and corresponding mathematical expression are established.The Pareto optimal front is solved using DE-NSGA-II algorithm.Finally,the optimal control parameters(i.e.,advance rate and cutterhead rotation speed)are obtained by the satisfactory solution determination criterion,which can balance construction safety and efficiency with satisfaction.Furthermore,the proposed method is validated through 50 cases of TBM tunnelling,showing promising potential of application.展开更多
Power systems are pivotal in providing sustainable energy across various sectors.However,optimizing their performance to meet modern demands remains a significant challenge.This paper introduces an innovative strategy...Power systems are pivotal in providing sustainable energy across various sectors.However,optimizing their performance to meet modern demands remains a significant challenge.This paper introduces an innovative strategy to improve the opti-mization of PID controllers within nonlinear oscillatory Automatic Generation Control(AGC)systems,essential for the stability of power systems.Our approach aims to reduce the integrated time squared error,the integrated time absolute error,and the rate of change in deviation,facilitating faster convergence,diminished overshoot,and decreased oscillations.By incorporating the spiral model from the Whale Optimization Algorithm(WOA)into the Multi-Objective Marine Predator Algorithm(MOMPA),our method effectively broadens the diversity of solution sets and finely tunes the balance between exploration and exploitation strategies.Furthermore,the QQSMOMPA framework integrates quasi-oppositional learning and Q-learning to overcome local optima,thereby generating optimal Pareto solutions.When applied to nonlinear AGC systems featuring governor dead zones,the PID controllers optimized by QQSMOMPA not only achieve 14%reduction in the frequency settling time but also exhibit robustness against uncertainties in load disturbance inputs.展开更多
This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus...This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus is placed on the scenario that the dynamical state of the half-vehicle active suspension system is transmitted over an in-vehicle controller area network that only permits the transmission of sampled data packets.For this purpose,a stochastic sampling mechanism is developed such that the sampling periods can randomly switch among different values with certain mathematical probabilities.Then,an asynchronous fuzzy sampled-data controller,featuring distinct premise variables from the active suspension system,is constructed to eliminate the stringent requirement that the sampled-data controller has to share the same grades of membership.Furthermore,novel criteria for both stability analysis and controller design are derived in order to guarantee that the resultant closed-loop active suspension system is stochastically stable with simultaneous𝐻2 and𝐻∞performance requirements.Finally,the effectiveness of the proposed stochastic sampled-data multi-objective control method is verified via several numerical cases studies in both time domain and frequency domain under various road disturbance profiles.展开更多
Exploring optimal operational schemes for synergistic development is crucial for sustainable management in river basins.This study introduces a multi-objective synergistic optimization framework aimed at analyzing the...Exploring optimal operational schemes for synergistic development is crucial for sustainable management in river basins.This study introduces a multi-objective synergistic optimization framework aimed at analyzing the interplay among flood control,ecological integrity,and desilting objectives under varying watersediment conditions.The framework encompasses multi-objective reservoir optimal operation,scheme decision,and trade-off analysis among competing objectives.To address the optimization model,an elite mutation-based multiobjective particle swarm optimization(MOPSO)algorithm that integrates genetic algorithms(GA)is developed.The coupling coordination degree is employed for optimal scheme decision-making,allowing for the adjustment of weight ratios to investigate the trade-offs between objectives.This research focuses on the Sanmenxia and Xiaolangdi cascade reservoirs in the Yellow River,utilizing three representative hydrological years:1967,1969,and 2002.The findings reveal that:(1)the proposed model effectively generates Pareto fronts for multi-objective operations,facilitating the recommendation of optimal schemes based on coupling coordination degrees;(2)as water-sediment conditions shift from flooding to drought,competition intensifies between the flood control and desilting objectives.While flood control and ecological objectives compete during flood and dry years,they demonstrate synergies in normal years(r=0.22);conversely,ecological and desilting objectives are consistently competitive across all three typical years,with the strongest competition observed in the normal year(r=-0.95);(3)the advantages conferred to ecological objectives increase as water-sediment conditions shift from flooding to drought.However,the promotion of the desilting objective requires more complex trade-offs.This study provides a model and methodological approach for the multi-objective optimization of flood control,sediment management,and ecological considerations in reservoir clusters.Moreover,the methodologies presented herein can be extended to other water resource systems for multi-objective optimization and decision-making.展开更多
This paper presents an improved virtual coupling train set(VCTS)operation control framework to deal with the lack of opti-mization of speed curves in the traditional techniques.The framework takes into account the tem...This paper presents an improved virtual coupling train set(VCTS)operation control framework to deal with the lack of opti-mization of speed curves in the traditional techniques.The framework takes into account the temporary speed limit on the railway line and the communication delay between trains,and it uses a VCTS consisting of three trains as an experimental object.It creates the virtual coupling train tracking and control process by improving the driving strategy of the leader train and using the leader-follower model.The follower train uses the improved speed curve of the leader train as its speed refer-ence curve through knowledge migration,and this completes the multi-objective optimization of the driving strategy for the VCTS.The experimental results confirm that the deep reinforcement learning algorithm effectively achieves the optimization goal of the train driving strategy.They also reveal that the intrinsic curiosity module prioritized experience replay dueling double deep Q-network(ICM-PER-D3QN)algorithm outperforms the deep Q-network(DQN)algorithm in optimizing the driving strategy of the leader train.The ICM-PER-D3QN algorithm enhances the leader train driving strategy by an average of 57%when compared to the DQN algorithm.Furthermore,the particle swarm optimization(PSO)-based model predictive control(MPC)algorithm has also demonstrated tracking accuracy and further improved safety during VCTS operation,with an average increase of 37.7%in tracking accuracy compared to the traditional MPC algorithm.展开更多
With the increasing integration of emerging source-load types such as distributed photovoltaics,electric vehicles,and energy storage into distribution networks,the operational characteristics of these networks have ev...With the increasing integration of emerging source-load types such as distributed photovoltaics,electric vehicles,and energy storage into distribution networks,the operational characteristics of these networks have evolved from traditional single-load centers to complex multi-source,multi-load systems.This transition not only increases the difficulty of effectively classifying distribution networks due to their heightened complexity but also renders traditional energy management approaches-primarily focused on economic objectives-insufficient to meet the growing demands for flexible scheduling and dynamic response.To address these challenges,this paper proposes an adaptive multi-objective energy management strategy that accounts for the distinct operational requirements of distribution networks with a high penetration of new-type source-loads.The goal is to establish a comprehensive energy management framework that optimally balances energy efficiency,carbon reduction,and economic performance in modern distribution networks.To enhance classification accuracy,the strategy constructs amulti-dimensional scenario classification model that integrates environmental and climatic factors by analyzing the operational characteristics of new-type distribution networks and incorporating expert knowledge.An improved split-coupling K-means preclustering algorithm is employed to classify distribution networks effectively.Based on the classification results,fuzzy logic control is then utilized to dynamically optimize the weighting of each objective,allowing for an adaptive adjustment of priorities to achieve a flexible and responsivemulti-objective energy management strategy.The effectiveness of the proposed approach is validated through practical case studies.Simulation results indicate that the proposed method improves classification accuracy by 18.18%compared to traditional classification methods and enhances energy savings and carbon reduction by 4.34%and 20.94%,respectively,compared to the fixed-weight strategy.展开更多
Software Defined Network(SDN)has been developed rapidly in technology and popularized in application due to its efficiency and flexibility in network management.In multi-controller SDN architecture,the Controller Plac...Software Defined Network(SDN)has been developed rapidly in technology and popularized in application due to its efficiency and flexibility in network management.In multi-controller SDN architecture,the Controller Placement Problem(CPP)must be solved carefully as it directly affects the whole network performance.This paper proposes a Multi-objective Greedy Optimized K-means Algorithm(MGOKA)to solve this problem to optimize worst-case and average delay between switches and controllers as well as synchronization delay and load balance among controllers for Wide Area Networks(WAN).MGOKA combines the process of network partition based on the K-means algorithm with cluster fusion based on the greedy algorithm and designs a normalization strategy to convert a multi-objective into a single-objective optimization problem.The simulation results depict that in different network scales with different numbers of controllers,the relative optimization rate of our proposed algorithm compared with K-means,K-means++,and GOKA can reach up to 101.5%,109.9%,and 79.8%,respectively.Moreover,the error rate between MGOKA and the global optimal solution is always less than 4%.展开更多
Suzhou City,located in the Yangtze River Delta in China,is prone to flooding due to a complex combination of natural factors,including its monsoon climate,low elevation,and tidally influenced position,as well as inten...Suzhou City,located in the Yangtze River Delta in China,is prone to flooding due to a complex combination of natural factors,including its monsoon climate,low elevation,and tidally influenced position,as well as intensive human activities.The Large Encirclement Flood Control Project(LEFCP)was launched to cope with serious floods in the urban area.This project changed the spatiotemporal pattern of flood processes and caused spatial diversion of floods from the urban area to the outskirts of the city.Therefore,this study developed a distributed flood simulation model in order to understand this transition of flood processes.The results revealed that the LEFCP effectively protected the urban areas from floods,but the present scheduling schemes resulted in the spatial diversion of floods to the outskirts of the city.With rainstorm frequencies of 10.0%to 0.5%,the water level differences between two representative water level stations(Miduqiao(MDQ)and Fengqiao(FQ))located inside and outside the LEFCP area,ranged from 0.75 m to 0.24 m and from 1.80 m to 1.58 m,respectively.In addition,the flood safety margin at MDQ and the duration with the water level exceeding the warning water level at FQ ranged from 0.95 m to 0.43 m and from 4 h to 22 h,respectively.Rational scheduling schemes for the hydraulic facilities of the LEFCP in extreme precipitation cases were developed ac-cording to food simulations under seven scheduling scenarios.This helps to regulate the spatial flood diversion caused by the LEFCP during extreme precipitation.展开更多
Flood control operation,a non-engineering measure,can efficiently manage flood disasters within a river basin.However,numerous uncertainties exit in the real-time operation of flood control systems,creating risks in d...Flood control operation,a non-engineering measure,can efficiently manage flood disasters within a river basin.However,numerous uncertainties exit in the real-time operation of flood control systems,creating risks in decision-making.As an efficient tool to mitigate these risks,risk management has garnered increasing attention in real-time flood control operation.This communication offers a series of suggestions for future research concerning risk management in real-time flood control operation,including risk assessment,risk diagnosis,and risk control methods.展开更多
Rollover and jack-knifing of tractor semi-trailer are serious threats for vehicle safety, and accordingly active safety technologies have been widely used to reduce or prevent the occurrence of such accidents. However...Rollover and jack-knifing of tractor semi-trailer are serious threats for vehicle safety, and accordingly active safety technologies have been widely used to reduce or prevent the occurrence of such accidents. However, currently tractor semi-trailer stability control is generally only a single hazardous condition (rollover or jack-knifing) control, it is difficult to ensure the vehicle comprehensive stability of various dangerous conditions. The main objective of this study is to introduce a multi-objective stability control algorithm which can improve the vehicle stability of a tractor semi-trailer by using differential braking. A vehicle controller is designed to minimize the likelihood of rollover and jack-knifing. First a linear vehicle model of tractor semi-trailer is constructed. Then an optimal yaw control for tractor using differential braking is applied to minimize the yaw rate and lateral acceleration deviation of tractor, as well as the hitch articulation angle of tractor semi-trailer, so as to improve the vehicle stability. Second a braking scheme and variable structure control with sliding mode control are introduced in order to achieve the best braking effect. Last Fishhook maneuver is introduced to the active safety simulation and the active control system effect verification. The simulation results show that multi-objective stability control algorithm of semi-trailer could improve the vehicle stability significantly during the transient maneuvers. The proposed multi-objective stability control algorithm is effective to prevent the vehicle rollover and jackknifing.展开更多
For different flight phases in an overall flight mission,different control and allocation preferences should be pursued considering lift,drag or maneuverability characteristics.The multi-objective flight control alloc...For different flight phases in an overall flight mission,different control and allocation preferences should be pursued considering lift,drag or maneuverability characteristics.The multi-objective flight control allocation problem for a multi-phase flight mission is studied.For an overall flight mission,different flight phases namely climbing,cruise,maneuver and gliding phases are defined.Firstly,a multi-objective control allocation problem considering drag,lift or control energy preference is constructed.Secondly,considering different control preferences at different flight phases,the analytic hierarchical process method is used to construct a comprehensive performance index from different objectives such as lift or drag preferences.The active set based dynamic programming optimization method is used to solve the real-time optimization problem.For the validation,the Innovative Control Effector(ICE)tailless aircraft nonlinear model and the angular acceleration measurements based adaptive Incremental Backstepping(IBKS)are used to construct the validation platform.Finally,an overall flight mission is simulated to demonstrate the efficiency of the proposed multi-phase and multi-objective flight control allocation method.The results show that the comprehensive performance index for different phases,which are determined from the Analytic Hierarchy Process(AHP)method,can suitably satisfy the preference requirements for different flight phases.展开更多
For automated vehicles,comfortable driving will improve passengers’ satisfaction.Reducing fuel consumption brings economic profits for car owners,decreases the impact on the environment and increases energy sustainab...For automated vehicles,comfortable driving will improve passengers’ satisfaction.Reducing fuel consumption brings economic profits for car owners,decreases the impact on the environment and increases energy sustainability.In addition to comfort and fuel-economy,automated vehicles also have the basic requirements of safety and car-following.For this purpose,an adaptive cruise control (ACC) algorithm with multi-objectives is proposed based on a model predictive control (MPC) framework.In the proposed ACC algorithm,safety is guaranteed by constraining the inter-distance within a safe range; the requirements of comfort and car-following are considered to be the performance criteria and some optimal reference trajectories are introduced to increase fuel-economy.The performances of the proposed ACC algorithm are simulated and analyzed in five representative traffic scenarios and multiple experiments.The results show that not only are safety and car-following objectives satisfied,but also driving comfort and fuel-economy are improved significantly.展开更多
This paper presents a numerical algorithm tuning aircraft landing gear control system with three objectives,including reducing relative vibration, reducing hydraulic strut force and controlling energy consumption. Sli...This paper presents a numerical algorithm tuning aircraft landing gear control system with three objectives,including reducing relative vibration, reducing hydraulic strut force and controlling energy consumption. Sliding mode control is applied to the vibration control of a simplified landing gear model with uncertainty. A two-stage generalized cell mapping algorithm is applied to search the Pareto set with gradient-free scheme. Drop test simulations over uneven runway show that the vibration and force interaction can be considerably reduced, and the Pareto optimum form a tight range in time domain.展开更多
This paper proposes a new approach for multi-objective robust control. The approach extends the standard generalized l2 (Gl2) and generalized H2 (GH2) conditions to a set of new linear matrix inequality (LMI) constra...This paper proposes a new approach for multi-objective robust control. The approach extends the standard generalized l2 (Gl2) and generalized H2 (GH2) conditions to a set of new linear matrix inequality (LMI) constraints based on a new stability condition. A technique for variable parameterization is introduced to the multi-objective control problem to preserve the linearity of the synthesis variables. Consequently, the multi-channel multi-objective mixed Gl2/GH2 control problem can be solved less conservatively using computationally tractable algorithms developed in the paper.展开更多
A model-assistant extended state observer(MESO)-based decoupling control strategy is proposed for boiler-turbine units in the presence of unknown external disturbance and model-plant mismatch. For ease of implementati...A model-assistant extended state observer(MESO)-based decoupling control strategy is proposed for boiler-turbine units in the presence of unknown external disturbance and model-plant mismatch. For ease of implementation, the decoupling compensator is reduced to the proportion integration(PI) decoupler with the frequency domain analysis, where the decoupling error in collusion of uncertainties and disturbances can be estimated by the proposed MESO and then compensated. To decrease the sensitivity of the dynamic error for the decoupling control and fulfill various requirements of constraints, such as safety operation, energy conservation, emission reduction, etc., the plant is transmitted through a scheduled steady state region which is achieved from the optimized reference governor in advance. Simulation results show that the proposed control strategy can well suppress various disturbances including a decoupling error, and multi-objective optimization can meet multiple requirements with the premise of safety production.展开更多
CSTR(Continuous stirred tank reactor)is employed in process control and chemical industries to improve response characteristics and system efficiency.It has a highly nonlinear characteristic that includes complexities...CSTR(Continuous stirred tank reactor)is employed in process control and chemical industries to improve response characteristics and system efficiency.It has a highly nonlinear characteristic that includes complexities in its control and design.Dynamic performance is compassionate to change in system parameterswhich need more effort for planning a significant controller for CSTR.The reactor temperature changes in either direction from the defined reference value.It is important to note that the intensity of chemical actions inside the CSTR is dependent on the various levels of temperature,and deviation from reference values may cause degradation of biomass quality.Design and implementation of an appropriate adaptive controller for such a nonlinear system are essential.In this paper,a conventional Proportional Integral Derivative(PID)controller is designed.The conventional techniques to deal with constraints suffer severe limitations like it has fixed controller parameters.Hence,A novel method is applied for computing the PID controller parameters using a swarm algorithm that overcomes the conventional controller’s limitation.In the proposed technique,PID parameters are tuned by Particle Swarm Optimization(PSO).It is not easy to choose the suitable objective function to design a PID controller using PSO to get an optimal response.In this article,a multi-objective function is proposed for PSO based controller design of CSTR.展开更多
The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capabi...The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capability for nodal-power control.To maintain the system frequency and voltage magnitude around rated values,a new multi-objective optimization model for both voltage and frequency control is proposed.Moreover,a great similarity between the multiobjective optimization and game problems appears.To reduce the strong subjectivity of the traditional methods,the idea and method of the game theory are introduced into the solution.According to the present situational data and analysis of the voltage and frequency sensitivities to nodal-power variations,the design variables involved in the voltage and frequency control are classified into two strategy spaces for players using hierarchical clustering.Finally,the effectiveness and rationality of the proposed control are verified in MATLAB.展开更多
In this paper, the modelling and multi-objective optimal control of batch processes, using a recurrent neuro-fuzzy network, are presented. The recurrent neuro-fuzzy network, forms a "global" nonlinear long-range pre...In this paper, the modelling and multi-objective optimal control of batch processes, using a recurrent neuro-fuzzy network, are presented. The recurrent neuro-fuzzy network, forms a "global" nonlinear long-range prediction model through the fuzzy conjunction of a number of "local" linear dynamic models. Network output is fed back to network input through one or more time delay units, which ensure that predictions from the recurrent neuro-fuzzy network are long-range. In building a recurrent neural network model, process knowledge is used initially to partition the processes non-linear characteristics into several local operating regions, and to aid in the initialisation of corresponding network weights. Process operational data is then used to train the network. Membership functions of the local regimes are identified, and local models are discovered via network training. Based on a recurrent neuro-fuzzy network model, a multi-objective optimal control policy can be obtained. The proposed technique is applied to a fed-batch reactor.展开更多
To deal with the increasing demand for low-volume customization of the mechanical properties of cold-rolled products, a two-way control method based on mechanical property prediction and process parameter optimization...To deal with the increasing demand for low-volume customization of the mechanical properties of cold-rolled products, a two-way control method based on mechanical property prediction and process parameter optimization(PPO) has become an effective solution. Aiming at the multi-objective quality control problem of a company's cold-rolled products, based on industrial production data, we proposed a process parameter design and optimization method that combined multi-objective quality prediction and PPO. This method used the multi-output support vector regression(MSVR) method to simultaneously predict multiple quality indices. The MSVR prediction model was used as the effect verification model of the PPO results. It performed multi-process parameter collaborative design and realized the optimization of production process parameters for customized multi-objective quality requirements. The experimental results showed that, compared with the traditional single-objective quality prediction model based on support vector regression(SVR), the multi-objective prediction model could better take into account the coupling effect between process parameters and quality index, the MSVR model prediction accuracy was higher than that of the SVR, and the optimized process parameters were more capable and reflected the influence of metallurgical mechanism on the quality index,which were more in line with actual production process requirements.展开更多
This paper proposes a switching multi-objective model predictive control(MOMPC) algorithm for constrained nonlinear continuous-time process systems.Different cost functions to be minimized in MPC are switched to satis...This paper proposes a switching multi-objective model predictive control(MOMPC) algorithm for constrained nonlinear continuous-time process systems.Different cost functions to be minimized in MPC are switched to satisfy different performance criteria imposed at different sampling times.In order to ensure recursive feasibility of the switching MOMPC and stability of the resulted closed-loop system,the dual-mode control method is used to design the switching MOMPC controller.In this method,a local control law with some free-parameters is constructed using the control Lyapunov function technique to enlarge the terminal state set of MOMPC.The correction term is computed if the states are out of the terminal set and the free-parameters of the local control law are computed if the states are in the terminal set.The recursive feasibility of the MOMPC and stability of the resulted closed-loop system are established in the presence of constraints and arbitrary switches between cost functions.Finally,implementation of the switching MOMPC controller is demonstrated with a chemical process example for the continuous stirred tank reactor.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52179105)China Postdoctoral Science Foundation(Grant No.2024M762193)。
文摘In tunnel construction,tunnel boring machine(TBM)tunnelling typically relies on manual experience with sub-optimal control parameters,which can easily lead to inefficiency and high costs.This study proposed an intelligent decision-making method for TBM tunnelling control parameters based on multiobjective optimization(MOO).First,the effective TBM operation dataset is obtained through data preprocessing of the Songhua River(YS)tunnel project in China.Next,the proposed method begins with developing machine learning models for predicting TBM tunnelling performance parameters(i.e.total thrust and cutterhead torque),rock mass classification,and hazard risks(i.e.tunnel collapse and shield jamming).Then,considering three optimal objectives,(i.e.,penetration rate,rock-breaking energy consumption,and cutterhead hob wear),the MOO framework and corresponding mathematical expression are established.The Pareto optimal front is solved using DE-NSGA-II algorithm.Finally,the optimal control parameters(i.e.,advance rate and cutterhead rotation speed)are obtained by the satisfactory solution determination criterion,which can balance construction safety and efficiency with satisfaction.Furthermore,the proposed method is validated through 50 cases of TBM tunnelling,showing promising potential of application.
基金supported in part by the National Natural Science Foundation of China under Grant 61873130in part by the Chunhui Program Collaborative Scientific Research Project under Grant 202202004+4 种基金in part by the Foundation of the Key Laboratory of Industrial Internet of Things and Networked Control of the Ministry of Education of China under Grant 2021FF01in part by the Natural Science Foundation of Nanjing University of Posts and Telecommunications under Grant NY221082,Grant NY222144,and Grant NY223075in part by the Huali Program for Excellent Talents in Nanjing University of Posts and Telecommunicationsin part by the Postgraduate Research and Practice Innovation Program of Jiangsu Province under Grantin part by the Fundamental Research Funds for the Central Universities under WUT:104972024KFYjc0072.
文摘Power systems are pivotal in providing sustainable energy across various sectors.However,optimizing their performance to meet modern demands remains a significant challenge.This paper introduces an innovative strategy to improve the opti-mization of PID controllers within nonlinear oscillatory Automatic Generation Control(AGC)systems,essential for the stability of power systems.Our approach aims to reduce the integrated time squared error,the integrated time absolute error,and the rate of change in deviation,facilitating faster convergence,diminished overshoot,and decreased oscillations.By incorporating the spiral model from the Whale Optimization Algorithm(WOA)into the Multi-Objective Marine Predator Algorithm(MOMPA),our method effectively broadens the diversity of solution sets and finely tunes the balance between exploration and exploitation strategies.Furthermore,the QQSMOMPA framework integrates quasi-oppositional learning and Q-learning to overcome local optima,thereby generating optimal Pareto solutions.When applied to nonlinear AGC systems featuring governor dead zones,the PID controllers optimized by QQSMOMPA not only achieve 14%reduction in the frequency settling time but also exhibit robustness against uncertainties in load disturbance inputs.
文摘This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus is placed on the scenario that the dynamical state of the half-vehicle active suspension system is transmitted over an in-vehicle controller area network that only permits the transmission of sampled data packets.For this purpose,a stochastic sampling mechanism is developed such that the sampling periods can randomly switch among different values with certain mathematical probabilities.Then,an asynchronous fuzzy sampled-data controller,featuring distinct premise variables from the active suspension system,is constructed to eliminate the stringent requirement that the sampled-data controller has to share the same grades of membership.Furthermore,novel criteria for both stability analysis and controller design are derived in order to guarantee that the resultant closed-loop active suspension system is stochastically stable with simultaneous𝐻2 and𝐻∞performance requirements.Finally,the effectiveness of the proposed stochastic sampled-data multi-objective control method is verified via several numerical cases studies in both time domain and frequency domain under various road disturbance profiles.
基金National Natural Science Foundation of China,Grant/Award Number:U2243228The Belt and Road Special Foundation of the National Key Laboratory of Water Disaster Prevention,Grant/Award Number:2022nkms04+1 种基金MOE(Ministry of Education in China)Liberal Arts and Social Sciences Foundation,Grant/Award Number:23YJCZH332Natural Science Foundation of Anhui Province,Grant/Award Numbers:2208085US03,2308085US13。
文摘Exploring optimal operational schemes for synergistic development is crucial for sustainable management in river basins.This study introduces a multi-objective synergistic optimization framework aimed at analyzing the interplay among flood control,ecological integrity,and desilting objectives under varying watersediment conditions.The framework encompasses multi-objective reservoir optimal operation,scheme decision,and trade-off analysis among competing objectives.To address the optimization model,an elite mutation-based multiobjective particle swarm optimization(MOPSO)algorithm that integrates genetic algorithms(GA)is developed.The coupling coordination degree is employed for optimal scheme decision-making,allowing for the adjustment of weight ratios to investigate the trade-offs between objectives.This research focuses on the Sanmenxia and Xiaolangdi cascade reservoirs in the Yellow River,utilizing three representative hydrological years:1967,1969,and 2002.The findings reveal that:(1)the proposed model effectively generates Pareto fronts for multi-objective operations,facilitating the recommendation of optimal schemes based on coupling coordination degrees;(2)as water-sediment conditions shift from flooding to drought,competition intensifies between the flood control and desilting objectives.While flood control and ecological objectives compete during flood and dry years,they demonstrate synergies in normal years(r=0.22);conversely,ecological and desilting objectives are consistently competitive across all three typical years,with the strongest competition observed in the normal year(r=-0.95);(3)the advantages conferred to ecological objectives increase as water-sediment conditions shift from flooding to drought.However,the promotion of the desilting objective requires more complex trade-offs.This study provides a model and methodological approach for the multi-objective optimization of flood control,sediment management,and ecological considerations in reservoir clusters.Moreover,the methodologies presented herein can be extended to other water resource systems for multi-objective optimization and decision-making.
基金supported by the National Natural Science Foundation of China under Grant 52162050.
文摘This paper presents an improved virtual coupling train set(VCTS)operation control framework to deal with the lack of opti-mization of speed curves in the traditional techniques.The framework takes into account the temporary speed limit on the railway line and the communication delay between trains,and it uses a VCTS consisting of three trains as an experimental object.It creates the virtual coupling train tracking and control process by improving the driving strategy of the leader train and using the leader-follower model.The follower train uses the improved speed curve of the leader train as its speed refer-ence curve through knowledge migration,and this completes the multi-objective optimization of the driving strategy for the VCTS.The experimental results confirm that the deep reinforcement learning algorithm effectively achieves the optimization goal of the train driving strategy.They also reveal that the intrinsic curiosity module prioritized experience replay dueling double deep Q-network(ICM-PER-D3QN)algorithm outperforms the deep Q-network(DQN)algorithm in optimizing the driving strategy of the leader train.The ICM-PER-D3QN algorithm enhances the leader train driving strategy by an average of 57%when compared to the DQN algorithm.Furthermore,the particle swarm optimization(PSO)-based model predictive control(MPC)algorithm has also demonstrated tracking accuracy and further improved safety during VCTS operation,with an average increase of 37.7%in tracking accuracy compared to the traditional MPC algorithm.
基金supported by the Science and Technology Project of the Headquarters of the State Grid Corporation(project code:5400-202323233A-1-1-ZN).
文摘With the increasing integration of emerging source-load types such as distributed photovoltaics,electric vehicles,and energy storage into distribution networks,the operational characteristics of these networks have evolved from traditional single-load centers to complex multi-source,multi-load systems.This transition not only increases the difficulty of effectively classifying distribution networks due to their heightened complexity but also renders traditional energy management approaches-primarily focused on economic objectives-insufficient to meet the growing demands for flexible scheduling and dynamic response.To address these challenges,this paper proposes an adaptive multi-objective energy management strategy that accounts for the distinct operational requirements of distribution networks with a high penetration of new-type source-loads.The goal is to establish a comprehensive energy management framework that optimally balances energy efficiency,carbon reduction,and economic performance in modern distribution networks.To enhance classification accuracy,the strategy constructs amulti-dimensional scenario classification model that integrates environmental and climatic factors by analyzing the operational characteristics of new-type distribution networks and incorporating expert knowledge.An improved split-coupling K-means preclustering algorithm is employed to classify distribution networks effectively.Based on the classification results,fuzzy logic control is then utilized to dynamically optimize the weighting of each objective,allowing for an adaptive adjustment of priorities to achieve a flexible and responsivemulti-objective energy management strategy.The effectiveness of the proposed approach is validated through practical case studies.Simulation results indicate that the proposed method improves classification accuracy by 18.18%compared to traditional classification methods and enhances energy savings and carbon reduction by 4.34%and 20.94%,respectively,compared to the fixed-weight strategy.
基金Supported by the National Natural Science Foundation of China(62102241)。
文摘Software Defined Network(SDN)has been developed rapidly in technology and popularized in application due to its efficiency and flexibility in network management.In multi-controller SDN architecture,the Controller Placement Problem(CPP)must be solved carefully as it directly affects the whole network performance.This paper proposes a Multi-objective Greedy Optimized K-means Algorithm(MGOKA)to solve this problem to optimize worst-case and average delay between switches and controllers as well as synchronization delay and load balance among controllers for Wide Area Networks(WAN).MGOKA combines the process of network partition based on the K-means algorithm with cluster fusion based on the greedy algorithm and designs a normalization strategy to convert a multi-objective into a single-objective optimization problem.The simulation results depict that in different network scales with different numbers of controllers,the relative optimization rate of our proposed algorithm compared with K-means,K-means++,and GOKA can reach up to 101.5%,109.9%,and 79.8%,respectively.Moreover,the error rate between MGOKA and the global optimal solution is always less than 4%.
基金supported by the National Natural Science Foundation of China(Grants No.42001025 and 42001014)the Belt and Road Special Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(Grant No.2021491211)the Natural Science Foundation of Ningbo Municipality(Grant No.2023J133).
文摘Suzhou City,located in the Yangtze River Delta in China,is prone to flooding due to a complex combination of natural factors,including its monsoon climate,low elevation,and tidally influenced position,as well as intensive human activities.The Large Encirclement Flood Control Project(LEFCP)was launched to cope with serious floods in the urban area.This project changed the spatiotemporal pattern of flood processes and caused spatial diversion of floods from the urban area to the outskirts of the city.Therefore,this study developed a distributed flood simulation model in order to understand this transition of flood processes.The results revealed that the LEFCP effectively protected the urban areas from floods,but the present scheduling schemes resulted in the spatial diversion of floods to the outskirts of the city.With rainstorm frequencies of 10.0%to 0.5%,the water level differences between two representative water level stations(Miduqiao(MDQ)and Fengqiao(FQ))located inside and outside the LEFCP area,ranged from 0.75 m to 0.24 m and from 1.80 m to 1.58 m,respectively.In addition,the flood safety margin at MDQ and the duration with the water level exceeding the warning water level at FQ ranged from 0.95 m to 0.43 m and from 4 h to 22 h,respectively.Rational scheduling schemes for the hydraulic facilities of the LEFCP in extreme precipitation cases were developed ac-cording to food simulations under seven scheduling scenarios.This helps to regulate the spatial flood diversion caused by the LEFCP during extreme precipitation.
基金supported by the National Natural Science Foundation of China(Grant No.51909062)the National Key R&D Program(Grant No.2022YFC3202801).
文摘Flood control operation,a non-engineering measure,can efficiently manage flood disasters within a river basin.However,numerous uncertainties exit in the real-time operation of flood control systems,creating risks in decision-making.As an efficient tool to mitigate these risks,risk management has garnered increasing attention in real-time flood control operation.This communication offers a series of suggestions for future research concerning risk management in real-time flood control operation,including risk assessment,risk diagnosis,and risk control methods.
基金supported by Open Research Fund of State Key Laboratory of Automobile Dynamics Simulation, China (Grant No. 20101103)National Natural Science Foundation of China (Grant No. 51075176)
文摘Rollover and jack-knifing of tractor semi-trailer are serious threats for vehicle safety, and accordingly active safety technologies have been widely used to reduce or prevent the occurrence of such accidents. However, currently tractor semi-trailer stability control is generally only a single hazardous condition (rollover or jack-knifing) control, it is difficult to ensure the vehicle comprehensive stability of various dangerous conditions. The main objective of this study is to introduce a multi-objective stability control algorithm which can improve the vehicle stability of a tractor semi-trailer by using differential braking. A vehicle controller is designed to minimize the likelihood of rollover and jack-knifing. First a linear vehicle model of tractor semi-trailer is constructed. Then an optimal yaw control for tractor using differential braking is applied to minimize the yaw rate and lateral acceleration deviation of tractor, as well as the hitch articulation angle of tractor semi-trailer, so as to improve the vehicle stability. Second a braking scheme and variable structure control with sliding mode control are introduced in order to achieve the best braking effect. Last Fishhook maneuver is introduced to the active safety simulation and the active control system effect verification. The simulation results show that multi-objective stability control algorithm of semi-trailer could improve the vehicle stability significantly during the transient maneuvers. The proposed multi-objective stability control algorithm is effective to prevent the vehicle rollover and jackknifing.
基金co-supported by the National Natural Science Foundation of China(No.11502008)Aeronautical Science Foundation of China(Nos.2017ZA51002,20185702003)the Fundamental Research Funds for the Central Universities of China(No.YWF-19-BJ-J-280)。
文摘For different flight phases in an overall flight mission,different control and allocation preferences should be pursued considering lift,drag or maneuverability characteristics.The multi-objective flight control allocation problem for a multi-phase flight mission is studied.For an overall flight mission,different flight phases namely climbing,cruise,maneuver and gliding phases are defined.Firstly,a multi-objective control allocation problem considering drag,lift or control energy preference is constructed.Secondly,considering different control preferences at different flight phases,the analytic hierarchical process method is used to construct a comprehensive performance index from different objectives such as lift or drag preferences.The active set based dynamic programming optimization method is used to solve the real-time optimization problem.For the validation,the Innovative Control Effector(ICE)tailless aircraft nonlinear model and the angular acceleration measurements based adaptive Incremental Backstepping(IBKS)are used to construct the validation platform.Finally,an overall flight mission is simulated to demonstrate the efficiency of the proposed multi-phase and multi-objective flight control allocation method.The results show that the comprehensive performance index for different phases,which are determined from the Analytic Hierarchy Process(AHP)method,can suitably satisfy the preference requirements for different flight phases.
基金Project supported by the National Hi-Tech Research and Develop-ment Program (863) of China (No. 2006AA11Z204)the Qianji-ang Program of Zhejiang Province (No. 2009R10008)
文摘For automated vehicles,comfortable driving will improve passengers’ satisfaction.Reducing fuel consumption brings economic profits for car owners,decreases the impact on the environment and increases energy sustainability.In addition to comfort and fuel-economy,automated vehicles also have the basic requirements of safety and car-following.For this purpose,an adaptive cruise control (ACC) algorithm with multi-objectives is proposed based on a model predictive control (MPC) framework.In the proposed ACC algorithm,safety is guaranteed by constraining the inter-distance within a safe range; the requirements of comfort and car-following are considered to be the performance criteria and some optimal reference trajectories are introduced to increase fuel-economy.The performances of the proposed ACC algorithm are simulated and analyzed in five representative traffic scenarios and multiple experiments.The results show that not only are safety and car-following objectives satisfied,but also driving comfort and fuel-economy are improved significantly.
基金Supported by the National Natural Science Foundation of China(No.11172197 and No.11332008)a key-project grant from the Natural Science Foundation of Tianjin(No.010413595)
文摘This paper presents a numerical algorithm tuning aircraft landing gear control system with three objectives,including reducing relative vibration, reducing hydraulic strut force and controlling energy consumption. Sliding mode control is applied to the vibration control of a simplified landing gear model with uncertainty. A two-stage generalized cell mapping algorithm is applied to search the Pareto set with gradient-free scheme. Drop test simulations over uneven runway show that the vibration and force interaction can be considerably reduced, and the Pareto optimum form a tight range in time domain.
基金Project supported by the National Natural Science Foundation ofChina (No. 60374028) and the Scientific Research Foundation forReturned Overseas Chinese Scholars Ministry of Education (No.[2004]176)
文摘This paper proposes a new approach for multi-objective robust control. The approach extends the standard generalized l2 (Gl2) and generalized H2 (GH2) conditions to a set of new linear matrix inequality (LMI) constraints based on a new stability condition. A technique for variable parameterization is introduced to the multi-objective control problem to preserve the linearity of the synthesis variables. Consequently, the multi-channel multi-objective mixed Gl2/GH2 control problem can be solved less conservatively using computationally tractable algorithms developed in the paper.
基金The National Natural Science Foundation of China(No.51576041,51506029)
文摘A model-assistant extended state observer(MESO)-based decoupling control strategy is proposed for boiler-turbine units in the presence of unknown external disturbance and model-plant mismatch. For ease of implementation, the decoupling compensator is reduced to the proportion integration(PI) decoupler with the frequency domain analysis, where the decoupling error in collusion of uncertainties and disturbances can be estimated by the proposed MESO and then compensated. To decrease the sensitivity of the dynamic error for the decoupling control and fulfill various requirements of constraints, such as safety operation, energy conservation, emission reduction, etc., the plant is transmitted through a scheduled steady state region which is achieved from the optimized reference governor in advance. Simulation results show that the proposed control strategy can well suppress various disturbances including a decoupling error, and multi-objective optimization can meet multiple requirements with the premise of safety production.
基金University Malaysia Sabah fully funds this research under the grant number F08/PGRG/1908/2019,Ag.Asri Ag.Ibrahim received the grant,sponsors’websites:https://www.u ms.edu.my.Conflicts of Interest。
文摘CSTR(Continuous stirred tank reactor)is employed in process control and chemical industries to improve response characteristics and system efficiency.It has a highly nonlinear characteristic that includes complexities in its control and design.Dynamic performance is compassionate to change in system parameterswhich need more effort for planning a significant controller for CSTR.The reactor temperature changes in either direction from the defined reference value.It is important to note that the intensity of chemical actions inside the CSTR is dependent on the various levels of temperature,and deviation from reference values may cause degradation of biomass quality.Design and implementation of an appropriate adaptive controller for such a nonlinear system are essential.In this paper,a conventional Proportional Integral Derivative(PID)controller is designed.The conventional techniques to deal with constraints suffer severe limitations like it has fixed controller parameters.Hence,A novel method is applied for computing the PID controller parameters using a swarm algorithm that overcomes the conventional controller’s limitation.In the proposed technique,PID parameters are tuned by Particle Swarm Optimization(PSO).It is not easy to choose the suitable objective function to design a PID controller using PSO to get an optimal response.In this article,a multi-objective function is proposed for PSO based controller design of CSTR.
基金the National Key Research and Development Program of China(Basic Research Class)(No.2017YFB0903000)the National Natural Science Foundation of China(No.U1909201).
文摘The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capability for nodal-power control.To maintain the system frequency and voltage magnitude around rated values,a new multi-objective optimization model for both voltage and frequency control is proposed.Moreover,a great similarity between the multiobjective optimization and game problems appears.To reduce the strong subjectivity of the traditional methods,the idea and method of the game theory are introduced into the solution.According to the present situational data and analysis of the voltage and frequency sensitivities to nodal-power variations,the design variables involved in the voltage and frequency control are classified into two strategy spaces for players using hierarchical clustering.Finally,the effectiveness and rationality of the proposed control are verified in MATLAB.
基金This work was supported by the UK EPSRC (GR/N13319, GR/R10875).
文摘In this paper, the modelling and multi-objective optimal control of batch processes, using a recurrent neuro-fuzzy network, are presented. The recurrent neuro-fuzzy network, forms a "global" nonlinear long-range prediction model through the fuzzy conjunction of a number of "local" linear dynamic models. Network output is fed back to network input through one or more time delay units, which ensure that predictions from the recurrent neuro-fuzzy network are long-range. In building a recurrent neural network model, process knowledge is used initially to partition the processes non-linear characteristics into several local operating regions, and to aid in the initialisation of corresponding network weights. Process operational data is then used to train the network. Membership functions of the local regimes are identified, and local models are discovered via network training. Based on a recurrent neuro-fuzzy network model, a multi-objective optimal control policy can be obtained. The proposed technique is applied to a fed-batch reactor.
基金financially supported by the Fundamental Research Funds for the Central Universities (No.FRF-MP20-08)。
文摘To deal with the increasing demand for low-volume customization of the mechanical properties of cold-rolled products, a two-way control method based on mechanical property prediction and process parameter optimization(PPO) has become an effective solution. Aiming at the multi-objective quality control problem of a company's cold-rolled products, based on industrial production data, we proposed a process parameter design and optimization method that combined multi-objective quality prediction and PPO. This method used the multi-output support vector regression(MSVR) method to simultaneously predict multiple quality indices. The MSVR prediction model was used as the effect verification model of the PPO results. It performed multi-process parameter collaborative design and realized the optimization of production process parameters for customized multi-objective quality requirements. The experimental results showed that, compared with the traditional single-objective quality prediction model based on support vector regression(SVR), the multi-objective prediction model could better take into account the coupling effect between process parameters and quality index, the MSVR model prediction accuracy was higher than that of the SVR, and the optimized process parameters were more capable and reflected the influence of metallurgical mechanism on the quality index,which were more in line with actual production process requirements.
基金Supported by the National Natural Science Foundation of China(61374111)the Natural Science Foundation of Zhejiang Province(LY13F030006)Agricultural Key Program of Ningbo City(2014C10068)
文摘This paper proposes a switching multi-objective model predictive control(MOMPC) algorithm for constrained nonlinear continuous-time process systems.Different cost functions to be minimized in MPC are switched to satisfy different performance criteria imposed at different sampling times.In order to ensure recursive feasibility of the switching MOMPC and stability of the resulted closed-loop system,the dual-mode control method is used to design the switching MOMPC controller.In this method,a local control law with some free-parameters is constructed using the control Lyapunov function technique to enlarge the terminal state set of MOMPC.The correction term is computed if the states are out of the terminal set and the free-parameters of the local control law are computed if the states are in the terminal set.The recursive feasibility of the MOMPC and stability of the resulted closed-loop system are established in the presence of constraints and arbitrary switches between cost functions.Finally,implementation of the switching MOMPC controller is demonstrated with a chemical process example for the continuous stirred tank reactor.