期刊文献+
共找到71,390篇文章
< 1 2 250 >
每页显示 20 50 100
A vague-set-based fuzzy multi-objective decision making model for bidding purchase 被引量:4
1
作者 WANG Zhou-jing QIAN Edward Y. 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第4期644-650,共7页
A vague-set-based fuzzy multi-objective decision making model is developed for evaluating bidding plans in a bid- ding purchase process. A group of decision-makers (DMs) first independently assess bidding plans accord... A vague-set-based fuzzy multi-objective decision making model is developed for evaluating bidding plans in a bid- ding purchase process. A group of decision-makers (DMs) first independently assess bidding plans according to their experience and preferences, and these assessments may be expressed as linguistic terms, which are then converted to fuzzy numbers. The resulting decision matrices are then transformed to objective membership grade matrices. The lower bound of satisfaction and upper bound of dissatisfaction are used to determine each bidding plan’s supporting, opposing, and neutral objective sets, which together determine the vague value of a bidding plan. Finally, a score function is employed to rank all bidding plans. A new score function based on vague sets is introduced in the model and a novel method is presented for calculating the lower bound of sat- isfaction and upper bound of dissatisfaction. In a vague-set-based fuzzy multi-objective decision making model, different valua- tions for upper and lower bounds of satisfaction usually lead to distinct ranking results. Therefore, it is crucial to effectively contain DMs’ arbitrariness and subjectivity when these values are determined. 展开更多
关键词 Fuzzy multi-objective decision making model Vague set Score function Lower bound of satisfaction Upper bound of dissatisfaction
在线阅读 下载PDF
Improved Fuzzification Method for Multi-Objective Decision-Making and Its Application in Evaluation of Highway Planning
2
作者 雷秀娟 史忠科 《Journal of Southwest Jiaotong University(English Edition)》 2003年第2期198-202,共5页
A new fuzzification method for multi-objective decision-making and selective sorting is proposed on the basis of the fuzzy consistent relation, and the specific algorithm is presented. The method is applied to the eva... A new fuzzification method for multi-objective decision-making and selective sorting is proposed on the basis of the fuzzy consistent relation, and the specific algorithm is presented. The method is applied to the evaluation of highway planning of Zhanjiang city. To decrease the subjectivity in the process of decision-making, the LOWA operator is introduced, and a discussion on how to select appropriate weights involved in multi-objective sorting is made. It is concluded that it is feasible to apply the fuzzy consistent relation to multi-objective decision-making analysis, and the improved fuzzication method is workable. 展开更多
关键词 multi-objective decision-making fuzzy consistent matrix LOWA operator EVALUATION highway planning
在线阅读 下载PDF
Fuzzy Multi-Objective Decision Model of Supplier Selection with Preference Information 被引量:1
3
作者 Chen Zhixiang School of Management, Zhongshan University, Guangzhou 510275, P. R. China Ma Shihua & Chen Rongqiu School of Management, Huazhong University of Science & Technology, Wuhan 430074, R R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2001年第1期34-41,共8页
Supplier selection is a multi-objective decision problem, which must be considered many objectives, some objectives are qualitative, and others are quantitative. Meanwhile, manufacturer has preference for different su... Supplier selection is a multi-objective decision problem, which must be considered many objectives, some objectives are qualitative, and others are quantitative. Meanwhile, manufacturer has preference for different suppliers. In this paper, a new multi-objective decision model with preference information of supplier is established. A practical example of supplier selection problem utilizing this model is studied. The result demonstrates the feasibility and effectiveness of the methods proposed in the paper. 展开更多
关键词 multi-objective Supplier selection FuzZy membership degree.
在线阅读 下载PDF
A multi-objective decision-making method for the treatment scheme of landslide hazard 被引量:8
4
作者 QuanminXie YuanyouXia 《Journal of University of Science and Technology Beijing》 CSCD 2004年第2期101-105,共5页
The treatment engineering of landslide hazard is a complicated systemengineering. The selecting treatment scheme is influenced by many factors such as technology,economics, environment, and risk. The decision-making o... The treatment engineering of landslide hazard is a complicated systemengineering. The selecting treatment scheme is influenced by many factors such as technology,economics, environment, and risk. The decision-making of treatment schemes of landslide hazard is aproblem of comprehensive judgment with multi-hierarchy and multi-objective. The traditional analysishierarchy process needs identity test. The traditional analysis hierarchy process is improved bymeans of optimal transfer matrix here. An improved hierarchy decision-making model for the treatmentof landslide hazard is set up. The judgment matrix obtained by the method can naturally meet therequirement of identity, so the identity test is not necessary. At last, the method is applied tothe treatment decision-making of the dangerous rock mass at the Slate Mountain, and its applicationis discussed in detail. 展开更多
关键词 landslide hazard treatment scheme improved hierarchy decision-making model optimal transfer matrix
在线阅读 下载PDF
Control Method of Effect of Robust Optimization in Multi-Player Multi-Objective Decision-Making
5
作者 Tomoaki Yatsuka Aya Ishigaki +2 位作者 Yuki Kinoshita Tetsuo Yamada Masato Inoue 《American Journal of Operations Research》 2019年第4期175-191,共17页
In the real situations of supply chain, there are different parts such as facilities, logistics warehouses and retail stores and they handle common kinds of products. In this research, these situations are focused on ... In the real situations of supply chain, there are different parts such as facilities, logistics warehouses and retail stores and they handle common kinds of products. In this research, these situations are focused on as the background of this research. They deal with the common quantities of their products, but due to their different environments, the optimal production quantity of one part can be unacceptable to another part and it may suffer a heavy loss. To avoid that kind of unacceptable situations, the common production quantities should be acceptable to all parts in one supply chain. Therefore, the motivation of this research is the necessity of the method to find the production quantities that make all decision makers acceptable is needed. However, it is difficult to find the production quantities that make all decision makers acceptable. Moreover, their acceptable ranges do not always have common ranges. In the decision making of car design, there are similar situations to this type of decision making. The performance of a car consists of purposes such as fuel efficiency, size and so on. Improving one purpose makes another worse and the relationship between these purposes is tradeoff. In these cases, Suriawase process is applied. This process consists of negotiations and reviews of the requirements of the purposes. In the step of negotiations, the requirements of the purposes are share among all decision makers and the solution that makes them as satisfied as possible. In the step of reviews of the requirements, they are reviewed based on the result of the negotiation if the result is unacceptable to some of decision makers. Therefore, through the iterations of the two steps, the solution that makes all decision makers satisfied is obtained. However, in the previous research, the effects that one decision maker reviews requirements in Suriawase process are quantified, but the mathematical model to modify the ranges of production quantities of all decision makers simultaneously is not shown. Therefore, in this research, based on Suriawase process, the mathematical model of multi-player multi-objective decision making is proposed. The mathematical model of multi-player multi-objective decision making by using linear physical programming (LPP) and robust optimization (RO) in the previous research is the basis of the methods of this research. LPP is one of the multi-objective optimization methods and RO is used to make the balance of the preference levels among decision makers. In LPP, the preference ranges of all objective functions are needed, so as the hypothesis of this research. In the research referred in this research, the method to control the effect of RO is not shown. If the effect of RO is too big, the average of the preference level becomes worse. The purpose of this research is to reproduce the mathematical model of multi-player multi-objective decision making based on Suriawase process and propose the method to control the effect of RO. In the proposed model, a set of the solutions of the negotiation problem is obtained and it is proved by the result of the numerical experiment. Therefore, the conclusion that the proposed model is available to obtain a set of the solutions of the negotiation problems in supply chain. 展开更多
关键词 Linear PHYSICAL PROGRAMMING Suriawase Process Multi-Player decision-MAKING Supply CHAIN COORDINATION Robust Optimization
暂未订购
Intelligent decision-making for TBM tunnelling control parameters using multi-objective optimization
6
作者 Shaokang Hou Yaoru Liu +3 位作者 Jialin Yu Rujiu Zhang Li Cheng Chenfeng Gao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期2943-2963,共21页
In tunnel construction,tunnel boring machine(TBM)tunnelling typically relies on manual experience with sub-optimal control parameters,which can easily lead to inefficiency and high costs.This study proposed an intelli... In tunnel construction,tunnel boring machine(TBM)tunnelling typically relies on manual experience with sub-optimal control parameters,which can easily lead to inefficiency and high costs.This study proposed an intelligent decision-making method for TBM tunnelling control parameters based on multiobjective optimization(MOO).First,the effective TBM operation dataset is obtained through data preprocessing of the Songhua River(YS)tunnel project in China.Next,the proposed method begins with developing machine learning models for predicting TBM tunnelling performance parameters(i.e.total thrust and cutterhead torque),rock mass classification,and hazard risks(i.e.tunnel collapse and shield jamming).Then,considering three optimal objectives,(i.e.,penetration rate,rock-breaking energy consumption,and cutterhead hob wear),the MOO framework and corresponding mathematical expression are established.The Pareto optimal front is solved using DE-NSGA-II algorithm.Finally,the optimal control parameters(i.e.,advance rate and cutterhead rotation speed)are obtained by the satisfactory solution determination criterion,which can balance construction safety and efficiency with satisfaction.Furthermore,the proposed method is validated through 50 cases of TBM tunnelling,showing promising potential of application. 展开更多
关键词 Tunnel boring machine(TBM) Intelligent decision-making multi-objective optimization(MOO) Control parameters
在线阅读 下载PDF
An Improved Chaotic Quantum Multi-Objective Harris Hawks Optimization Algorithm for Emergency Centers Site Selection Decision Problem
7
作者 Yuting Zhu Wenyu Zhang +3 位作者 Hainan Wang Junjie Hou Haining Wang Meng Wang 《Computers, Materials & Continua》 2025年第2期2177-2198,共22页
Addressing the complex issue of emergency resource distribution center site selection in uncertain environments, this study was conducted to comprehensively consider factors such as uncertainty parameters and the urge... Addressing the complex issue of emergency resource distribution center site selection in uncertain environments, this study was conducted to comprehensively consider factors such as uncertainty parameters and the urgency of demand at disaster-affected sites. Firstly, urgency cost, economic cost, and transportation distance cost were identified as key objectives. The study applied fuzzy theory integration to construct a triangular fuzzy multi-objective site selection decision model. Next, the defuzzification theory transformed the fuzzy decision model into a precise one. Subsequently, an improved Chaotic Quantum Multi-Objective Harris Hawks Optimization (CQ-MOHHO) algorithm was proposed to solve the model. The CQ-MOHHO algorithm was shown to rapidly produce high-quality Pareto front solutions and identify optimal site selection schemes for emergency resource distribution centers through case studies. This outcome verified the feasibility and efficacy of the site selection decision model and the CQ-MOHHO algorithm. To further assess CQ-MOHHO’s performance, Zitzler-Deb-Thiele (ZDT) test functions, commonly used in multi-objective optimization, were employed. Comparisons with Multi-Objective Harris Hawks Optimization (MOHHO), Non-dominated Sorting Genetic Algorithm II (NSGA-II), and Multi-Objective Grey Wolf Optimizer (MOGWO) using Generational Distance (GD), Hypervolume (HV), and Inverted Generational Distance (IGD) metrics showed that CQ-MOHHO achieved superior global search ability, faster convergence, and higher solution quality. The CQ-MOHHO algorithm efficiently achieved a balance between multiple objectives, providing decision-makers with satisfactory solutions and a valuable reference for researching and applying emergency site selection problems. 展开更多
关键词 Site selection triangular fuzzy theory chaotic quantum Harris Hawks optimization multi-objective optimization
在线阅读 下载PDF
Multi-Objective Optimization Algorithm for Grouping Decision Variables Based on Extreme Point Pareto Frontier 被引量:1
8
作者 JunWang Linxi Zhang +4 位作者 Hao Zhang Funan Peng Mohammed A.El-Meligy Mohamed Sharaf Qiang Fu 《Computers, Materials & Continua》 SCIE EI 2024年第4期1281-1299,共19页
The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly... The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly focus on objectives,treating decision variables as a total variable to solve the problem without consideringthe critical role of decision variables in objective optimization.As seen,a variety of decision variable groupingalgorithms have been proposed.However,these algorithms are relatively broad for the changes of most decisionvariables in the evolution process and are time-consuming in the process of finding the Pareto frontier.To solvethese problems,a multi-objective optimization algorithm for grouping decision variables based on extreme pointPareto frontier(MOEA-DV/EPF)is proposed.This algorithm adopts a preprocessing rule to solve the Paretooptimal solution set of extreme points generated by simultaneous evolution in various target directions,obtainsthe basic Pareto front surface to determine the convergence effect,and analyzes the convergence and distributioneffects of decision variables.In the later stages of algorithm optimization,different mutation strategies are adoptedaccording to the nature of the decision variables to speed up the rate of evolution to obtain excellent individuals,thusenhancing the performance of the algorithm.Evaluation validation of the test functions shows that this algorithmcan solve the multi-objective optimization problem more efficiently. 展开更多
关键词 multi-objective evolutionary optimization algorithm decision variables grouping extreme point pareto frontier
在线阅读 下载PDF
Large-Scale Multi-Objective Optimization Algorithm Based on Weighted Overlapping Grouping of Decision Variables
9
作者 Liang Chen Jingbo Zhang +2 位作者 Linjie Wu Xingjuan Cai Yubin Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期363-383,共21页
The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the intera... The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage. 展开更多
关键词 decision variable grouping large-scale multi-objective optimization algorithms weighted overlapping grouping direction-guided evolution
在线阅读 下载PDF
Build orientation determination of multi-feature mechanical parts in selective laser melting via multi-objective decision making 被引量:1
10
作者 Hongsheng SHENG Jinghua XU +2 位作者 Shuyou ZHANG Jianrong TAN Kang WANG 《Frontiers of Mechanical Engineering》 SCIE CSCD 2023年第2期227-251,共25页
Selective laser melting(SLM)is a unique additive manufacturing(AM)category that can be used to manufacture mechanical parts.It has been widely used in aerospace and automotive using metal or alloy powder.The build ori... Selective laser melting(SLM)is a unique additive manufacturing(AM)category that can be used to manufacture mechanical parts.It has been widely used in aerospace and automotive using metal or alloy powder.The build orientation is crucial in AM because it affects the as-built part,including its part accuracy,surface roughness,support structure,and build time and cost.A mechanical part is usually composed of multiple surface features.The surface features carry the production and design knowledge,which can be utilized in SLM fabrication.This study proposes a method to determine the build orientation of multi-feature mechanical parts(MFMPs)in SLM.First,the surface features of an MFMP are recognized and grouped for formulating the particular optimization objectives.Second,the estimation models of involved optimization objectives are established,and a set of alternative build orientations(ABOs)is further obtained by many-objective optimization.Lastly,a multi-objective decision making method integrated by the technique for order of preference by similarity to the ideal solution and cosine similarity measure is presented to select an optimal build orientation from those ABOs.The weights of the feature groups and considered objectives are achieved by a fuzzy analytical hierarchy process.Two case studies are reported to validate the proposed method with numerical results,and the effectiveness comparison is presented.Physical manufacturing is conducted to prove the performance of the proposed method.The measured average sampling surface roughness of the most crucial feature of the bracket in the original orientation and the orientations obtained by the weighted sum model and the proposed method are 15.82,10.84,and 10.62μm,respectively.The numerical and physical validation results demonstrate that the proposed method is desirable to determine the build orientations of MFMPs with competitive results in SLM. 展开更多
关键词 selective laser melting(SLM) build orientation determination multi-feature mechanical part(MFMP) fuzzy analytical hierarchy process multi-objective decision making(MODM)
原文传递
Stability Analysis and Efficiency Improvement of a Multi-converter System Using Multi-objective Decision Making 被引量:1
11
作者 Rashmi Patel R.Chudamani 《Chinese Journal of Electrical Engineering》 CSCD 2023年第2期71-83,共13页
Multi-converter system is mainly used in advanced automotive systems.Different converters and inverters are taking part in automotive systems to provide different voltage levels in a multi-converter system.It involves... Multi-converter system is mainly used in advanced automotive systems.Different converters and inverters are taking part in automotive systems to provide different voltage levels in a multi-converter system.It involves constant voltage load(CVL),constant power load(CPL)and other loads.The CPL in such systems offers negative impedance characteristic and it creates a destabilizing effect on the main converter.The effect of destabilization can be reduced by increasing the CVL or inserting parasitic components.Attempts have been made by authors to improve the stability by using parasitics of different components such as switch,diode and inductor.Influence of insertion of parasitics including the series equivalent resistance of the filter capacitor and variation in CVL on the performance of main converter is mathematically analyzed and conflicting behavior between system stability and efficiency is observed.The optimum solution between these two functions is obtained by using multi-objective decision making(MODM)by varying parasitics of different components and CVL.An attempt has been made to demonstrate the effect of CVL load and the parasitics on the stability and efficiency of the main converter,experimentally. 展开更多
关键词 Multi-converter system constant power load(CPL) STABILITY parasitic elements efficiency and multi-objective decision making(MODM)
原文传递
A Multi-Objective Particle Swarm Optimization Algorithm Based on Decomposition and Multi-Selection Strategy
12
作者 Li Ma Cai Dai +1 位作者 Xingsi Xue Cheng Peng 《Computers, Materials & Continua》 SCIE EI 2025年第1期997-1026,共30页
The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition... The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition and multi-selection strategy is proposed to improve the search efficiency.First,two update strategies based on decomposition are used to update the evolving population and external archive,respectively.Second,a multiselection strategy is designed.The first strategy is for the subspace without a non-dominated solution.Among the neighbor particles,the particle with the smallest penalty-based boundary intersection value is selected as the global optimal solution and the particle far away fromthe search particle and the global optimal solution is selected as the personal optimal solution to enhance global search.The second strategy is for the subspace with a non-dominated solution.In the neighbor particles,two particles are randomly selected,one as the global optimal solution and the other as the personal optimal solution,to enhance local search.The third strategy is for Pareto optimal front(PF)discontinuity,which is identified by the cumulative number of iterations of the subspace without non-dominated solutions.In the subsequent iteration,a new probability distribution is used to select from the remaining subspaces to search.Third,an adaptive inertia weight update strategy based on the dominated degree is designed to further improve the search efficiency.Finally,the proposed algorithmis compared with fivemulti-objective particle swarm optimization algorithms and five multi-objective evolutionary algorithms on 22 test problems.The results show that the proposed algorithm has better performance. 展开更多
关键词 multi-objective optimization multi-objective particle swarm optimization DECOMPOSITION multi-selection strategy
在线阅读 下载PDF
A Class of Optimization Method for Bilevel Multi-objective Decision Making Problem with the Help of Satisfactoriness
13
作者 LITong TENGChun-xian 《Systems Science and Systems Engineering》 CSCD 2002年第1期6-12,共7页
In the paper, it is discussed that the method on how to transform the multi-person bilevel multi-objective decision making problem into the equivalent generalized multi-objective decision making problem by using Kuhn-... In the paper, it is discussed that the method on how to transform the multi-person bilevel multi-objective decision making problem into the equivalent generalized multi-objective decision making problem by using Kuhn-Tucker sufficient and necessary condition. In order to embody the decision maker′s hope and transform it into single-objective decision making problem with the help of ε-constraint method. Then we can obtain the global optimal solution by means of simulated annealing algorithm. 展开更多
关键词 bilevel multi-objective decision making satisfactoriness non-inferior solution simulated annealing algorithm
原文传递
Decoding the Solitude:Solitude and Reliance on Feelings versus Reasons in Decision Making 被引量:1
14
作者 HOU Jia-wen LIU Feng-jun XU Yi-fan 《应用心理学》 2025年第3期195-210,共16页
Across four studies,we explore the impact of solitude on consumers’reliance on feelings versus reasons in decision making,along with the underlying mechanism and boundary conditions.The results indicate that solitude... Across four studies,we explore the impact of solitude on consumers’reliance on feelings versus reasons in decision making,along with the underlying mechanism and boundary conditions.The results indicate that solitude individuals(vs.non-solitude)would prefer feeling-based strategy in decision-making,resulting in a higher intention of choosing the affectively superior option over the cognitively superior option(Study 1).Self-focus plays the underlying mechanism in the solitude effect(Study 2).Moreover,we also examine two boundary conditions:motivation(Study 3)and temporal orientation(Study 4),which indicates that involuntary motivation and future orientation can mitigate the solitude effect on affective processing.These findings provide insights into consumers’judgments of product attributes and selection of decision-making strategies according to their situations. 展开更多
关键词 SOLITUDE decision making SELF-FOCUS MOTIVATION temporal orientation
在线阅读 下载PDF
Deep Reinforcement Learning-based Multi-Objective Scheduling for Distributed Heterogeneous Hybrid Flow Shops with Blocking Constraints
15
作者 Xueyan Sun Weiming Shen +3 位作者 Jiaxin Fan Birgit Vogel-Heuser Fandi Bi Chunjiang Zhang 《Engineering》 2025年第3期278-291,共14页
This paper investigates a distributed heterogeneous hybrid blocking flow-shop scheduling problem(DHHBFSP)designed to minimize the total tardiness and total energy consumption simultaneously,and proposes an improved pr... This paper investigates a distributed heterogeneous hybrid blocking flow-shop scheduling problem(DHHBFSP)designed to minimize the total tardiness and total energy consumption simultaneously,and proposes an improved proximal policy optimization(IPPO)method to make real-time decisions for the DHHBFSP.A multi-objective Markov decision process is modeled for the DHHBFSP,where the reward function is represented by a vector with dynamic weights instead of the common objectiverelated scalar value.A factory agent(FA)is formulated for each factory to select unscheduled jobs and is trained by the proposed IPPO to improve the decision quality.Multiple FAs work asynchronously to allocate jobs that arrive randomly at the shop.A two-stage training strategy is introduced in the IPPO,which learns from both single-and dual-policy data for better data utilization.The proposed IPPO is tested on randomly generated instances and compared with variants of the basic proximal policy optimization(PPO),dispatch rules,multi-objective metaheuristics,and multi-agent reinforcement learning methods.Extensive experimental results suggest that the proposed strategies offer significant improvements to the basic PPO,and the proposed IPPO outperforms the state-of-the-art scheduling methods in both convergence and solution quality. 展开更多
关键词 multi-objective Markov decision process Multi-agent deep reinforcement learning Proximal policy optimization Distributed hybrid flow-shop scheduling Blocking constraints
在线阅读 下载PDF
A Surrogate-assisted Multi-objective Grey Wolf Optimizer for Empty-heavy Train Allocation Considering Coordinated Line Utilization Balance 被引量:1
16
作者 Zhigang Du Shaoquan Ni +1 位作者 Jeng-Shyang Pan Shuchuan Chu 《Journal of Bionic Engineering》 2025年第1期383-397,共15页
This paper introduces the Surrogate-assisted Multi-objective Grey Wolf Optimizer(SMOGWO)as a novel methodology for addressing the complex problem of empty-heavy train allocation,with a focus on line utilization balanc... This paper introduces the Surrogate-assisted Multi-objective Grey Wolf Optimizer(SMOGWO)as a novel methodology for addressing the complex problem of empty-heavy train allocation,with a focus on line utilization balance.By integrating surrogate models to approximate the objective functions,SMOGWO significantly improves the efficiency and accuracy of the optimization process.The effectiveness of this approach is evaluated using the CEC2009 multi-objective test function suite,where SMOGWO achieves a superiority rate of 76.67%compared to other leading multi-objective algorithms.Furthermore,the practical applicability of SMOGWO is demonstrated through a case study on empty and heavy train allocation,which validates its ability to balance line capacity,minimize transportation costs,and optimize the technical combination of heavy trains.The research highlights SMOGWO's potential as a robust solution for optimization challenges in railway transportation,offering valuable contributions toward enhancing operational efficiency and promoting sustainable development in the sector. 展开更多
关键词 Surrogate-assisted model Grey wolf optimizer multi-objective optimization Empty-heavy train allocation
在线阅读 下载PDF
Optimal Scheduling of an Independent Electro-Hydrogen System with Hybrid Energy Storage Using a Multi-Objective Standardization Fusion Method
17
作者 Suliang Ma Zeqing Meng +1 位作者 Mingxuan Chen Yuan Jiang 《Energy Engineering》 EI 2025年第1期63-84,共22页
In the independent electro-hydrogen system(IEHS)with hybrid energy storage(HESS),achieving optimal scheduling is crucial.Still,it presents a challenge due to the significant deviations in values ofmultiple optimizatio... In the independent electro-hydrogen system(IEHS)with hybrid energy storage(HESS),achieving optimal scheduling is crucial.Still,it presents a challenge due to the significant deviations in values ofmultiple optimization objective functions caused by their physical dimensions.These deviations seriously affect the scheduling process.A novel standardization fusion method has been established to address this issue by analyzing the variation process of each objective function’s values.The optimal scheduling results of IEHS with HESS indicate that the economy and overall energy loss can be improved 2–3 times under different optimization methods.The proposed method better balances all optimization objective functions and reduces the impact of their dimensionality.When the cost of BESS decreases by approximately 30%,its participation deepens by about 1 time.Moreover,if the price of the electrolyzer is less than 15¥/kWh or if the cost of the fuel cell drops below 4¥/kWh,their participation will increase substantially.This study aims to provide a more reasonable approach to solving multi-objective optimization problems. 展开更多
关键词 Electro-hydrogen system multi-objective optimization standardization method hybrid energy storage system
在线阅读 下载PDF
Two-Stage Interactive Multi-Objective Decision-Making Method Based on the Satisfactoriness Criterion
18
作者 蒋尚华 江孝感 徐南荣 《Journal of Southeast University(English Edition)》 EI CAS 1998年第2期93-100,共8页
In this paper, for multi objective decision making, the defects on the commonly used interactive methods based on the satisfactoriness criterion is studied. Then a class of two stage interactive method based on the... In this paper, for multi objective decision making, the defects on the commonly used interactive methods based on the satisfactoriness criterion is studied. Then a class of two stage interactive method based on the satisfactoriness criterion is proposed for improvement with the satisfactoriness criterion being determined through the collection of the decision makers preference information. An application example is presented for illustration of applicability of the method. 展开更多
关键词 multi objective decision making satisfactoriness criterion collection of preference information
在线阅读 下载PDF
PolyDiffusion:AMulti-Objective Optimized Contour-to-Image Diffusion Framework
19
作者 Yuzhen Liu Jiasheng Yin +3 位作者 Yixuan Chen Jin Wang Xiaolan Zhou Xiaoliang Wang 《Computers, Materials & Continua》 2025年第11期3965-3980,共16页
Multi-instance image generation remains a challenging task in the field of computer vision.While existing diffusionmodels demonstrate impressive fidelity in image generation,they often struggle with precisely controll... Multi-instance image generation remains a challenging task in the field of computer vision.While existing diffusionmodels demonstrate impressive fidelity in image generation,they often struggle with precisely controlling each object’s shape,pose,and size.Methods like layout-to-image and mask-to-image provide spatial guidance but frequently suffer from object shape distortion,overlaps,and poor consistency,particularly in complex scenes with multiple objects.To address these issues,we introduce PolyDiffusion,a contour-based diffusion framework that encodes each object’s contour as a boundary-coordinate sequence,decoupling object shapes and positions.This approach allows for better control over object geometry and spatial positioning,which is critical for achieving high-quality multiinstance generation.We formulate the training process as a multi-objective optimization problem,balancing three key objectives:a denoising diffusion loss to maintain overall image fidelity,a cross-attention contour alignment loss to ensure precise shape adherence,and a reward-guided denoising objective that minimizes the Fréchet distance to real images.In addition,the Object Space-Aware Attention module fuses contour tokens with visual features,while a prior-guided fusion mechanism utilizes inter-object spatial relationships and class semantics to enhance consistency across multiple objects.Experimental results on benchmark datasets such as COCO-Stuff and VOC-2012 demonstrate that PolyDiffusion significantly outperforms existing layout-to-image and mask-to-image methods,achieving notable improvements in both image quality and instance-level segmentation accuracy.The implementation of Poly Diffusion is available at https://github.com/YYYYYJS/PolyDiffusion(accessed on 06 August 2025). 展开更多
关键词 Diffusion models multi-object generation multi-objective optimization contour-to-image
在线阅读 下载PDF
Multi-objective optimization of microwave power transmission system architecture with engineering consideration
20
作者 DONG Shiwei SHINOHARA Naoki 《中国空间科学技术(中英文)》 北大核心 2025年第4期114-122,共9页
In the last decade,space solar power satellites(SSPSs)have been conceived to support net-zero carbon emissions and have attracted considerable attention.Electric energy is transmitted to the ground via a microwave pow... In the last decade,space solar power satellites(SSPSs)have been conceived to support net-zero carbon emissions and have attracted considerable attention.Electric energy is transmitted to the ground via a microwave power beam,a technology known as microwave power transmission(MPT).Due to the vast transmission distance of tens of thousands of kilometers,the power transmitting antenna array must span up to 1 kilometer in diameter.At the same time,the size of the rectifying array on the ground should extend over a few kilometers.This makes the MPT system of SSPSs significantly larger than the existing aerospace engineering system.To design and operate a rational MPT system,comprehensive optimization is required.Taking the space MPT system engineering into consideration,a novel multi-objective optimization function is proposed and further analyzed.The multi-objective optimization problem is modeled mathematically.Beam collection efficiency(BCE)is the primary factor,followed by the thermal management capability.Some tapers,designed to solve the conflict between BCE and the thermal problem,are reviewed.In addition to these two factors,rectenna design complexity is included as a functional factor in the optimization objective.Weight coefficients are assigned to these factors to prioritize them.Radiating planar arrays with different aperture illumination fields are studied,and their performances are compared using the multi-objective optimization function.Transmitting array size,rectifying array size,transmission distance,and transmitted power remaine constant in various cases,ensuring fair comparisons.The analysis results show that the proposed optimization function is effective in optimizing and selecting the MPT system architecture.It is also noted that the multi-objective optimization function can be expanded to include other factors in the future. 展开更多
关键词 space solar power satellite(SSPS) microwave power transmission(MPT) multi-objective function beam collection efficiency(BCE) system engineering
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部