A vague-set-based fuzzy multi-objective decision making model is developed for evaluating bidding plans in a bid- ding purchase process. A group of decision-makers (DMs) first independently assess bidding plans accord...A vague-set-based fuzzy multi-objective decision making model is developed for evaluating bidding plans in a bid- ding purchase process. A group of decision-makers (DMs) first independently assess bidding plans according to their experience and preferences, and these assessments may be expressed as linguistic terms, which are then converted to fuzzy numbers. The resulting decision matrices are then transformed to objective membership grade matrices. The lower bound of satisfaction and upper bound of dissatisfaction are used to determine each bidding plan’s supporting, opposing, and neutral objective sets, which together determine the vague value of a bidding plan. Finally, a score function is employed to rank all bidding plans. A new score function based on vague sets is introduced in the model and a novel method is presented for calculating the lower bound of sat- isfaction and upper bound of dissatisfaction. In a vague-set-based fuzzy multi-objective decision making model, different valua- tions for upper and lower bounds of satisfaction usually lead to distinct ranking results. Therefore, it is crucial to effectively contain DMs’ arbitrariness and subjectivity when these values are determined.展开更多
Across four studies,we explore the impact of solitude on consumers’reliance on feelings versus reasons in decision making,along with the underlying mechanism and boundary conditions.The results indicate that solitude...Across four studies,we explore the impact of solitude on consumers’reliance on feelings versus reasons in decision making,along with the underlying mechanism and boundary conditions.The results indicate that solitude individuals(vs.non-solitude)would prefer feeling-based strategy in decision-making,resulting in a higher intention of choosing the affectively superior option over the cognitively superior option(Study 1).Self-focus plays the underlying mechanism in the solitude effect(Study 2).Moreover,we also examine two boundary conditions:motivation(Study 3)and temporal orientation(Study 4),which indicates that involuntary motivation and future orientation can mitigate the solitude effect on affective processing.These findings provide insights into consumers’judgments of product attributes and selection of decision-making strategies according to their situations.展开更多
This study focuses on the construction and application of intelligent financial decision-making models driven by generative artificial intelligence(AI).It analyzes the mechanisms by which generative AI empowers financ...This study focuses on the construction and application of intelligent financial decision-making models driven by generative artificial intelligence(AI).It analyzes the mechanisms by which generative AI empowers financial decision-making within a dual framework of dynamic knowledge evolution and risk control.The research reveals that generative AI,with its superior data processing,pattern recognition,and autonomous learning capabilities,can transcend the limitations of traditional decision-making models,facilitating a significant shift from causal inference to probabilistic creation in decision-making paradigms.By systematically constructing an intelligent financial decision-making model that includes data governance,core engine,and decision output layers,the study clarifies the functional roles and collaborative mechanisms of each layer.Additionally,it addresses key challenges in technology application,institutional adaptation,and organizational transformation by proposing systematic strategies for technical risk management,institutional innovation,and organizational capability enhancement,aiming to provide robust theoretical support and practical guidance for the intelligent transformation of corporate financial decision-making.展开更多
The high maneuverability of modern fighters in close air combat imposes significant cognitive demands on pilots,making rapid,accurate decision-making challenging.While reinforcement learning(RL)has shown promise in th...The high maneuverability of modern fighters in close air combat imposes significant cognitive demands on pilots,making rapid,accurate decision-making challenging.While reinforcement learning(RL)has shown promise in this domain,the existing methods often lack strategic depth and generalization in complex,high-dimensional environments.To address these limitations,this paper proposes an optimized self-play method enhanced by advancements in fighter modeling,neural network design,and algorithmic frameworks.This study employs a six-degree-of-freedom(6-DOF)F-16 fighter model based on open-source aerodynamic data,featuring airborne equipment and a realistic visual simulation platform,unlike traditional 3-DOF models.To capture temporal dynamics,Long Short-Term Memory(LSTM)layers are integrated into the neural network,complemented by delayed input stacking.The RL environment incorporates expert strategies,curiositydriven rewards,and curriculum learning to improve adaptability and strategic decision-making.Experimental results demonstrate that the proposed approach achieves a winning rate exceeding90%against classical single-agent methods.Additionally,through enhanced 3D visual platforms,we conducted human-agent confrontation experiments,where the agent attained an average winning rate of over 75%.The agent's maneuver trajectories closely align with human pilot strategies,showcasing its potential in decision-making and pilot training applications.This study highlights the effectiveness of integrating advanced modeling and self-play techniques in developing robust air combat decision-making systems.展开更多
We examined the relationship between social support and career adaptability,as well as the mediating roles of proactive personality and career decision-making self-efficacy in this process.A total of 1354 Chinese coll...We examined the relationship between social support and career adaptability,as well as the mediating roles of proactive personality and career decision-making self-efficacy in this process.A total of 1354 Chinese college students(female=964;mean age=19.53 years,SD=1.33 years)completed an online questionnaire.Path analysis indicated that social support was positively associated with higher levels of career adaptability.Both proactive personality and career decision-making self-efficacy served as parallel mediators,strengthening the relationship between social support and career adaptability.The complete chain mediation analysis revealed that social support influences career adaptability primarily through proactive personality,which in turn enhances career decision-making self-efficacy,further contributing to increased career adaptability.These findings extend career capital theory by demonstrating that social and psychological resources jointly facilitate career adaptability.展开更多
Transportation systems are rapidly transforming in response to urbanization,sustainability challenges,and advances in digital technologies.This review synthesizes the intersection of artificial intelligence(AI),fuzzy ...Transportation systems are rapidly transforming in response to urbanization,sustainability challenges,and advances in digital technologies.This review synthesizes the intersection of artificial intelligence(AI),fuzzy logic,and multi-criteria decision-making(MCDM)in transportation research.A comprehensive literature search was conducted in the Scopus database,utilizing carefully selected AI,fuzzy,and MCDM keywords.Studies were rigorously screened according to explicit inclusion and exclusion criteria,resulting in 73 eligible publications spanning 2006-2025.The review protocol included transparent data extraction on methodological approaches,application domains,and geographic distribution.Key findings highlight the prevalence of hybrid fuzzyAHPand TOPSIS methods,the widespread integration of machine learning for prediction and optimization,and a predominant focus on logistics and infrastructure planning within the transportation sector.Geographic analysis underscores a marked concentration of research activity in Asia,while other regions remain underrepresented,signaling the need for broader international collaboration.The review also addresses persistent challenges such asmethodological complexity,data limitations,and model interpretability.Future research directions are proposed,including the integration of reinforcement learning,real-time analytics,and big data-driven adaptive solutions.This study offers a comprehensive synthesis and critical perspective,serving as a valuable reference for researchers,practitioners,and policymakers seeking to enhance the efficiency,resilience,and sustainability of transportation systems through intelligent decision-making frameworks.展开更多
Enhancing Autonomous Decision-Making (ADM) for unmanned combat aerial vehicle formations in beyond-visual-range air combat is pivotal for future battlefields, whereas the predominant reinforcement learning technique f...Enhancing Autonomous Decision-Making (ADM) for unmanned combat aerial vehicle formations in beyond-visual-range air combat is pivotal for future battlefields, whereas the predominant reinforcement learning technique for ADM has been proven to be inadequately fitting complex tactical Unit Coordination (UC), limiting the integrity of decision-making for formations. This study proposes a knowledge-enhanced ADM method, with a focus on UC, to elevate formation combat effectiveness. The main innovation is integrating data mining technique with tactical knowledge mining and integration. Foremost, based on Frequent Event Arrangement Mining (FEAM) theory, a cross-channel UC knowledge mining method is designed by introducing data flow, which is capable of capturing dynamic coordinative action sequences. Then, a dual-mode knowledge integration method is proposed by employing the Graph Attention Network (GAT) and attenuated structural similarity, bolstering the interplay between autonomous UC tactics fitting and knowledge injection. The experimental results demonstrate that the algorithm surpasses the existing methods, providing more strategic maneuver trajectories and a win rate of more than 90% in different scenarios. The method is promising to augment the autonomous operational capabilities of unmanned formations and drive the evolution of combat effectiveness.展开更多
This study introduces a novel distance measure(DM)for(p,q,r)-spherical fuzzy sets((p,q,to improve decision-making in complex and uncertain environments.Many existing distance measures eitherr)-SFSs)fail to satisfy ess...This study introduces a novel distance measure(DM)for(p,q,r)-spherical fuzzy sets((p,q,to improve decision-making in complex and uncertain environments.Many existing distance measures eitherr)-SFSs)fail to satisfy essential axiomatic properties or produce unintuitive outcomes.To address these limitations,we propose a new three-dimensional divergence-based DM that ensures mathematical consistency,enhances the discrimination of information,and adheres to the axiomatic framework of distance theory.Building on this foundation,we construct a multi-criteria decision-making(MCDM)model that utilizes the proposed DM to evaluate and rank alternatives effectively.The applicability and robustness of the model are validated through a practical case study,demonstrating that it leads to more rational,consistent,and reliable decision outcomes compared to existing approaches.展开更多
In this manuscript,the notion of a hesitant fuzzy soft fixed point is introduced.Using this notion and the concept of Suzuki-type(μ,ν)-weak contraction for hesitant fuzzy soft set valued-mapping,some fixed point res...In this manuscript,the notion of a hesitant fuzzy soft fixed point is introduced.Using this notion and the concept of Suzuki-type(μ,ν)-weak contraction for hesitant fuzzy soft set valued-mapping,some fixed point results are established in the framework of metric spaces.Based on the presented work,some examples reflecting decision-making problems related to real life are also solved.The suggested method’s flexibility and efficacy compared to conventional techniques are demonstrated in decision-making situations involving uncertainty,such as choosing the best options in multi-criteria settings.We noted that the presented work combines and generalizes two major concepts,the idea of soft sets and hesitant fuzzy set-valued mapping from the existing literature.展开更多
Selective laser melting(SLM)is a unique additive manufacturing(AM)category that can be used to manufacture mechanical parts.It has been widely used in aerospace and automotive using metal or alloy powder.The build ori...Selective laser melting(SLM)is a unique additive manufacturing(AM)category that can be used to manufacture mechanical parts.It has been widely used in aerospace and automotive using metal or alloy powder.The build orientation is crucial in AM because it affects the as-built part,including its part accuracy,surface roughness,support structure,and build time and cost.A mechanical part is usually composed of multiple surface features.The surface features carry the production and design knowledge,which can be utilized in SLM fabrication.This study proposes a method to determine the build orientation of multi-feature mechanical parts(MFMPs)in SLM.First,the surface features of an MFMP are recognized and grouped for formulating the particular optimization objectives.Second,the estimation models of involved optimization objectives are established,and a set of alternative build orientations(ABOs)is further obtained by many-objective optimization.Lastly,a multi-objective decision making method integrated by the technique for order of preference by similarity to the ideal solution and cosine similarity measure is presented to select an optimal build orientation from those ABOs.The weights of the feature groups and considered objectives are achieved by a fuzzy analytical hierarchy process.Two case studies are reported to validate the proposed method with numerical results,and the effectiveness comparison is presented.Physical manufacturing is conducted to prove the performance of the proposed method.The measured average sampling surface roughness of the most crucial feature of the bracket in the original orientation and the orientations obtained by the weighted sum model and the proposed method are 15.82,10.84,and 10.62μm,respectively.The numerical and physical validation results demonstrate that the proposed method is desirable to determine the build orientations of MFMPs with competitive results in SLM.展开更多
Multi-converter system is mainly used in advanced automotive systems.Different converters and inverters are taking part in automotive systems to provide different voltage levels in a multi-converter system.It involves...Multi-converter system is mainly used in advanced automotive systems.Different converters and inverters are taking part in automotive systems to provide different voltage levels in a multi-converter system.It involves constant voltage load(CVL),constant power load(CPL)and other loads.The CPL in such systems offers negative impedance characteristic and it creates a destabilizing effect on the main converter.The effect of destabilization can be reduced by increasing the CVL or inserting parasitic components.Attempts have been made by authors to improve the stability by using parasitics of different components such as switch,diode and inductor.Influence of insertion of parasitics including the series equivalent resistance of the filter capacitor and variation in CVL on the performance of main converter is mathematically analyzed and conflicting behavior between system stability and efficiency is observed.The optimum solution between these two functions is obtained by using multi-objective decision making(MODM)by varying parasitics of different components and CVL.An attempt has been made to demonstrate the effect of CVL load and the parasitics on the stability and efficiency of the main converter,experimentally.展开更多
The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly...The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly focus on objectives,treating decision variables as a total variable to solve the problem without consideringthe critical role of decision variables in objective optimization.As seen,a variety of decision variable groupingalgorithms have been proposed.However,these algorithms are relatively broad for the changes of most decisionvariables in the evolution process and are time-consuming in the process of finding the Pareto frontier.To solvethese problems,a multi-objective optimization algorithm for grouping decision variables based on extreme pointPareto frontier(MOEA-DV/EPF)is proposed.This algorithm adopts a preprocessing rule to solve the Paretooptimal solution set of extreme points generated by simultaneous evolution in various target directions,obtainsthe basic Pareto front surface to determine the convergence effect,and analyzes the convergence and distributioneffects of decision variables.In the later stages of algorithm optimization,different mutation strategies are adoptedaccording to the nature of the decision variables to speed up the rate of evolution to obtain excellent individuals,thusenhancing the performance of the algorithm.Evaluation validation of the test functions shows that this algorithmcan solve the multi-objective optimization problem more efficiently.展开更多
In this paper, for multi objective decision making, the defects on the commonly used interactive methods based on the satisfactoriness criterion is studied. Then a class of two stage interactive method based on the...In this paper, for multi objective decision making, the defects on the commonly used interactive methods based on the satisfactoriness criterion is studied. Then a class of two stage interactive method based on the satisfactoriness criterion is proposed for improvement with the satisfactoriness criterion being determined through the collection of the decision makers preference information. An application example is presented for illustration of applicability of the method.展开更多
In the paper, it is discussed that the method on how to transform the multi-person bilevel multi-objective decision making problem into the equivalent generalized multi-objective decision making problem by using Kuhn-...In the paper, it is discussed that the method on how to transform the multi-person bilevel multi-objective decision making problem into the equivalent generalized multi-objective decision making problem by using Kuhn-Tucker sufficient and necessary condition. In order to embody the decision maker′s hope and transform it into single-objective decision making problem with the help of ε-constraint method. Then we can obtain the global optimal solution by means of simulated annealing algorithm.展开更多
The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the intera...The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage.展开更多
A decision support system, including a multi-objective optimization framework and a multi-attribute decision making approach is proposed for satellite equipment layout. Firstly, given three objectives (to minimize the...A decision support system, including a multi-objective optimization framework and a multi-attribute decision making approach is proposed for satellite equipment layout. Firstly, given three objectives (to minimize the C.G. offset, the cross moments of inertia and the space debris impact risk), we develop a threedimensional layout optimization model. Unlike most of the previous works just focusing on mass characteristics of the system, a space debris impact risk index is developed. Secondly, we develop an efficient optimization framework for the integration of computer-aided design (CAD) software as well as the optimization algorithm to obtain the Pareto front of the layout optimization problem. Thirdly, after obtaining the candidate solutions, we present a multi-attribute decision making approach, which integrates the smart Pareto filter and the correlation coefficient and standard deviation (CCSD) method to select the best tradeoff solutions on the optimal Pareto fronts. Finally, the framework and the decision making approach are applied to a case study of a satellite platform.展开更多
In this paper, it is discussed that the method on how to transform the bilevel multi objective decision making problem (BMDMP) into the equivalent generalized multi objective decision making problem. In order to bet...In this paper, it is discussed that the method on how to transform the bilevel multi objective decision making problem (BMDMP) into the equivalent generalized multi objective decision making problem. In order to better embody the decision maker′s hope and desire, we can transform it into the goal programming problem by means of genetic algorithms and obtain the goal optimization solution. The method which is satisfactory is elaborated in the following example.展开更多
The treatment engineering of landslide hazard is a complicated systemengineering. The selecting treatment scheme is influenced by many factors such as technology,economics, environment, and risk. The decision-making o...The treatment engineering of landslide hazard is a complicated systemengineering. The selecting treatment scheme is influenced by many factors such as technology,economics, environment, and risk. The decision-making of treatment schemes of landslide hazard is aproblem of comprehensive judgment with multi-hierarchy and multi-objective. The traditional analysishierarchy process needs identity test. The traditional analysis hierarchy process is improved bymeans of optimal transfer matrix here. An improved hierarchy decision-making model for the treatmentof landslide hazard is set up. The judgment matrix obtained by the method can naturally meet therequirement of identity, so the identity test is not necessary. At last, the method is applied tothe treatment decision-making of the dangerous rock mass at the Slate Mountain, and its applicationis discussed in detail.展开更多
In order to make a decision in the face of multiple objectives, it is necessary to know the relative importance of the different objectives. Yet, it is often very difficult to specify a set of precise weights before p...In order to make a decision in the face of multiple objectives, it is necessary to know the relative importance of the different objectives. Yet, it is often very difficult to specify a set of precise weights before possible alternatives solutions are known. In this paper, we present an improved weighted method, which is based on a modified definition by the membership function of fuzzy theory; an interactive, iterative method for arriving at an acceptable solution. The decision maker gradually discerns what is achievable and adjusts his aspirations and implicitly the specification of weights and trade-offs between his objectives, in the light of what he learns. To aid the decision maker's cognition and to allow him to express his wishes in a natural way, we present decision maker with grey relational degree to select the best solution from the finite solutions.展开更多
A new fuzzification method for multi-objective decision-making and selective sorting is proposed on the basis of the fuzzy consistent relation, and the specific algorithm is presented. The method is applied to the eva...A new fuzzification method for multi-objective decision-making and selective sorting is proposed on the basis of the fuzzy consistent relation, and the specific algorithm is presented. The method is applied to the evaluation of highway planning of Zhanjiang city. To decrease the subjectivity in the process of decision-making, the LOWA operator is introduced, and a discussion on how to select appropriate weights involved in multi-objective sorting is made. It is concluded that it is feasible to apply the fuzzy consistent relation to multi-objective decision-making analysis, and the improved fuzzication method is workable.展开更多
基金Project (No. K81077) supported by the Department of Automation, Xiamen University, China
文摘A vague-set-based fuzzy multi-objective decision making model is developed for evaluating bidding plans in a bid- ding purchase process. A group of decision-makers (DMs) first independently assess bidding plans according to their experience and preferences, and these assessments may be expressed as linguistic terms, which are then converted to fuzzy numbers. The resulting decision matrices are then transformed to objective membership grade matrices. The lower bound of satisfaction and upper bound of dissatisfaction are used to determine each bidding plan’s supporting, opposing, and neutral objective sets, which together determine the vague value of a bidding plan. Finally, a score function is employed to rank all bidding plans. A new score function based on vague sets is introduced in the model and a novel method is presented for calculating the lower bound of sat- isfaction and upper bound of dissatisfaction. In a vague-set-based fuzzy multi-objective decision making model, different valua- tions for upper and lower bounds of satisfaction usually lead to distinct ranking results. Therefore, it is crucial to effectively contain DMs’ arbitrariness and subjectivity when these values are determined.
文摘Across four studies,we explore the impact of solitude on consumers’reliance on feelings versus reasons in decision making,along with the underlying mechanism and boundary conditions.The results indicate that solitude individuals(vs.non-solitude)would prefer feeling-based strategy in decision-making,resulting in a higher intention of choosing the affectively superior option over the cognitively superior option(Study 1).Self-focus plays the underlying mechanism in the solitude effect(Study 2).Moreover,we also examine two boundary conditions:motivation(Study 3)and temporal orientation(Study 4),which indicates that involuntary motivation and future orientation can mitigate the solitude effect on affective processing.These findings provide insights into consumers’judgments of product attributes and selection of decision-making strategies according to their situations.
文摘This study focuses on the construction and application of intelligent financial decision-making models driven by generative artificial intelligence(AI).It analyzes the mechanisms by which generative AI empowers financial decision-making within a dual framework of dynamic knowledge evolution and risk control.The research reveals that generative AI,with its superior data processing,pattern recognition,and autonomous learning capabilities,can transcend the limitations of traditional decision-making models,facilitating a significant shift from causal inference to probabilistic creation in decision-making paradigms.By systematically constructing an intelligent financial decision-making model that includes data governance,core engine,and decision output layers,the study clarifies the functional roles and collaborative mechanisms of each layer.Additionally,it addresses key challenges in technology application,institutional adaptation,and organizational transformation by proposing systematic strategies for technical risk management,institutional innovation,and organizational capability enhancement,aiming to provide robust theoretical support and practical guidance for the intelligent transformation of corporate financial decision-making.
基金co-supported by the National Natural Science Foundation of China(No.91852115)。
文摘The high maneuverability of modern fighters in close air combat imposes significant cognitive demands on pilots,making rapid,accurate decision-making challenging.While reinforcement learning(RL)has shown promise in this domain,the existing methods often lack strategic depth and generalization in complex,high-dimensional environments.To address these limitations,this paper proposes an optimized self-play method enhanced by advancements in fighter modeling,neural network design,and algorithmic frameworks.This study employs a six-degree-of-freedom(6-DOF)F-16 fighter model based on open-source aerodynamic data,featuring airborne equipment and a realistic visual simulation platform,unlike traditional 3-DOF models.To capture temporal dynamics,Long Short-Term Memory(LSTM)layers are integrated into the neural network,complemented by delayed input stacking.The RL environment incorporates expert strategies,curiositydriven rewards,and curriculum learning to improve adaptability and strategic decision-making.Experimental results demonstrate that the proposed approach achieves a winning rate exceeding90%against classical single-agent methods.Additionally,through enhanced 3D visual platforms,we conducted human-agent confrontation experiments,where the agent attained an average winning rate of over 75%.The agent's maneuver trajectories closely align with human pilot strategies,showcasing its potential in decision-making and pilot training applications.This study highlights the effectiveness of integrating advanced modeling and self-play techniques in developing robust air combat decision-making systems.
基金supported by“Planning Subject for the 14th Five Year Plan of National Education Sciences of China(DBA210296)”.
文摘We examined the relationship between social support and career adaptability,as well as the mediating roles of proactive personality and career decision-making self-efficacy in this process.A total of 1354 Chinese college students(female=964;mean age=19.53 years,SD=1.33 years)completed an online questionnaire.Path analysis indicated that social support was positively associated with higher levels of career adaptability.Both proactive personality and career decision-making self-efficacy served as parallel mediators,strengthening the relationship between social support and career adaptability.The complete chain mediation analysis revealed that social support influences career adaptability primarily through proactive personality,which in turn enhances career decision-making self-efficacy,further contributing to increased career adaptability.These findings extend career capital theory by demonstrating that social and psychological resources jointly facilitate career adaptability.
文摘Transportation systems are rapidly transforming in response to urbanization,sustainability challenges,and advances in digital technologies.This review synthesizes the intersection of artificial intelligence(AI),fuzzy logic,and multi-criteria decision-making(MCDM)in transportation research.A comprehensive literature search was conducted in the Scopus database,utilizing carefully selected AI,fuzzy,and MCDM keywords.Studies were rigorously screened according to explicit inclusion and exclusion criteria,resulting in 73 eligible publications spanning 2006-2025.The review protocol included transparent data extraction on methodological approaches,application domains,and geographic distribution.Key findings highlight the prevalence of hybrid fuzzyAHPand TOPSIS methods,the widespread integration of machine learning for prediction and optimization,and a predominant focus on logistics and infrastructure planning within the transportation sector.Geographic analysis underscores a marked concentration of research activity in Asia,while other regions remain underrepresented,signaling the need for broader international collaboration.The review also addresses persistent challenges such asmethodological complexity,data limitations,and model interpretability.Future research directions are proposed,including the integration of reinforcement learning,real-time analytics,and big data-driven adaptive solutions.This study offers a comprehensive synthesis and critical perspective,serving as a valuable reference for researchers,practitioners,and policymakers seeking to enhance the efficiency,resilience,and sustainability of transportation systems through intelligent decision-making frameworks.
文摘Enhancing Autonomous Decision-Making (ADM) for unmanned combat aerial vehicle formations in beyond-visual-range air combat is pivotal for future battlefields, whereas the predominant reinforcement learning technique for ADM has been proven to be inadequately fitting complex tactical Unit Coordination (UC), limiting the integrity of decision-making for formations. This study proposes a knowledge-enhanced ADM method, with a focus on UC, to elevate formation combat effectiveness. The main innovation is integrating data mining technique with tactical knowledge mining and integration. Foremost, based on Frequent Event Arrangement Mining (FEAM) theory, a cross-channel UC knowledge mining method is designed by introducing data flow, which is capable of capturing dynamic coordinative action sequences. Then, a dual-mode knowledge integration method is proposed by employing the Graph Attention Network (GAT) and attenuated structural similarity, bolstering the interplay between autonomous UC tactics fitting and knowledge injection. The experimental results demonstrate that the algorithm surpasses the existing methods, providing more strategic maneuver trajectories and a win rate of more than 90% in different scenarios. The method is promising to augment the autonomous operational capabilities of unmanned formations and drive the evolution of combat effectiveness.
文摘This study introduces a novel distance measure(DM)for(p,q,r)-spherical fuzzy sets((p,q,to improve decision-making in complex and uncertain environments.Many existing distance measures eitherr)-SFSs)fail to satisfy essential axiomatic properties or produce unintuitive outcomes.To address these limitations,we propose a new three-dimensional divergence-based DM that ensures mathematical consistency,enhances the discrimination of information,and adheres to the axiomatic framework of distance theory.Building on this foundation,we construct a multi-criteria decision-making(MCDM)model that utilizes the proposed DM to evaluate and rank alternatives effectively.The applicability and robustness of the model are validated through a practical case study,demonstrating that it leads to more rational,consistent,and reliable decision outcomes compared to existing approaches.
基金funded by National Science,Research and Innovation Fund(NSRF)King Mongkut's University of Technology North Bangkok with Contract No.KMUTNB-FF-68-B-46.
文摘In this manuscript,the notion of a hesitant fuzzy soft fixed point is introduced.Using this notion and the concept of Suzuki-type(μ,ν)-weak contraction for hesitant fuzzy soft set valued-mapping,some fixed point results are established in the framework of metric spaces.Based on the presented work,some examples reflecting decision-making problems related to real life are also solved.The suggested method’s flexibility and efficacy compared to conventional techniques are demonstrated in decision-making situations involving uncertainty,such as choosing the best options in multi-criteria settings.We noted that the presented work combines and generalizes two major concepts,the idea of soft sets and hesitant fuzzy set-valued mapping from the existing literature.
基金funded by the National Key R&D Program of China(Grant No.2018YFB1700700)the National Natural Science Foundation of China(Grant Nos.51935009 and 51821093).
文摘Selective laser melting(SLM)is a unique additive manufacturing(AM)category that can be used to manufacture mechanical parts.It has been widely used in aerospace and automotive using metal or alloy powder.The build orientation is crucial in AM because it affects the as-built part,including its part accuracy,surface roughness,support structure,and build time and cost.A mechanical part is usually composed of multiple surface features.The surface features carry the production and design knowledge,which can be utilized in SLM fabrication.This study proposes a method to determine the build orientation of multi-feature mechanical parts(MFMPs)in SLM.First,the surface features of an MFMP are recognized and grouped for formulating the particular optimization objectives.Second,the estimation models of involved optimization objectives are established,and a set of alternative build orientations(ABOs)is further obtained by many-objective optimization.Lastly,a multi-objective decision making method integrated by the technique for order of preference by similarity to the ideal solution and cosine similarity measure is presented to select an optimal build orientation from those ABOs.The weights of the feature groups and considered objectives are achieved by a fuzzy analytical hierarchy process.Two case studies are reported to validate the proposed method with numerical results,and the effectiveness comparison is presented.Physical manufacturing is conducted to prove the performance of the proposed method.The measured average sampling surface roughness of the most crucial feature of the bracket in the original orientation and the orientations obtained by the weighted sum model and the proposed method are 15.82,10.84,and 10.62μm,respectively.The numerical and physical validation results demonstrate that the proposed method is desirable to determine the build orientations of MFMPs with competitive results in SLM.
文摘Multi-converter system is mainly used in advanced automotive systems.Different converters and inverters are taking part in automotive systems to provide different voltage levels in a multi-converter system.It involves constant voltage load(CVL),constant power load(CPL)and other loads.The CPL in such systems offers negative impedance characteristic and it creates a destabilizing effect on the main converter.The effect of destabilization can be reduced by increasing the CVL or inserting parasitic components.Attempts have been made by authors to improve the stability by using parasitics of different components such as switch,diode and inductor.Influence of insertion of parasitics including the series equivalent resistance of the filter capacitor and variation in CVL on the performance of main converter is mathematically analyzed and conflicting behavior between system stability and efficiency is observed.The optimum solution between these two functions is obtained by using multi-objective decision making(MODM)by varying parasitics of different components and CVL.An attempt has been made to demonstrate the effect of CVL load and the parasitics on the stability and efficiency of the main converter,experimentally.
基金the Liaoning Province Nature Fundation Project(2022-MS-291)the National Programme for Foreign Expert Projects(G2022006008L)+2 种基金the Basic Research Projects of Liaoning Provincial Department of Education(LJKMZ20220781,LJKMZ20220783,LJKQZ20222457)King Saud University funded this study through theResearcher Support Program Number(RSPD2023R704)King Saud University,Riyadh,Saudi Arabia.
文摘The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly focus on objectives,treating decision variables as a total variable to solve the problem without consideringthe critical role of decision variables in objective optimization.As seen,a variety of decision variable groupingalgorithms have been proposed.However,these algorithms are relatively broad for the changes of most decisionvariables in the evolution process and are time-consuming in the process of finding the Pareto frontier.To solvethese problems,a multi-objective optimization algorithm for grouping decision variables based on extreme pointPareto frontier(MOEA-DV/EPF)is proposed.This algorithm adopts a preprocessing rule to solve the Paretooptimal solution set of extreme points generated by simultaneous evolution in various target directions,obtainsthe basic Pareto front surface to determine the convergence effect,and analyzes the convergence and distributioneffects of decision variables.In the later stages of algorithm optimization,different mutation strategies are adoptedaccording to the nature of the decision variables to speed up the rate of evolution to obtain excellent individuals,thusenhancing the performance of the algorithm.Evaluation validation of the test functions shows that this algorithmcan solve the multi-objective optimization problem more efficiently.
文摘In this paper, for multi objective decision making, the defects on the commonly used interactive methods based on the satisfactoriness criterion is studied. Then a class of two stage interactive method based on the satisfactoriness criterion is proposed for improvement with the satisfactoriness criterion being determined through the collection of the decision makers preference information. An application example is presented for illustration of applicability of the method.
基金This project is supported by National Natural Science Foundation of China( 6 9874 0 0 9) and theNatural Science Foundation of Heilongjiang Province( A0 0 0 4 )
文摘In the paper, it is discussed that the method on how to transform the multi-person bilevel multi-objective decision making problem into the equivalent generalized multi-objective decision making problem by using Kuhn-Tucker sufficient and necessary condition. In order to embody the decision maker′s hope and transform it into single-objective decision making problem with the help of ε-constraint method. Then we can obtain the global optimal solution by means of simulated annealing algorithm.
基金supported in part by the Central Government Guides Local Science and TechnologyDevelopment Funds(Grant No.YDZJSX2021A038)in part by theNational Natural Science Foundation of China under(Grant No.61806138)in part by the China University Industry-University-Research Collaborative Innovation Fund(Future Network Innovation Research and Application Project)(Grant 2021FNA04014).
文摘The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage.
基金supported by the National Natural Science Foundation of China(51405499)
文摘A decision support system, including a multi-objective optimization framework and a multi-attribute decision making approach is proposed for satellite equipment layout. Firstly, given three objectives (to minimize the C.G. offset, the cross moments of inertia and the space debris impact risk), we develop a threedimensional layout optimization model. Unlike most of the previous works just focusing on mass characteristics of the system, a space debris impact risk index is developed. Secondly, we develop an efficient optimization framework for the integration of computer-aided design (CAD) software as well as the optimization algorithm to obtain the Pareto front of the layout optimization problem. Thirdly, after obtaining the candidate solutions, we present a multi-attribute decision making approach, which integrates the smart Pareto filter and the correlation coefficient and standard deviation (CCSD) method to select the best tradeoff solutions on the optimal Pareto fronts. Finally, the framework and the decision making approach are applied to a case study of a satellite platform.
文摘In this paper, it is discussed that the method on how to transform the bilevel multi objective decision making problem (BMDMP) into the equivalent generalized multi objective decision making problem. In order to better embody the decision maker′s hope and desire, we can transform it into the goal programming problem by means of genetic algorithms and obtain the goal optimization solution. The method which is satisfactory is elaborated in the following example.
文摘The treatment engineering of landslide hazard is a complicated systemengineering. The selecting treatment scheme is influenced by many factors such as technology,economics, environment, and risk. The decision-making of treatment schemes of landslide hazard is aproblem of comprehensive judgment with multi-hierarchy and multi-objective. The traditional analysishierarchy process needs identity test. The traditional analysis hierarchy process is improved bymeans of optimal transfer matrix here. An improved hierarchy decision-making model for the treatmentof landslide hazard is set up. The judgment matrix obtained by the method can naturally meet therequirement of identity, so the identity test is not necessary. At last, the method is applied tothe treatment decision-making of the dangerous rock mass at the Slate Mountain, and its applicationis discussed in detail.
基金This research is supported by National Natural Science Foundation of China(70471019)
文摘In order to make a decision in the face of multiple objectives, it is necessary to know the relative importance of the different objectives. Yet, it is often very difficult to specify a set of precise weights before possible alternatives solutions are known. In this paper, we present an improved weighted method, which is based on a modified definition by the membership function of fuzzy theory; an interactive, iterative method for arriving at an acceptable solution. The decision maker gradually discerns what is achievable and adjusts his aspirations and implicitly the specification of weights and trade-offs between his objectives, in the light of what he learns. To aid the decision maker's cognition and to allow him to express his wishes in a natural way, we present decision maker with grey relational degree to select the best solution from the finite solutions.
基金SupportedbytheNationalNaturalScienceFoundationofChina (No .60 1 340 1 0 )
文摘A new fuzzification method for multi-objective decision-making and selective sorting is proposed on the basis of the fuzzy consistent relation, and the specific algorithm is presented. The method is applied to the evaluation of highway planning of Zhanjiang city. To decrease the subjectivity in the process of decision-making, the LOWA operator is introduced, and a discussion on how to select appropriate weights involved in multi-objective sorting is made. It is concluded that it is feasible to apply the fuzzy consistent relation to multi-objective decision-making analysis, and the improved fuzzication method is workable.