The increasing integration of photovoltaic generators(PVGs) and the uneven economic development in different regions may cause the unbalanced spatial-temporal distribution of load demands in an urban distribution netw...The increasing integration of photovoltaic generators(PVGs) and the uneven economic development in different regions may cause the unbalanced spatial-temporal distribution of load demands in an urban distribution network(UDN). This may lead to undesired consequences, including PVG curtailment, load shedding, and equipment inefficiency, etc. Global dynamic reconfiguration provides a promising method to solve those challenges. However, the power flow transfer capabilities for different kinds of switches are diverse, and the willingness of distribution system operators(DSOs) to select them is also different. In this paper, we formulate a multi-objective dynamic reconfiguration optimization model suitable for multi-level switching modes to minimize the operation cost, load imbalance, and the PVG curtailment. The multi-level switching includes feeder-level switching, transformer-level switching, and substation-level switching. A novel load balancing index is devised to quantify the global load balancing degree at different levels. Then, a stochastic programming model based on selected scenarios is established to address the uncertainties of PVGs and loads. Afterward, the fuzzy c-means(FCMs) clustering is applied to divide the time periods of reconfiguration. Furthermore, the modified binary particle swarm optimization(BPSO)and Cplex solver are combined to solve the proposed mixed-integer second-order cone programming(MISOCP) model. Numerical results based on the 148-node and 297-node systems are obtained to validate the effectiveness of the proposed method.展开更多
Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of in...Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of intelligent factories,constantly face dynamic disturbances during the production process,including machine failures and urgent orders.This paper discusses the basic models and research methods of job shop scheduling,emphasizing the important role of dynamic job shop scheduling and its response schemes in future research.A multi-objective flexible job shop dynamic scheduling mathematical model is established,highlighting its complex and multi-constraint characteristics under different interferences.A classification discussion is conducted on the dynamic response methods and optimization objectives under machine failures,emergency orders,fuzzy completion times,and mixed dynamic events.The development process of traditional scheduling rules and intelligent methods in dynamic scheduling are also analyzed.Finally,based on the current development status of job shop scheduling and the requirements of intelligent manufacturing,the future development trends of dynamic scheduling in flexible job shops are proposed.展开更多
This paper deals with reduction of losses in electric power distribution system through a dynamic reconfiguration case study of a grid in the city of Mostar,Bosnia and Herzegovina.The proposed solution is based on a n...This paper deals with reduction of losses in electric power distribution system through a dynamic reconfiguration case study of a grid in the city of Mostar,Bosnia and Herzegovina.The proposed solution is based on a nonlinear model predictive control algorithm which determines the optimal switching operations of the distribution system.The goal of the control algorithm is to find the optimal radial network topology which minimizes cumulative active power losses and maximizes voltages across the network while simultaneously satisfying all system constraints.The optimization results are validated through multiple simulations(using real power demand data collected for a few characteristic days during winter and summer)which demonstrate the efficiency and usefulness of the developed control algorithm in reducing the grid losses by up to 14%.展开更多
The solenoid switching valve(SSV)is the key control component of heavy equipment such as continuous casting machines.However,the incompatibility of structural parameters increases the opening and closing time of the S...The solenoid switching valve(SSV)is the key control component of heavy equipment such as continuous casting machines.However,the incompatibility of structural parameters increases the opening and closing time of the SSV.Therefore,this study proposes an optimized design method for an SSV to improve its dynamic performance.First,a multi-physics field-coupling model of the SSV is built,and the effects of different structural parameters on the electromagnetic characteristics are analyzed.After identifying the key influencing parameters,second-order response surface models are established to efficiently predict the opening and closing time.Subsequently,based on the nondominated sorting genetic algorithmⅡ(NSGA-Ⅱ),multi-objective optimization is applied to obtain the Pareto optimal solution of the structural parameters under the double-voltage driving strategy.The structure of the solenoid and valve as well as the dynamic characteristics of the valve are improved.Compared with those before optimization,the optimization results show that the opening and closing time of the optimized SSV are reduced by 24.38%and 51.8%,respectively,and the volume is reduced by 19.7%.The research results and the influence of the solenoid structural parameters on the electromagnetic force provide significant guidance for the design of this type of valve.展开更多
To improve the efficiency of ship traffic in frequently traded sea areas and respond to the national“dual-carbon”strategy,a multi-objective ship route induction model is proposed.Considering the energy-saving and en...To improve the efficiency of ship traffic in frequently traded sea areas and respond to the national“dual-carbon”strategy,a multi-objective ship route induction model is proposed.Considering the energy-saving and environmental issues of ships,this study aims to improve the transportation efficiency of ships by providing a ship route induction method.Ship data from a certain bay during a defined period are collected,and an improved backpropagation neural network algorithm is used to forecast ship traffic.On the basis of the forecasted data and ship route induction objectives,dynamic programming of ship routes is performed.Experimental results show that the routes planned using this induction method reduce the combined cost by 17.55%compared with statically induced routes.This method has promising engineering applications in improving ship navigation efficiency,promoting energy conservation,and reducing emissions.展开更多
Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple dat...Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance.展开更多
The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system perf...The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system performance and control cost are defined by H2 or H∞ norms. During this optimization process, the weights are varying with the increasing generation instead of fixed values. The proposed strategy together with the linear matrix inequality (LMI) or the Riccati controller design method can find a series of uniformly distributed nondominated solutions in a single run. Therefore, this method can greatly reduce the computation intensity of the integrated optimization problem compared with the weight-based single objective genetic algorithm. Active automotive suspension is adopted as an example to illustrate the effectiveness of the proposed method.展开更多
The nonlinear dynamic modeling by combining the equivalent linear mechanics with the multi-objective optimization algorithm is proposed to describe the nonlinear behaviors of the joint interfaces.The joint interfaces ...The nonlinear dynamic modeling by combining the equivalent linear mechanics with the multi-objective optimization algorithm is proposed to describe the nonlinear behaviors of the joint interfaces.The joint interfaces are simplified as the equivalent virtual material or linear spring damper element.The genetic algorithm for multi-objective optimization is then used to identify the mechanical properties of the equivalent joint by minimizing the error between the simulated dynamic characteristics and the experimental results,including the modal frequencies of the bolted joint beam and the frequency response functions(FRFs)of the rubber isolation system.The FRFs are divided into several subsections with frequency-varied dynamic properties of the joint to consider the nonlinear dynamic behaviors,and the effects of subsection number and excitation amplitudes on the FRFs are also investigated.The results show that the simulated dynamic characteristics of modal frequencies and FRFs agree well with the experimental results.With the increase in the subsection number,the simulated FRFs agree better with the experimental results,indicating a good performance of modeling the nonlinear dynamic behaviors of the joint interfaces forced by different excitation amplitudes.Larger excitation amplitudes will decrease the joint stiffness.展开更多
This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously a...This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.展开更多
With the construction of the power Internet of Things(IoT),communication between smart devices in urban distribution networks has been gradually moving towards high speed,high compatibility,and low latency,which provi...With the construction of the power Internet of Things(IoT),communication between smart devices in urban distribution networks has been gradually moving towards high speed,high compatibility,and low latency,which provides reliable support for reconfiguration optimization in urban distribution networks.Thus,this study proposed a deep reinforcement learning based multi-level dynamic reconfiguration method for urban distribution networks in a cloud-edge collaboration architecture to obtain a real-time optimal multi-level dynamic reconfiguration solution.First,the multi-level dynamic reconfiguration method was discussed,which included feeder-,transformer-,and substation-levels.Subsequently,the multi-agent system was combined with the cloud-edge collaboration architecture to build a deep reinforcement learning model for multi-level dynamic reconfiguration in an urban distribution network.The cloud-edge collaboration architecture can effectively support the multi-agent system to conduct“centralized training and decentralized execution”operation modes and improve the learning efficiency of the model.Thereafter,for a multi-agent system,this study adopted a combination of offline and online learning to endow the model with the ability to realize automatic optimization and updation of the strategy.In the offline learning phase,a Q-learning-based multi-agent conservative Q-learning(MACQL)algorithm was proposed to stabilize the learning results and reduce the risk of the next online learning phase.In the online learning phase,a multi-agent deep deterministic policy gradient(MADDPG)algorithm based on policy gradients was proposed to explore the action space and update the experience pool.Finally,the effectiveness of the proposed method was verified through a simulation analysis of a real-world 445-node system.展开更多
Presented is a global dynamic reconfiguration design of an artificial neural network based on field programmable gate array(FPGA). Discussed are the dynamic reconfiguration principles and methods. Proposed is a global...Presented is a global dynamic reconfiguration design of an artificial neural network based on field programmable gate array(FPGA). Discussed are the dynamic reconfiguration principles and methods. Proposed is a global dynamic reconfiguration scheme using Xilinx FPGA and platform flash. Using the revision capabilities of Xilinx XCF32P platform flash, an artificial neural network based on Xilinx XC2V30P Virtex-Ⅱ can be reconfigured dynamically from back propagation(BP) learning algorithms to BP network testing algorithms. The experimental results indicate that the scheme is feasible, and that, using dynamic reconfiguration technology, FPGA resource utilization can be reduced remarkably.展开更多
This work investigates one immune optimization approach for dynamic constrained multi-objective multimodal optimization in terms of biological immune inspirations and the concept of constraint dominance. Such approach...This work investigates one immune optimization approach for dynamic constrained multi-objective multimodal optimization in terms of biological immune inspirations and the concept of constraint dominance. Such approach includes mainly three functional modules, environmental detection, population initialization and immune evolution. The first, inspired by the function of immune surveillance, is designed to detect the change of such kind of problem and to decide the type of a new environment;the second generates an initial population for the current environment, relying upon the result of detection;the last evolves two sub-populations along multiple directions and searches those excellent and diverse candidates. Experimental results show that the proposed approach can adaptively track the environmental change and effectively find the global Pareto-optimal front in each environment.展开更多
While some applications in memory can be constrained by memory bandwidth and memory cost, this paper proposes a transformation of the application into a one-bit FSM. When the finite state machine is very large, one wa...While some applications in memory can be constrained by memory bandwidth and memory cost, this paper proposes a transformation of the application into a one-bit FSM. When the finite state machine is very large, one way to improve the area and delay efficiently is to break down the large finite state machine into many smaller machines. The area efficiency can be improved if fewer machines are active simultaneously in the pipelined architecture. This can be achieved when using dynamic reconfiguration to map several sub machines onto the same hardware. This paper presents a methodology to break down the large finite state machine into many smaller machines and an architecture for the dynamically reconfiguration.展开更多
Dynamic Economic Emission Dispatch(DEED)aims to optimize control over fuel cost and pollution emission,two conflicting objectives,by scheduling the output power of various units at specific times.Although many methods...Dynamic Economic Emission Dispatch(DEED)aims to optimize control over fuel cost and pollution emission,two conflicting objectives,by scheduling the output power of various units at specific times.Although many methods well-performed on the DEED problem,most of them fail to achieve expected results in practice due to a lack of effective trade-off mechanisms between the convergence and diversity of non-dominated optimal dispatching solutions.To address this issue,a new multi-objective solver called Multi-Objective Golden Jackal Optimization(MOGJO)algorithm is proposed to cope with the DEED problem.The proposed algorithm first stores non-dominated optimal solutions found so far into an archive.Then,it chooses the best dispatching solution from the archive as the leader through a selection mechanism designed based on elite selection strategy and Euclidean distance index method.This mechanism can guide the algorithm to search for better dispatching solutions in the direction of reducing fuel costs and pollutant emissions.Moreover,the basic golden jackal optimization algorithm has the drawback of insufficient search,which hinders its ability to effectively discover more Pareto solutions.To this end,a non-linear control parameter based on the cosine function is introduced to enhance global exploration of the dispatching space,thus improving the efficiency of finding the optimal dispatching solutions.The proposed MOGJO is evaluated on the latest CEC benchmark test functions,and its superiority over the state-of-the-art multi-objective optimizers is highlighted by performance indicators.Also,empirical results on 5-unit,10-unit,IEEE 30-bus,and 30-unit systems show that the MOGJO can provide competitive compromise scheduling solutions compared to published DEED methods.Finally,in the analysis of the Pareto dominance relationship and the Euclidean distance index,the optimal dispatching solutions provided by MOGJO are the closest to the ideal solutions for minimizing fuel costs and pollution emissions simultaneously,compared to the latest published DEED solutions.展开更多
The dynamic reconfiguration technique based on field-programmable gate array (FPGA) can improve the resource utilization. Discussed are the dynamic reconfiguration principles and methods. Proposed is a remote dynami...The dynamic reconfiguration technique based on field-programmable gate array (FPGA) can improve the resource utilization. Discussed are the dynamic reconfiguration principles and methods. Proposed is a remote dynamic reconfiguration scheme using Xilinx Virtex-Ⅱ FPGA and SMCS Ethernet Physical layer transceiver(PHY). The hardware of the system is designed with Xilinx Virtex-U XC2V30P FPGA that embedds MicroBlaze and MAC IP core, and its network communication software based on transmission control protoeol/Internet protocol (TCP/IP) protocol is programmed by loading LwIP to MicroBlaze. The experimental results indicate that the remote FPGA dynamic reconfiguration system(RFDRS) can switch freely in the eight lighting modes of light emitting diodes (LED), and that, using dynamic reconfiguration technology, FPGA resource utilization can be reduced remarkably, which is advantageous in the system upgrade and software update.展开更多
Wireless sensor networks are characterized by multihop wireless links and resource constrained nodes. In terms of data collection and forwarding scheduling, this paper investigates the load balancing in sensor nodes a...Wireless sensor networks are characterized by multihop wireless links and resource constrained nodes. In terms of data collection and forwarding scheduling, this paper investigates the load balancing in sensor nodes and wireless link based on the performance of wireless sensor networks. Leveraging the property of dissimilarity distribution, a method to quantitatively evaluate the benefits of load balancing is presented, in order to access the profitability. Then a novel Dynamic Load Balancing of Overlay-based WSN (DLBO) algorithm has been put forward. In particular, the tradeoff between transferring ratio and the load imbalance among nodes is discussed. The load balancing method in this paper outperforms others based on balancing factor, different nodes number and data scales of applications. The proposed model and analytical results can be effectively applied for reliability analysis for other wireless applications (e.g., persistent data delivery is involved).展开更多
Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is pro...Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is proposed that takes advantage of a few parameters of bare-bones algorithm. To avoid premature convergence,Gaussian mutation is introduced; and an adaptive sampling distribution strategy is also used to improve the exploratory capability. Moreover, a circular crowded sorting approach is adopted to improve the uniformity of the population distribution.Finally, by combining the algorithm with control vector parameterization,an approach is proposed to solve the dynamic optimization problems of chemical processes. It is proved that the new algorithm performs better compared with other classic multiobjective optimization algorithms through the results of solving three dynamic optimization problems.展开更多
This paper introduces a parallel search system for dynamic multi-objective traveling salesman problem. We design a multi-objective TSP in a stochastic dynamic environment. This dynamic setting of the problem is very u...This paper introduces a parallel search system for dynamic multi-objective traveling salesman problem. We design a multi-objective TSP in a stochastic dynamic environment. This dynamic setting of the problem is very useful for routing in ad-hoc networks. The proposed search system first uses parallel processors to identify the extreme solutions of the search space for each ofk objectives individually at the same time. These solutions are merged into the so-called hit-frequency matrix E. The solutions in E are then searched by parallel processors and evaluated for dominance relationship. The search system is implemented in two different ways master-worker architecture and pipeline architecture.展开更多
This paper describes specific constraints of vision systems that are dedicated to be embedded in mobile robots. If PC-based hardware architecture is convenient in this field because of its versatility, flexibility, pe...This paper describes specific constraints of vision systems that are dedicated to be embedded in mobile robots. If PC-based hardware architecture is convenient in this field because of its versatility, flexibility, performance, and cost, current real-time operating systems are not completely adapted to long processing with varying duration, and it is often necessary to oversize the system to guarantee fail-safe functioning. Also, interactions with other robotic tasks having more priority are difficult to handle. To answer this problem, we have developed a dynamically reconfigurable vision processing system, based on the innovative features of Cleopatre real-time applicative layer concerning scheduling and fault tolerance. This framework allows to define emergency and optional tasks to ensure a minimal quality of service for the other subsystems of the robot, while allowing to adapt dynamically vision processing chain to an exceptional overlasting vision process or processor overload. Thus, it allows a better cohabitation of several subsystems in a single hardware, and to develop less expensive but safe systems, as they will be designed for the regular case and not rare exceptional ones. Finally, it brings a new way to think and develop vision systems, with pairs of complementary operators.展开更多
Steel catenary riser represents the pioneering riser technology implemented in China’s deep-sea oil and gas opera-tions.Given the complex mechanical conditions of the riser,extensive research has been conducted on it...Steel catenary riser represents the pioneering riser technology implemented in China’s deep-sea oil and gas opera-tions.Given the complex mechanical conditions of the riser,extensive research has been conducted on its dynamic analysis and structural design.This study investigates a deep-sea oil and gas field by developing a coupled model of a semi-submersible platform and steel catenary riser to analyze it mechanical behavior under extreme marine condi-tions.Through multi-objective optimization methodology,the study compares and analyzes suspension point tension and touchdown point stress under various conditions by modifying the suspension position,suspension angle,and catenary length.The optimal configuration parameters were determined:a suspension angle of 12°,suspension position in the southwest direction of the column,and a catenary length of approximately 2000 m.These findings elucidate the impact of configuration parameters on riser dynamic response and establish reasonable parameter layout ranges for adverse sea conditions,offering valuable optimization strategies for steel catenary riser deployment in domestic deep-sea oil and gas fields.展开更多
基金supported by the National Key R&D Program of China (No.2019YFE0123600)National Natural Science Foundation of China (No.52077146)Young Elite Scientists Sponsorship Program by CSEE (No.CESS-YESS-2019027)。
文摘The increasing integration of photovoltaic generators(PVGs) and the uneven economic development in different regions may cause the unbalanced spatial-temporal distribution of load demands in an urban distribution network(UDN). This may lead to undesired consequences, including PVG curtailment, load shedding, and equipment inefficiency, etc. Global dynamic reconfiguration provides a promising method to solve those challenges. However, the power flow transfer capabilities for different kinds of switches are diverse, and the willingness of distribution system operators(DSOs) to select them is also different. In this paper, we formulate a multi-objective dynamic reconfiguration optimization model suitable for multi-level switching modes to minimize the operation cost, load imbalance, and the PVG curtailment. The multi-level switching includes feeder-level switching, transformer-level switching, and substation-level switching. A novel load balancing index is devised to quantify the global load balancing degree at different levels. Then, a stochastic programming model based on selected scenarios is established to address the uncertainties of PVGs and loads. Afterward, the fuzzy c-means(FCMs) clustering is applied to divide the time periods of reconfiguration. Furthermore, the modified binary particle swarm optimization(BPSO)and Cplex solver are combined to solve the proposed mixed-integer second-order cone programming(MISOCP) model. Numerical results based on the 148-node and 297-node systems are obtained to validate the effectiveness of the proposed method.
基金supported by the National Key Research and Development Program Project(No.2021YFB3301300).
文摘Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of intelligent factories,constantly face dynamic disturbances during the production process,including machine failures and urgent orders.This paper discusses the basic models and research methods of job shop scheduling,emphasizing the important role of dynamic job shop scheduling and its response schemes in future research.A multi-objective flexible job shop dynamic scheduling mathematical model is established,highlighting its complex and multi-constraint characteristics under different interferences.A classification discussion is conducted on the dynamic response methods and optimization objectives under machine failures,emergency orders,fuzzy completion times,and mixed dynamic events.The development process of traditional scheduling rules and intelligent methods in dynamic scheduling are also analyzed.Finally,based on the current development status of job shop scheduling and the requirements of intelligent manufacturing,the future development trends of dynamic scheduling in flexible job shops are proposed.
基金supported in part by the European Regional Development Fund under Grant KK.01.1.1.01.0009(DATACROSS).
文摘This paper deals with reduction of losses in electric power distribution system through a dynamic reconfiguration case study of a grid in the city of Mostar,Bosnia and Herzegovina.The proposed solution is based on a nonlinear model predictive control algorithm which determines the optimal switching operations of the distribution system.The goal of the control algorithm is to find the optimal radial network topology which minimizes cumulative active power losses and maximizes voltages across the network while simultaneously satisfying all system constraints.The optimization results are validated through multiple simulations(using real power demand data collected for a few characteristic days during winter and summer)which demonstrate the efficiency and usefulness of the developed control algorithm in reducing the grid losses by up to 14%.
基金Supported by National Natural Science Foundation of China(Grant No.2018YFB1703000)State Key Laboratory of Metal Extrusion and Forging Equipment TechnologyChina National Heavy Machinery Research Institute Co.,Ltd.(Grant No.B2408100.W19)。
文摘The solenoid switching valve(SSV)is the key control component of heavy equipment such as continuous casting machines.However,the incompatibility of structural parameters increases the opening and closing time of the SSV.Therefore,this study proposes an optimized design method for an SSV to improve its dynamic performance.First,a multi-physics field-coupling model of the SSV is built,and the effects of different structural parameters on the electromagnetic characteristics are analyzed.After identifying the key influencing parameters,second-order response surface models are established to efficiently predict the opening and closing time.Subsequently,based on the nondominated sorting genetic algorithmⅡ(NSGA-Ⅱ),multi-objective optimization is applied to obtain the Pareto optimal solution of the structural parameters under the double-voltage driving strategy.The structure of the solenoid and valve as well as the dynamic characteristics of the valve are improved.Compared with those before optimization,the optimization results show that the opening and closing time of the optimized SSV are reduced by 24.38%and 51.8%,respectively,and the volume is reduced by 19.7%.The research results and the influence of the solenoid structural parameters on the electromagnetic force provide significant guidance for the design of this type of valve.
基金Supported by the National Key R&D Program of China project (2017YFC0805309)the National Natural Science Foundation of China (60602020)。
文摘To improve the efficiency of ship traffic in frequently traded sea areas and respond to the national“dual-carbon”strategy,a multi-objective ship route induction model is proposed.Considering the energy-saving and environmental issues of ships,this study aims to improve the transportation efficiency of ships by providing a ship route induction method.Ship data from a certain bay during a defined period are collected,and an improved backpropagation neural network algorithm is used to forecast ship traffic.On the basis of the forecasted data and ship route induction objectives,dynamic programming of ship routes is performed.Experimental results show that the routes planned using this induction method reduce the combined cost by 17.55%compared with statically induced routes.This method has promising engineering applications in improving ship navigation efficiency,promoting energy conservation,and reducing emissions.
文摘Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance.
文摘The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system performance and control cost are defined by H2 or H∞ norms. During this optimization process, the weights are varying with the increasing generation instead of fixed values. The proposed strategy together with the linear matrix inequality (LMI) or the Riccati controller design method can find a series of uniformly distributed nondominated solutions in a single run. Therefore, this method can greatly reduce the computation intensity of the integrated optimization problem compared with the weight-based single objective genetic algorithm. Active automotive suspension is adopted as an example to illustrate the effectiveness of the proposed method.
基金The work was supported by the Science Challenge Project(Grant No.TZ2018007)The authors also thank the National Natural Science Foundation of China(Grant Nos.11872059,11702279)National Defense Technology Foundation of China(Grant No.JSUS2018212C)for providing the financial support for this project.
文摘The nonlinear dynamic modeling by combining the equivalent linear mechanics with the multi-objective optimization algorithm is proposed to describe the nonlinear behaviors of the joint interfaces.The joint interfaces are simplified as the equivalent virtual material or linear spring damper element.The genetic algorithm for multi-objective optimization is then used to identify the mechanical properties of the equivalent joint by minimizing the error between the simulated dynamic characteristics and the experimental results,including the modal frequencies of the bolted joint beam and the frequency response functions(FRFs)of the rubber isolation system.The FRFs are divided into several subsections with frequency-varied dynamic properties of the joint to consider the nonlinear dynamic behaviors,and the effects of subsection number and excitation amplitudes on the FRFs are also investigated.The results show that the simulated dynamic characteristics of modal frequencies and FRFs agree well with the experimental results.With the increase in the subsection number,the simulated FRFs agree better with the experimental results,indicating a good performance of modeling the nonlinear dynamic behaviors of the joint interfaces forced by different excitation amplitudes.Larger excitation amplitudes will decrease the joint stiffness.
文摘This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.
基金supported by the National Natural Science Foundation of China under Grant 52077146.
文摘With the construction of the power Internet of Things(IoT),communication between smart devices in urban distribution networks has been gradually moving towards high speed,high compatibility,and low latency,which provides reliable support for reconfiguration optimization in urban distribution networks.Thus,this study proposed a deep reinforcement learning based multi-level dynamic reconfiguration method for urban distribution networks in a cloud-edge collaboration architecture to obtain a real-time optimal multi-level dynamic reconfiguration solution.First,the multi-level dynamic reconfiguration method was discussed,which included feeder-,transformer-,and substation-levels.Subsequently,the multi-agent system was combined with the cloud-edge collaboration architecture to build a deep reinforcement learning model for multi-level dynamic reconfiguration in an urban distribution network.The cloud-edge collaboration architecture can effectively support the multi-agent system to conduct“centralized training and decentralized execution”operation modes and improve the learning efficiency of the model.Thereafter,for a multi-agent system,this study adopted a combination of offline and online learning to endow the model with the ability to realize automatic optimization and updation of the strategy.In the offline learning phase,a Q-learning-based multi-agent conservative Q-learning(MACQL)algorithm was proposed to stabilize the learning results and reduce the risk of the next online learning phase.In the online learning phase,a multi-agent deep deterministic policy gradient(MADDPG)algorithm based on policy gradients was proposed to explore the action space and update the experience pool.Finally,the effectiveness of the proposed method was verified through a simulation analysis of a real-world 445-node system.
基金Science and Technology Development Fund of Tianjin s Universities(20070813)
文摘Presented is a global dynamic reconfiguration design of an artificial neural network based on field programmable gate array(FPGA). Discussed are the dynamic reconfiguration principles and methods. Proposed is a global dynamic reconfiguration scheme using Xilinx FPGA and platform flash. Using the revision capabilities of Xilinx XCF32P platform flash, an artificial neural network based on Xilinx XC2V30P Virtex-Ⅱ can be reconfigured dynamically from back propagation(BP) learning algorithms to BP network testing algorithms. The experimental results indicate that the scheme is feasible, and that, using dynamic reconfiguration technology, FPGA resource utilization can be reduced remarkably.
文摘This work investigates one immune optimization approach for dynamic constrained multi-objective multimodal optimization in terms of biological immune inspirations and the concept of constraint dominance. Such approach includes mainly three functional modules, environmental detection, population initialization and immune evolution. The first, inspired by the function of immune surveillance, is designed to detect the change of such kind of problem and to decide the type of a new environment;the second generates an initial population for the current environment, relying upon the result of detection;the last evolves two sub-populations along multiple directions and searches those excellent and diverse candidates. Experimental results show that the proposed approach can adaptively track the environmental change and effectively find the global Pareto-optimal front in each environment.
文摘While some applications in memory can be constrained by memory bandwidth and memory cost, this paper proposes a transformation of the application into a one-bit FSM. When the finite state machine is very large, one way to improve the area and delay efficiently is to break down the large finite state machine into many smaller machines. The area efficiency can be improved if fewer machines are active simultaneously in the pipelined architecture. This can be achieved when using dynamic reconfiguration to map several sub machines onto the same hardware. This paper presents a methodology to break down the large finite state machine into many smaller machines and an architecture for the dynamically reconfiguration.
基金supported by the National Natural Science Foundation of China under Grant No.61802328,61972333,and 61771415.
文摘Dynamic Economic Emission Dispatch(DEED)aims to optimize control over fuel cost and pollution emission,two conflicting objectives,by scheduling the output power of various units at specific times.Although many methods well-performed on the DEED problem,most of them fail to achieve expected results in practice due to a lack of effective trade-off mechanisms between the convergence and diversity of non-dominated optimal dispatching solutions.To address this issue,a new multi-objective solver called Multi-Objective Golden Jackal Optimization(MOGJO)algorithm is proposed to cope with the DEED problem.The proposed algorithm first stores non-dominated optimal solutions found so far into an archive.Then,it chooses the best dispatching solution from the archive as the leader through a selection mechanism designed based on elite selection strategy and Euclidean distance index method.This mechanism can guide the algorithm to search for better dispatching solutions in the direction of reducing fuel costs and pollutant emissions.Moreover,the basic golden jackal optimization algorithm has the drawback of insufficient search,which hinders its ability to effectively discover more Pareto solutions.To this end,a non-linear control parameter based on the cosine function is introduced to enhance global exploration of the dispatching space,thus improving the efficiency of finding the optimal dispatching solutions.The proposed MOGJO is evaluated on the latest CEC benchmark test functions,and its superiority over the state-of-the-art multi-objective optimizers is highlighted by performance indicators.Also,empirical results on 5-unit,10-unit,IEEE 30-bus,and 30-unit systems show that the MOGJO can provide competitive compromise scheduling solutions compared to published DEED methods.Finally,in the analysis of the Pareto dominance relationship and the Euclidean distance index,the optimal dispatching solutions provided by MOGJO are the closest to the ideal solutions for minimizing fuel costs and pollution emissions simultaneously,compared to the latest published DEED solutions.
基金Science and Technology Innovation Fund of Tianjin(06FZZDGX01800)
文摘The dynamic reconfiguration technique based on field-programmable gate array (FPGA) can improve the resource utilization. Discussed are the dynamic reconfiguration principles and methods. Proposed is a remote dynamic reconfiguration scheme using Xilinx Virtex-Ⅱ FPGA and SMCS Ethernet Physical layer transceiver(PHY). The hardware of the system is designed with Xilinx Virtex-U XC2V30P FPGA that embedds MicroBlaze and MAC IP core, and its network communication software based on transmission control protoeol/Internet protocol (TCP/IP) protocol is programmed by loading LwIP to MicroBlaze. The experimental results indicate that the remote FPGA dynamic reconfiguration system(RFDRS) can switch freely in the eight lighting modes of light emitting diodes (LED), and that, using dynamic reconfiguration technology, FPGA resource utilization can be reduced remarkably, which is advantageous in the system upgrade and software update.
文摘Wireless sensor networks are characterized by multihop wireless links and resource constrained nodes. In terms of data collection and forwarding scheduling, this paper investigates the load balancing in sensor nodes and wireless link based on the performance of wireless sensor networks. Leveraging the property of dissimilarity distribution, a method to quantitatively evaluate the benefits of load balancing is presented, in order to access the profitability. Then a novel Dynamic Load Balancing of Overlay-based WSN (DLBO) algorithm has been put forward. In particular, the tradeoff between transferring ratio and the load imbalance among nodes is discussed. The load balancing method in this paper outperforms others based on balancing factor, different nodes number and data scales of applications. The proposed model and analytical results can be effectively applied for reliability analysis for other wireless applications (e.g., persistent data delivery is involved).
基金National Natural Science Foundations of China(Nos.61222303,21276078)National High-Tech Research and Development Program of China(No.2012AA040307)+1 种基金New Century Excellent Researcher Award Program from Ministry of Education of China(No.NCET10-0885)the Fundamental Research Funds for the Central Universities and Shanghai Leading Academic Discipline Project,China(No.B504)
文摘Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is proposed that takes advantage of a few parameters of bare-bones algorithm. To avoid premature convergence,Gaussian mutation is introduced; and an adaptive sampling distribution strategy is also used to improve the exploratory capability. Moreover, a circular crowded sorting approach is adopted to improve the uniformity of the population distribution.Finally, by combining the algorithm with control vector parameterization,an approach is proposed to solve the dynamic optimization problems of chemical processes. It is proved that the new algorithm performs better compared with other classic multiobjective optimization algorithms through the results of solving three dynamic optimization problems.
文摘This paper introduces a parallel search system for dynamic multi-objective traveling salesman problem. We design a multi-objective TSP in a stochastic dynamic environment. This dynamic setting of the problem is very useful for routing in ad-hoc networks. The proposed search system first uses parallel processors to identify the extreme solutions of the search space for each ofk objectives individually at the same time. These solutions are merged into the so-called hit-frequency matrix E. The solutions in E are then searched by parallel processors and evaluated for dominance relationship. The search system is implemented in two different ways master-worker architecture and pipeline architecture.
基金This work was supported by the French research office(No.01 K 0742)under the Cléopatre project.
文摘This paper describes specific constraints of vision systems that are dedicated to be embedded in mobile robots. If PC-based hardware architecture is convenient in this field because of its versatility, flexibility, performance, and cost, current real-time operating systems are not completely adapted to long processing with varying duration, and it is often necessary to oversize the system to guarantee fail-safe functioning. Also, interactions with other robotic tasks having more priority are difficult to handle. To answer this problem, we have developed a dynamically reconfigurable vision processing system, based on the innovative features of Cleopatre real-time applicative layer concerning scheduling and fault tolerance. This framework allows to define emergency and optional tasks to ensure a minimal quality of service for the other subsystems of the robot, while allowing to adapt dynamically vision processing chain to an exceptional overlasting vision process or processor overload. Thus, it allows a better cohabitation of several subsystems in a single hardware, and to develop less expensive but safe systems, as they will be designed for the regular case and not rare exceptional ones. Finally, it brings a new way to think and develop vision systems, with pairs of complementary operators.
基金financially supported by the National Key Research and Development Program of China(Grant No.2022YFC2806100)the National Natural Science Foundation of China(Grant Nos.U22B20126 and 52374020)+1 种基金Science Foundation of China University of Petroleum,Beijing(Grant No.2462025QNXZ009)Beijing Nova Program(Grant No.20250484913).
文摘Steel catenary riser represents the pioneering riser technology implemented in China’s deep-sea oil and gas opera-tions.Given the complex mechanical conditions of the riser,extensive research has been conducted on its dynamic analysis and structural design.This study investigates a deep-sea oil and gas field by developing a coupled model of a semi-submersible platform and steel catenary riser to analyze it mechanical behavior under extreme marine condi-tions.Through multi-objective optimization methodology,the study compares and analyzes suspension point tension and touchdown point stress under various conditions by modifying the suspension position,suspension angle,and catenary length.The optimal configuration parameters were determined:a suspension angle of 12°,suspension position in the southwest direction of the column,and a catenary length of approximately 2000 m.These findings elucidate the impact of configuration parameters on riser dynamic response and establish reasonable parameter layout ranges for adverse sea conditions,offering valuable optimization strategies for steel catenary riser deployment in domestic deep-sea oil and gas fields.