Signal filtering and differential acquisition are classic yet challenging issues in control engineering.The discrete-time optimal control(DTOC)based on classic tracking differentiator(TD)can effectively extract differ...Signal filtering and differential acquisition are classic yet challenging issues in control engineering.The discrete-time optimal control(DTOC)based on classic tracking differentiator(TD)can effectively extract differentiation signals and filter signals,while eliminating the chattering problem that arises during the discretization of the continuous solution.However,under external disturbance,the convergence mode may change,leading to overshoot and noise amplification.In this paper,a dual-switching strategy is proposed,which can alternate between the base double-integral system and its dual system according to the quadrant of the system’s state.And a novel linearized control law is also introduced,deriving a novel dual-switch tracking differentiator.Further analysis of system convergence and time optimality is provided.Simulation results show that the application of this dual-switching strategy notably reduces overshoot in both tracking and differential signals while enhancing noise filtering performance.Moreover,experiments conducted on a permanent magnet synchronous motor(PMSM)platform,where the proposed TD acts as a filter in the speed feedback loop,demonstrate that the standard deviation between the reference speed and the target speed(at a constant speed of 378 r/min)decreased from 5.63 r/min to 4.93 r/min,compared to the moving average algorithm.展开更多
Purpose-With the rapid advancement of China’s high-speed rail network,the density of train operations is on the rise.To address the challenge of shortening train tracking intervals while enhancing transportation effi...Purpose-With the rapid advancement of China’s high-speed rail network,the density of train operations is on the rise.To address the challenge of shortening train tracking intervals while enhancing transportation efficiency,the multi-objective dynamic optimization of the train operation process has emerged as a critical issue.Design/methodology/approach-Train dynamic model is established by analyzing the force of the train in the process of tracing operation.The train tracing operation model is established according to the dynamic mechanical model of the train tracking process,and the dynamic optimization analysis is carried out with comfort,energy saving and punctuality as optimization objectives.To achieve multi-objective dynamic optimization,a novel train tracking operation calculation method is proposed,utilizing the improved grey wolf optimization algorithm(MOGWO).The proposed method is simulated and verified based on the train characteristics and line data of CR400AF electric multiple units.Findings-The simulation results prove that the optimized MOGWO algorithm can be computed quickly during train tracks,the optimum results can be given within 5s and the algorithm can converge effectively in different optimization target directions.The optimized speed profile of the MOGWO algorithm is smoother and more stable and meets the target requirements of energy saving,punctuality and comfort while maximally respecting the speed limit profile.Originality/value-The MOGWO train tracking interval optimization method enhances the tracking process while ensuring a safe tracking interval.This approach enables the trailing train to operate more comfortably,energy-efficiently and punctually,aligning with passenger needs and industry trends.The method offers valuable insights for optimizing the high-speed train tracking process.展开更多
A method for moving object recognition and tracking in the intelligent traffic monitoring system is presented. For the shortcomings and deficiencies of the frame-subtraction method, a redundant discrete wavelet transf...A method for moving object recognition and tracking in the intelligent traffic monitoring system is presented. For the shortcomings and deficiencies of the frame-subtraction method, a redundant discrete wavelet transform (RDWT) based moving object recognition algorithm is put forward, which directly detects moving objects in the redundant discrete wavelet transform domain. An improved adaptive mean-shift algorithm is used to track the moving object in the follow up frames. Experimental results show that the algorithm can effectively extract the moving object, even though the object is similar to the background, and the results are better than the traditional frame-subtraction method. The object tracking is accurate without the impact of changes in the size of the object. Therefore the algorithm has a certain practical value and prospect.展开更多
This paper proposes a new approach for multi-objective robust control. The approach extends the standard generalized l2 (Gl2) and generalized H2 (GH2) conditions to a set of new linear matrix inequality (LMI) constra...This paper proposes a new approach for multi-objective robust control. The approach extends the standard generalized l2 (Gl2) and generalized H2 (GH2) conditions to a set of new linear matrix inequality (LMI) constraints based on a new stability condition. A technique for variable parameterization is introduced to the multi-objective control problem to preserve the linearity of the synthesis variables. Consequently, the multi-channel multi-objective mixed Gl2/GH2 control problem can be solved less conservatively using computationally tractable algorithms developed in the paper.展开更多
Target tracking in wireless sensor network usually schedules a subset of sensor nodes to constitute a tasking cluster to collaboratively track a target.For the goals of saving energy consumption,prolonging network lif...Target tracking in wireless sensor network usually schedules a subset of sensor nodes to constitute a tasking cluster to collaboratively track a target.For the goals of saving energy consumption,prolonging network lifetime and improving tracking accuracy,sensor node scheduling for target tracking is indeed a multi-objective optimization problem.In this paper,a multi-objective optimization sensor node scheduling algorithm is proposed.It employs the unscented Kalman filtering algorithm for target state estimation and establishes tracking accuracy index,predicts the energy consumption of candidate sensor nodes,analyzes the relationship between network lifetime and remaining energy balance so as to construct energy efficiency index.Simulation results show that,compared with the existing sensor node scheduling,our proposed algorithm can achieve superior tracking accuracy and energy efficiency.展开更多
In this book new results on controller design techniques for the tracking of generic reference inputs are presented. They allow the design of a controller for an uncertain process, either continuous or discrete-time, ...In this book new results on controller design techniques for the tracking of generic reference inputs are presented. They allow the design of a controller for an uncertain process, either continuous or discrete-time, without zeros, and with measurable state. The controller guarantees that the control system is Type 1 and has the desired constant gain and poles or that the control system tracks, with a specified maximum error and with a specified maximum time constant, a generic reference with bounded derivative (variation in the discrete-time case), also in the presence of a generic disturbance with bounded derivative (variation). In addition, it is considered the case in which the reference is known a priori. The utility and the efficiency of the proposed methods are illustrated with attractive and significant examples of motion control and temperature control. This book is useful for the design of control systems, especially for manufacturing systems, that are versatile, fast, precise and robust.展开更多
The interception information of infrared( IR)-guided air-to-air missiles( AAM) is mainly estimated only using the basic bearing measurements. In order to intercept highly maneuverable targets,it is essential to st...The interception information of infrared( IR)-guided air-to-air missiles( AAM) is mainly estimated only using the basic bearing measurements. In order to intercept highly maneuverable targets,it is essential to study the system observability to improve the target tracking system performance.The uniqueness of this paper is that the observability analysis is derived based on a discrete three-dimensional (3D) system model. During the maneuvering scenario,the system is approximated by a segment-by-segment system. The relationship between missile-target motion and observability is given by direct and dual approaches. Meanwhile sufficient observability conditions are derived. Moreover,a numerical simulation is conducted and an alternate method is provided to reinforce the proposed observability analysis results.展开更多
Deep deterministic policy gradient(DDPG)has been proved to be effective in optimizing particle swarm optimization(PSO),but whether DDPG can optimize multi-objective discrete particle swarm optimization(MODPSO)remains ...Deep deterministic policy gradient(DDPG)has been proved to be effective in optimizing particle swarm optimization(PSO),but whether DDPG can optimize multi-objective discrete particle swarm optimization(MODPSO)remains to be determined.The present work aims to probe into this topic.Experiments showed that the DDPG can not only quickly improve the convergence speed of MODPSO,but also overcome the problem of local optimal solution that MODPSO may suffer.The research findings are of great significance for the theoretical research and application of MODPSO.展开更多
To cope with multi-object tracking under real-world complex situations, a new video-based method is proposed. In the detecting step, the moving objects are segmented with the third level DWT (discrete wavelet transfo...To cope with multi-object tracking under real-world complex situations, a new video-based method is proposed. In the detecting step, the moving objects are segmented with the third level DWT (discrete wavelet transform )and background difference. In the tracking step, the Kalman filter and scale parameter are used first to estimate the object position and bounding box. Then, the center-association-based projection ratio and region-association-based occlusion ratio are defined and combined to judge object behaviours. Finally, the tracking scheme and Kalman parameters are adaptively adjusted according to object behaviour. Under occlusion, partial observability is utilized to obtain the object measurements and optimum box dimensions. This method is robust in tracking mobile objects under such situations as occlusion, new appearing and stablization, etc. Experimental results show that the proposed method is efficient.展开更多
Multi-object tracking(MOT) techniques have been increasingly applied in a diverse range of tasks. Unmanned aerial vehicle(UAV) is one of its typical application scenarios. Due to the scene complexity and the low resol...Multi-object tracking(MOT) techniques have been increasingly applied in a diverse range of tasks. Unmanned aerial vehicle(UAV) is one of its typical application scenarios. Due to the scene complexity and the low resolution of moving targets in UAV applications, it is difficult to extract target features and identify them. In order to solve this problem, we propose a new re-identification(re-ID) network to extract association features for tracking in the association stage. Moreover, in order to reduce the complexity of detection model, we perform the lightweight optimization for it. Experimental results show that the proposed re-ID network can effectively reduce the number of identity switches, and surpass current state-of-the-art algorithms. In the meantime, the optimized detector can increase the speed by 27% owing to its lightweight design, which enables it to further meet the requirements of UAV tracking tasks.展开更多
Pig farmers want to have an effective solution for automatically detecting and tracking multiple pigs and alerting their conditions in order to recognize disease risk factors quickly.In this paper,therefore,we propose...Pig farmers want to have an effective solution for automatically detecting and tracking multiple pigs and alerting their conditions in order to recognize disease risk factors quickly.In this paper,therefore,we propose a novel monitoring system using an Artificial Intelligence of Things(AIoT)technique combining artificial intelligence and Internet of Things(IoT).The proposed system consists of AIoT edge devices and a central monitoring server.First,an AIoT edge device extracts video frame images from a CCTV camera installed in a pig pen by a frame extraction method,detects multiple pigs in the images by a faster region-based convolutional neural network(RCNN)model,and tracks them by an object center-point tracking algorithm(OCTA)based on bounding box regression outputs of the faster RCNN.Finally,it sends multi-pig tracking images to the central monitoring server,which alerts them to pig farmers through a social networking service(SNS)agent in cooperation with an oneM2M-compliant IoT alerting method.Experimental results showed that the multi-pig tracking method achieved the multi-object tracking accuracy performance of about 77%.In addition,we verified alerting operation by confirming the images received in the SNS smartphone application.展开更多
A simple yet efficient tracking framework is proposed for real-time multi-object tracking with micro aerial vehicles(MAVs). It's basic missions for MAVs to detect specific targets and then track them automatically...A simple yet efficient tracking framework is proposed for real-time multi-object tracking with micro aerial vehicles(MAVs). It's basic missions for MAVs to detect specific targets and then track them automatically. In our method, candidate regions are generated using the salient detection in each frame and then classified by an eural network. A kernelized correlation filter(KCF) is employed to track each target until it disappears or the peak-sidelobe ratio is lower than a threshold. Besides, we define the birth and death of each tracker for the targets. The tracker is recycled if its target disappears and can be assigned to a new target. The algorithm is evaluated on the PAFISS and UAV123 datasets. The results show a good performance on both the tracking accuracy and speed.展开更多
In order to solve the problem of small object size and low detection accuracy under the unmanned aerial vehicle(UAV)platform,the object detection algorithm based on deep aggregation network and high-resolution fusion ...In order to solve the problem of small object size and low detection accuracy under the unmanned aerial vehicle(UAV)platform,the object detection algorithm based on deep aggregation network and high-resolution fusion module is studied.Furthermore,a joint network of object detection and feature extraction is studied to construct a real-time multi-object tracking algorithm.For the problem of object association failure caused by UAV movement,image registration is applied to multi-object tracking and a camera motion discrimination model is proposed to improve the speed of the multi-object tracking algorithm.The simulation results show that the algorithm proposed in this study can improve the accuracy of multi-object tracking under the UAV platform,and effectively solve the problem of association failure caused by UAV movement.展开更多
Multi-object tracking(MOT)has seen rapid improvements in recent years.However,frequent occlusion remains a significant challenge in MOT,as it can cause targets to become smaller or disappear entirely,resulting in lowq...Multi-object tracking(MOT)has seen rapid improvements in recent years.However,frequent occlusion remains a significant challenge in MOT,as it can cause targets to become smaller or disappear entirely,resulting in lowquality targets,leading to trajectory interruptions and reduced tracking performance.Different from some existing methods,which discarded the low-quality targets or ignored low-quality target attributes.LQTTrack,with a lowquality association strategy(LQA),is proposed to pay more attention to low-quality targets.In the association scheme of LQTTrack,firstly,multi-scale feature fusion of FPN(MSFF-FPN)is utilized to enrich the feature information and assist in subsequent data association.Secondly,the normalized Wasserstein distance(NWD)is integrated to replace the original Inter over Union(IoU),thus overcoming the limitations of the traditional IoUbased methods that are sensitive to low-quality targets with small sizes and enhancing the robustness of low-quality target tracking.Moreover,the third association stage is proposed to improve the matching between the current frame’s low-quality targets and previously interrupted trajectories from earlier frames to reduce the problem of track fragmentation or error tracking,thereby increasing the association success rate and improving overall multi-object tracking performance.Extensive experimental results demonstrate the competitive performance of LQTTrack on benchmark datasets(MOT17,MOT20,and DanceTrack).展开更多
Considering the interaction between a sleeper,ballast layer,and substructure,a three-dimensional coupled discrete-finite element method for a ballasted railway track is proposed in this study.Ballast granules with irr...Considering the interaction between a sleeper,ballast layer,and substructure,a three-dimensional coupled discrete-finite element method for a ballasted railway track is proposed in this study.Ballast granules with irregular shapes are constructed using a clump model using the discrete element method.Meanwhile,concrete sleepers,embankments,and foundations are modelled using 20-node hexahedron solid elements using the finite element method.To improve computational efficiency,a GPU-based(Graphics Processing Unit)parallel framework is applied in the discrete element simulation.Additionally,an algorithm containing contact search and transfer parameters at the contact interface of discrete particles and finite elements is developed in the GPU parallel environment accordingly.A benchmark case is selected to verify the accuracy of the coupling algorithm.The dynamic response of the ballasted rail track is analysed under different train speeds and loads.Meanwhile,the dynamic stress on the substructure surface obtained by the established DEM-FEM model is compared with the in situ experimental results.Finally,stress and displacement contours in the cross-section of the model are constructed to further visualise the response of the ballasted railway.This proposed coupling model can provide important insights into high-performance coupling algorithms and the dynamic characteristics of full scale ballasted rail tracks.展开更多
Background With the rapid development of Web3D, virtual reality, and digital twins, virtual trajectories and decision data considerably rely on the analysis and understanding of real video data, particularly in emerge...Background With the rapid development of Web3D, virtual reality, and digital twins, virtual trajectories and decision data considerably rely on the analysis and understanding of real video data, particularly in emergency evacuation scenarios. Correctly and effectively evacuating crowds in virtual emergency scenarios are becoming increasingly urgent. One good solution is to extract pedestrian trajectories from videos of emergency situations using a multi-target tracking algorithm and use them to define evacuation procedures. Methods To implement this solution, a trajectory extraction and optimization framework based on multi-target tracking is developed in this study. First, a multi-target tracking algorithm is used to extract and preprocess the trajectory data of the crowd in a video. Then, the trajectory is optimized by combining the trajectory point extraction algorithm and Savitzky-Golay smoothing filtering method. Finally, related experiments are conducted, and the results show that the proposed approach can effectively and accurately extract the trajectories of multiple target objects in real time. Results In addition, the proposed approach retains the real characteristics of the trajectories as much as possible while improving the trajectory smoothing index, which can provide data support for the analysis of pedestrian trajectory data and formulation of personnel evacuation schemes in emergency scenarios. Conclusions Further comparisons with methods used in related studies confirm the feasibility and superiority of the proposed framework.展开更多
On grounds of the advent of real-time applications,like autonomous driving,visual surveillance,and sports analysis,there is an augmenting focus of attention towards Multiple-Object Tracking(MOT).The tracking-by-detect...On grounds of the advent of real-time applications,like autonomous driving,visual surveillance,and sports analysis,there is an augmenting focus of attention towards Multiple-Object Tracking(MOT).The tracking-by-detection paradigm,a commonly utilized approach,connects the existing recognition hypotheses to the formerly assessed object trajectories by comparing the simila-rities of the appearance or the motion between them.For an efficient detection and tracking of the numerous objects in a complex environment,a Pearson Simi-larity-centred Kuhn-Munkres(PS-KM)algorithm was proposed in the present study.In this light,the input videos were,initially,gathered from the MOT dataset and converted into frames.The background subtraction occurred whichfiltered the inappropriate data concerning the frames after the frame conversion stage.Then,the extraction of features from the frames was executed.Afterwards,the higher dimensional features were transformed into lower-dimensional features,and feature reduction process was performed with the aid of Information Gain-centred Singular Value Decomposition(IG-SVD).Next,using the Modified Recurrent Neural Network(MRNN)method,classification was executed which identified the categories of the objects additionally.The PS-KM algorithm identi-fied that the recognized objects were tracked.Finally,the experimental outcomes exhibited that numerous targets were precisely tracked by the proposed system with 97%accuracy with a low false positive rate(FPR)of 2.3%.It was also proved that the present techniques viz.RNN,CNN,and KNN,were effective with regard to the existing models.展开更多
In this study,a multi-object tracking(MOT)scheme based on a light detection and ranging sensor was proposed to overcome imprecise velocity observations in object occlusion scenarios.By applying real-time velocity esti...In this study,a multi-object tracking(MOT)scheme based on a light detection and ranging sensor was proposed to overcome imprecise velocity observations in object occlusion scenarios.By applying real-time velocity estimation,a modified unscented Kalman filter(UKF)was proposed for the state estimation of a target object.The proposed method can reduce the calculation cost by obviating unscented transformations.Additionally,combined with the advantages of a two-reference-point selection scheme based on a center point and a corner point,a reference point switching approach was introduced to improve tracking accuracy and consistency.The state estimation capability of the proposed UKF was verified by comparing it with the standard UKF in single-target tracking simulations.Moreover,the performance of the proposed MOT system was evaluated using real traffic datasets.展开更多
An approach to track multiple objects in crowded scenes with long-term partial occlusions is proposed. Tracking-by-detection is a successful strategy to address the task of tracking multiple objects in unconstrained s...An approach to track multiple objects in crowded scenes with long-term partial occlusions is proposed. Tracking-by-detection is a successful strategy to address the task of tracking multiple objects in unconstrained scenarios,but an obvious shortcoming of this method is that most information available in image sequences is simply ignored due to thresholding weak detection responses and applying non-maximum suppression. This paper proposes a multi-label conditional random field( CRF) model which integrates the superpixel information and detection responses into a unified energy optimization framework to handle the task of tracking multiple targets. A key characteristic of the model is that the pairwise potential is constructed to enforce collision avoidance between objects,which can offer the advantage to improve the tracking performance in crowded scenes. Experiments on standard benchmark databases demonstrate that the proposed algorithm significantly outperforms the state-of-the-art tracking-by-detection methods.展开更多
This paper addresses the problem of real-time object tracking for unmanned aerial vehicles. We consider the task of object tracking as a classification problem. Training a good classifier always needs a huge number of...This paper addresses the problem of real-time object tracking for unmanned aerial vehicles. We consider the task of object tracking as a classification problem. Training a good classifier always needs a huge number of samples, which is always time-consuming and not suitable for realtime applications. In this paper, we transform the large-scale least-squares problem in the spatial domain to a series of small-scale least-squares problems with constraints in the Fourier domain using the correlation filter technique. Then, this problem is efficiently solved by two stages. In the first stage, a fast method based on recursive least squares is used to solve the correlation filter problem without constraints in the Fourier domain. In the second stage, a weight matrix is constructed to prune the solution attained in the first stage to approach the constraints in the spatial domain. Then, the pruned classifier is used for tracking. To evaluate proposed tracker’s performance, comprehensive experiments are conducted on challenging aerial sequences in the UAV123 dataset. Experimental results demonstrate that proposed approach achieves a state-ofthe-art tracking performance in aerial sequences and operates at a mean speed of beyond 40 frames/s. For further analysis of proposed tracker’s robustness, extensive experiments are also performed on recent benchmarks OTB50, OTB100, and VOT2016.展开更多
基金Project(QZKFKT2023-012)supported by the State Key Laboratory of Heavy-duty and Express High-power Electric Locomotive,China。
文摘Signal filtering and differential acquisition are classic yet challenging issues in control engineering.The discrete-time optimal control(DTOC)based on classic tracking differentiator(TD)can effectively extract differentiation signals and filter signals,while eliminating the chattering problem that arises during the discretization of the continuous solution.However,under external disturbance,the convergence mode may change,leading to overshoot and noise amplification.In this paper,a dual-switching strategy is proposed,which can alternate between the base double-integral system and its dual system according to the quadrant of the system’s state.And a novel linearized control law is also introduced,deriving a novel dual-switch tracking differentiator.Further analysis of system convergence and time optimality is provided.Simulation results show that the application of this dual-switching strategy notably reduces overshoot in both tracking and differential signals while enhancing noise filtering performance.Moreover,experiments conducted on a permanent magnet synchronous motor(PMSM)platform,where the proposed TD acts as a filter in the speed feedback loop,demonstrate that the standard deviation between the reference speed and the target speed(at a constant speed of 378 r/min)decreased from 5.63 r/min to 4.93 r/min,compared to the moving average algorithm.
基金funded by the China Academy of Railway Sciences Corporation Limited Scientific Research Project(No:2023YJ080).
文摘Purpose-With the rapid advancement of China’s high-speed rail network,the density of train operations is on the rise.To address the challenge of shortening train tracking intervals while enhancing transportation efficiency,the multi-objective dynamic optimization of the train operation process has emerged as a critical issue.Design/methodology/approach-Train dynamic model is established by analyzing the force of the train in the process of tracing operation.The train tracing operation model is established according to the dynamic mechanical model of the train tracking process,and the dynamic optimization analysis is carried out with comfort,energy saving and punctuality as optimization objectives.To achieve multi-objective dynamic optimization,a novel train tracking operation calculation method is proposed,utilizing the improved grey wolf optimization algorithm(MOGWO).The proposed method is simulated and verified based on the train characteristics and line data of CR400AF electric multiple units.Findings-The simulation results prove that the optimized MOGWO algorithm can be computed quickly during train tracks,the optimum results can be given within 5s and the algorithm can converge effectively in different optimization target directions.The optimized speed profile of the MOGWO algorithm is smoother and more stable and meets the target requirements of energy saving,punctuality and comfort while maximally respecting the speed limit profile.Originality/value-The MOGWO train tracking interval optimization method enhances the tracking process while ensuring a safe tracking interval.This approach enables the trailing train to operate more comfortably,energy-efficiently and punctually,aligning with passenger needs and industry trends.The method offers valuable insights for optimizing the high-speed train tracking process.
文摘A method for moving object recognition and tracking in the intelligent traffic monitoring system is presented. For the shortcomings and deficiencies of the frame-subtraction method, a redundant discrete wavelet transform (RDWT) based moving object recognition algorithm is put forward, which directly detects moving objects in the redundant discrete wavelet transform domain. An improved adaptive mean-shift algorithm is used to track the moving object in the follow up frames. Experimental results show that the algorithm can effectively extract the moving object, even though the object is similar to the background, and the results are better than the traditional frame-subtraction method. The object tracking is accurate without the impact of changes in the size of the object. Therefore the algorithm has a certain practical value and prospect.
基金Project supported by the National Natural Science Foundation ofChina (No. 60374028) and the Scientific Research Foundation forReturned Overseas Chinese Scholars Ministry of Education (No.[2004]176)
文摘This paper proposes a new approach for multi-objective robust control. The approach extends the standard generalized l2 (Gl2) and generalized H2 (GH2) conditions to a set of new linear matrix inequality (LMI) constraints based on a new stability condition. A technique for variable parameterization is introduced to the multi-objective control problem to preserve the linearity of the synthesis variables. Consequently, the multi-channel multi-objective mixed Gl2/GH2 control problem can be solved less conservatively using computationally tractable algorithms developed in the paper.
基金Supported by the National Natural Science Foundation of China(No.90820302,60805027)the Research Fund for Doctoral Program of Higher Education(No.200805330005)the Academician Foundation of Hunan(No.2009FJ4030)
文摘Target tracking in wireless sensor network usually schedules a subset of sensor nodes to constitute a tasking cluster to collaboratively track a target.For the goals of saving energy consumption,prolonging network lifetime and improving tracking accuracy,sensor node scheduling for target tracking is indeed a multi-objective optimization problem.In this paper,a multi-objective optimization sensor node scheduling algorithm is proposed.It employs the unscented Kalman filtering algorithm for target state estimation and establishes tracking accuracy index,predicts the energy consumption of candidate sensor nodes,analyzes the relationship between network lifetime and remaining energy balance so as to construct energy efficiency index.Simulation results show that,compared with the existing sensor node scheduling,our proposed algorithm can achieve superior tracking accuracy and energy efficiency.
文摘In this book new results on controller design techniques for the tracking of generic reference inputs are presented. They allow the design of a controller for an uncertain process, either continuous or discrete-time, without zeros, and with measurable state. The controller guarantees that the control system is Type 1 and has the desired constant gain and poles or that the control system tracks, with a specified maximum error and with a specified maximum time constant, a generic reference with bounded derivative (variation in the discrete-time case), also in the presence of a generic disturbance with bounded derivative (variation). In addition, it is considered the case in which the reference is known a priori. The utility and the efficiency of the proposed methods are illustrated with attractive and significant examples of motion control and temperature control. This book is useful for the design of control systems, especially for manufacturing systems, that are versatile, fast, precise and robust.
基金Supported by the National Natural Science Foundation of China(61333011)
文摘The interception information of infrared( IR)-guided air-to-air missiles( AAM) is mainly estimated only using the basic bearing measurements. In order to intercept highly maneuverable targets,it is essential to study the system observability to improve the target tracking system performance.The uniqueness of this paper is that the observability analysis is derived based on a discrete three-dimensional (3D) system model. During the maneuvering scenario,the system is approximated by a segment-by-segment system. The relationship between missile-target motion and observability is given by direct and dual approaches. Meanwhile sufficient observability conditions are derived. Moreover,a numerical simulation is conducted and an alternate method is provided to reinforce the proposed observability analysis results.
文摘Deep deterministic policy gradient(DDPG)has been proved to be effective in optimizing particle swarm optimization(PSO),but whether DDPG can optimize multi-objective discrete particle swarm optimization(MODPSO)remains to be determined.The present work aims to probe into this topic.Experiments showed that the DDPG can not only quickly improve the convergence speed of MODPSO,but also overcome the problem of local optimal solution that MODPSO may suffer.The research findings are of great significance for the theoretical research and application of MODPSO.
基金The National Natural Science Foundation of China(No.60574006,60804017)
文摘To cope with multi-object tracking under real-world complex situations, a new video-based method is proposed. In the detecting step, the moving objects are segmented with the third level DWT (discrete wavelet transform )and background difference. In the tracking step, the Kalman filter and scale parameter are used first to estimate the object position and bounding box. Then, the center-association-based projection ratio and region-association-based occlusion ratio are defined and combined to judge object behaviours. Finally, the tracking scheme and Kalman parameters are adaptively adjusted according to object behaviour. Under occlusion, partial observability is utilized to obtain the object measurements and optimum box dimensions. This method is robust in tracking mobile objects under such situations as occlusion, new appearing and stablization, etc. Experimental results show that the proposed method is efficient.
基金supported by the Research Foundation of Nanjing University of Posts and Telecommunications (No.NY219076)。
文摘Multi-object tracking(MOT) techniques have been increasingly applied in a diverse range of tasks. Unmanned aerial vehicle(UAV) is one of its typical application scenarios. Due to the scene complexity and the low resolution of moving targets in UAV applications, it is difficult to extract target features and identify them. In order to solve this problem, we propose a new re-identification(re-ID) network to extract association features for tracking in the association stage. Moreover, in order to reduce the complexity of detection model, we perform the lightweight optimization for it. Experimental results show that the proposed re-ID network can effectively reduce the number of identity switches, and surpass current state-of-the-art algorithms. In the meantime, the optimized detector can increase the speed by 27% owing to its lightweight design, which enables it to further meet the requirements of UAV tracking tasks.
基金supported by Institute of Information&communications Technology Planning&Evaluation(IITP)Grant funded by the Korea government(MSIT)(No.2018-0-00387Development of ICT based Intelligent Smart Welfare Housing System for the Prevention and Control of Livestock Disease).
文摘Pig farmers want to have an effective solution for automatically detecting and tracking multiple pigs and alerting their conditions in order to recognize disease risk factors quickly.In this paper,therefore,we propose a novel monitoring system using an Artificial Intelligence of Things(AIoT)technique combining artificial intelligence and Internet of Things(IoT).The proposed system consists of AIoT edge devices and a central monitoring server.First,an AIoT edge device extracts video frame images from a CCTV camera installed in a pig pen by a frame extraction method,detects multiple pigs in the images by a faster region-based convolutional neural network(RCNN)model,and tracks them by an object center-point tracking algorithm(OCTA)based on bounding box regression outputs of the faster RCNN.Finally,it sends multi-pig tracking images to the central monitoring server,which alerts them to pig farmers through a social networking service(SNS)agent in cooperation with an oneM2M-compliant IoT alerting method.Experimental results showed that the multi-pig tracking method achieved the multi-object tracking accuracy performance of about 77%.In addition,we verified alerting operation by confirming the images received in the SNS smartphone application.
基金Supported by the National Natural Science Foundation of China(6160303040,61433003)Yunnan Applied Basic Research Project of China(201701CF00037)Yunnan Provincial Science and Technology Department Key Research Program(Engineering)(2018BA070)
文摘A simple yet efficient tracking framework is proposed for real-time multi-object tracking with micro aerial vehicles(MAVs). It's basic missions for MAVs to detect specific targets and then track them automatically. In our method, candidate regions are generated using the salient detection in each frame and then classified by an eural network. A kernelized correlation filter(KCF) is employed to track each target until it disappears or the peak-sidelobe ratio is lower than a threshold. Besides, we define the birth and death of each tracker for the targets. The tracker is recycled if its target disappears and can be assigned to a new target. The algorithm is evaluated on the PAFISS and UAV123 datasets. The results show a good performance on both the tracking accuracy and speed.
基金the National Natural Science Foundation of China (No.61627810)the National Science and Technology Major Program of China (No.2018YFB1305003)the National Defense Science and Technology Outstanding Youth Science Foundation (No.2017-JCJQ-ZQ-031)。
文摘In order to solve the problem of small object size and low detection accuracy under the unmanned aerial vehicle(UAV)platform,the object detection algorithm based on deep aggregation network and high-resolution fusion module is studied.Furthermore,a joint network of object detection and feature extraction is studied to construct a real-time multi-object tracking algorithm.For the problem of object association failure caused by UAV movement,image registration is applied to multi-object tracking and a camera motion discrimination model is proposed to improve the speed of the multi-object tracking algorithm.The simulation results show that the algorithm proposed in this study can improve the accuracy of multi-object tracking under the UAV platform,and effectively solve the problem of association failure caused by UAV movement.
基金supported by the National Natural Science Foundation of China(No.62202143)Key Research and Promotion Projects of Henan Province(Nos.232102240023,232102210063,222102210040).
文摘Multi-object tracking(MOT)has seen rapid improvements in recent years.However,frequent occlusion remains a significant challenge in MOT,as it can cause targets to become smaller or disappear entirely,resulting in lowquality targets,leading to trajectory interruptions and reduced tracking performance.Different from some existing methods,which discarded the low-quality targets or ignored low-quality target attributes.LQTTrack,with a lowquality association strategy(LQA),is proposed to pay more attention to low-quality targets.In the association scheme of LQTTrack,firstly,multi-scale feature fusion of FPN(MSFF-FPN)is utilized to enrich the feature information and assist in subsequent data association.Secondly,the normalized Wasserstein distance(NWD)is integrated to replace the original Inter over Union(IoU),thus overcoming the limitations of the traditional IoUbased methods that are sensitive to low-quality targets with small sizes and enhancing the robustness of low-quality target tracking.Moreover,the third association stage is proposed to improve the matching between the current frame’s low-quality targets and previously interrupted trajectories from earlier frames to reduce the problem of track fragmentation or error tracking,thereby increasing the association success rate and improving overall multi-object tracking performance.Extensive experimental results demonstrate the competitive performance of LQTTrack on benchmark datasets(MOT17,MOT20,and DanceTrack).
基金supported by the National Natural Science Foundation of China(Grant Nos.11872136,11802146,11772085)the Fundamental Research Funds for the Central Universities(Grant Nos.DUT19GJ206,DUT19ZD207).
文摘Considering the interaction between a sleeper,ballast layer,and substructure,a three-dimensional coupled discrete-finite element method for a ballasted railway track is proposed in this study.Ballast granules with irregular shapes are constructed using a clump model using the discrete element method.Meanwhile,concrete sleepers,embankments,and foundations are modelled using 20-node hexahedron solid elements using the finite element method.To improve computational efficiency,a GPU-based(Graphics Processing Unit)parallel framework is applied in the discrete element simulation.Additionally,an algorithm containing contact search and transfer parameters at the contact interface of discrete particles and finite elements is developed in the GPU parallel environment accordingly.A benchmark case is selected to verify the accuracy of the coupling algorithm.The dynamic response of the ballasted rail track is analysed under different train speeds and loads.Meanwhile,the dynamic stress on the substructure surface obtained by the established DEM-FEM model is compared with the in situ experimental results.Finally,stress and displacement contours in the cross-section of the model are constructed to further visualise the response of the ballasted railway.This proposed coupling model can provide important insights into high-performance coupling algorithms and the dynamic characteristics of full scale ballasted rail tracks.
文摘Background With the rapid development of Web3D, virtual reality, and digital twins, virtual trajectories and decision data considerably rely on the analysis and understanding of real video data, particularly in emergency evacuation scenarios. Correctly and effectively evacuating crowds in virtual emergency scenarios are becoming increasingly urgent. One good solution is to extract pedestrian trajectories from videos of emergency situations using a multi-target tracking algorithm and use them to define evacuation procedures. Methods To implement this solution, a trajectory extraction and optimization framework based on multi-target tracking is developed in this study. First, a multi-target tracking algorithm is used to extract and preprocess the trajectory data of the crowd in a video. Then, the trajectory is optimized by combining the trajectory point extraction algorithm and Savitzky-Golay smoothing filtering method. Finally, related experiments are conducted, and the results show that the proposed approach can effectively and accurately extract the trajectories of multiple target objects in real time. Results In addition, the proposed approach retains the real characteristics of the trajectories as much as possible while improving the trajectory smoothing index, which can provide data support for the analysis of pedestrian trajectory data and formulation of personnel evacuation schemes in emergency scenarios. Conclusions Further comparisons with methods used in related studies confirm the feasibility and superiority of the proposed framework.
文摘On grounds of the advent of real-time applications,like autonomous driving,visual surveillance,and sports analysis,there is an augmenting focus of attention towards Multiple-Object Tracking(MOT).The tracking-by-detection paradigm,a commonly utilized approach,connects the existing recognition hypotheses to the formerly assessed object trajectories by comparing the simila-rities of the appearance or the motion between them.For an efficient detection and tracking of the numerous objects in a complex environment,a Pearson Simi-larity-centred Kuhn-Munkres(PS-KM)algorithm was proposed in the present study.In this light,the input videos were,initially,gathered from the MOT dataset and converted into frames.The background subtraction occurred whichfiltered the inappropriate data concerning the frames after the frame conversion stage.Then,the extraction of features from the frames was executed.Afterwards,the higher dimensional features were transformed into lower-dimensional features,and feature reduction process was performed with the aid of Information Gain-centred Singular Value Decomposition(IG-SVD).Next,using the Modified Recurrent Neural Network(MRNN)method,classification was executed which identified the categories of the objects additionally.The PS-KM algorithm identi-fied that the recognized objects were tracked.Finally,the experimental outcomes exhibited that numerous targets were precisely tracked by the proposed system with 97%accuracy with a low false positive rate(FPR)of 2.3%.It was also proved that the present techniques viz.RNN,CNN,and KNN,were effective with regard to the existing models.
基金the National Natural Science Foundation of China(No.51775331)。
文摘In this study,a multi-object tracking(MOT)scheme based on a light detection and ranging sensor was proposed to overcome imprecise velocity observations in object occlusion scenarios.By applying real-time velocity estimation,a modified unscented Kalman filter(UKF)was proposed for the state estimation of a target object.The proposed method can reduce the calculation cost by obviating unscented transformations.Additionally,combined with the advantages of a two-reference-point selection scheme based on a center point and a corner point,a reference point switching approach was introduced to improve tracking accuracy and consistency.The state estimation capability of the proposed UKF was verified by comparing it with the standard UKF in single-target tracking simulations.Moreover,the performance of the proposed MOT system was evaluated using real traffic datasets.
基金Supported by the National Natural Science Foundation of China(61471225)Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents(2014RCJJ055)
文摘An approach to track multiple objects in crowded scenes with long-term partial occlusions is proposed. Tracking-by-detection is a successful strategy to address the task of tracking multiple objects in unconstrained scenarios,but an obvious shortcoming of this method is that most information available in image sequences is simply ignored due to thresholding weak detection responses and applying non-maximum suppression. This paper proposes a multi-label conditional random field( CRF) model which integrates the superpixel information and detection responses into a unified energy optimization framework to handle the task of tracking multiple targets. A key characteristic of the model is that the pairwise potential is constructed to enforce collision avoidance between objects,which can offer the advantage to improve the tracking performance in crowded scenes. Experiments on standard benchmark databases demonstrate that the proposed algorithm significantly outperforms the state-of-the-art tracking-by-detection methods.
基金supported by the National Natural Science Foundation of China(No.61671002)
文摘This paper addresses the problem of real-time object tracking for unmanned aerial vehicles. We consider the task of object tracking as a classification problem. Training a good classifier always needs a huge number of samples, which is always time-consuming and not suitable for realtime applications. In this paper, we transform the large-scale least-squares problem in the spatial domain to a series of small-scale least-squares problems with constraints in the Fourier domain using the correlation filter technique. Then, this problem is efficiently solved by two stages. In the first stage, a fast method based on recursive least squares is used to solve the correlation filter problem without constraints in the Fourier domain. In the second stage, a weight matrix is constructed to prune the solution attained in the first stage to approach the constraints in the spatial domain. Then, the pruned classifier is used for tracking. To evaluate proposed tracker’s performance, comprehensive experiments are conducted on challenging aerial sequences in the UAV123 dataset. Experimental results demonstrate that proposed approach achieves a state-ofthe-art tracking performance in aerial sequences and operates at a mean speed of beyond 40 frames/s. For further analysis of proposed tracker’s robustness, extensive experiments are also performed on recent benchmarks OTB50, OTB100, and VOT2016.