期刊文献+
共找到420篇文章
< 1 2 21 >
每页显示 20 50 100
Intelligent decision-making for TBM tunnelling control parameters using multi-objective optimization
1
作者 Shaokang Hou Yaoru Liu +3 位作者 Jialin Yu Rujiu Zhang Li Cheng Chenfeng Gao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期2943-2963,共21页
In tunnel construction,tunnel boring machine(TBM)tunnelling typically relies on manual experience with sub-optimal control parameters,which can easily lead to inefficiency and high costs.This study proposed an intelli... In tunnel construction,tunnel boring machine(TBM)tunnelling typically relies on manual experience with sub-optimal control parameters,which can easily lead to inefficiency and high costs.This study proposed an intelligent decision-making method for TBM tunnelling control parameters based on multiobjective optimization(MOO).First,the effective TBM operation dataset is obtained through data preprocessing of the Songhua River(YS)tunnel project in China.Next,the proposed method begins with developing machine learning models for predicting TBM tunnelling performance parameters(i.e.total thrust and cutterhead torque),rock mass classification,and hazard risks(i.e.tunnel collapse and shield jamming).Then,considering three optimal objectives,(i.e.,penetration rate,rock-breaking energy consumption,and cutterhead hob wear),the MOO framework and corresponding mathematical expression are established.The Pareto optimal front is solved using DE-NSGA-II algorithm.Finally,the optimal control parameters(i.e.,advance rate and cutterhead rotation speed)are obtained by the satisfactory solution determination criterion,which can balance construction safety and efficiency with satisfaction.Furthermore,the proposed method is validated through 50 cases of TBM tunnelling,showing promising potential of application. 展开更多
关键词 Tunnel boring machine(TBM) Intelligent decision-making multi-objective optimization(MOO) control parameters
在线阅读 下载PDF
Improving PID Controller Performance in Nonlinear Oscillatory Automatic Generation Control Systems Using a Multi-objective Marine Predator Algorithm with Enhanced Diversity 被引量:1
2
作者 Yang Yang Yuchao Gao +2 位作者 Jinran Wu Zhe Ding Shangrui Zhao 《Journal of Bionic Engineering》 CSCD 2024年第5期2497-2514,共18页
Power systems are pivotal in providing sustainable energy across various sectors.However,optimizing their performance to meet modern demands remains a significant challenge.This paper introduces an innovative strategy... Power systems are pivotal in providing sustainable energy across various sectors.However,optimizing their performance to meet modern demands remains a significant challenge.This paper introduces an innovative strategy to improve the opti-mization of PID controllers within nonlinear oscillatory Automatic Generation Control(AGC)systems,essential for the stability of power systems.Our approach aims to reduce the integrated time squared error,the integrated time absolute error,and the rate of change in deviation,facilitating faster convergence,diminished overshoot,and decreased oscillations.By incorporating the spiral model from the Whale Optimization Algorithm(WOA)into the Multi-Objective Marine Predator Algorithm(MOMPA),our method effectively broadens the diversity of solution sets and finely tunes the balance between exploration and exploitation strategies.Furthermore,the QQSMOMPA framework integrates quasi-oppositional learning and Q-learning to overcome local optima,thereby generating optimal Pareto solutions.When applied to nonlinear AGC systems featuring governor dead zones,the PID controllers optimized by QQSMOMPA not only achieve 14%reduction in the frequency settling time but also exhibit robustness against uncertainties in load disturbance inputs. 展开更多
关键词 multi-objective optimization Automatic generation control PID controller multi-objective marine predator algorithm Whale optimization algorithm
在线阅读 下载PDF
Stochastic sampled-data multi-objective control of active suspension systems for in-wheel motor driven electric vehicles 被引量:1
3
作者 Iftikhar Ahmad Xiaohua Ge Qing-Long Han 《Journal of Automation and Intelligence》 2024年第1期2-18,共17页
This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus... This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus is placed on the scenario that the dynamical state of the half-vehicle active suspension system is transmitted over an in-vehicle controller area network that only permits the transmission of sampled data packets.For this purpose,a stochastic sampling mechanism is developed such that the sampling periods can randomly switch among different values with certain mathematical probabilities.Then,an asynchronous fuzzy sampled-data controller,featuring distinct premise variables from the active suspension system,is constructed to eliminate the stringent requirement that the sampled-data controller has to share the same grades of membership.Furthermore,novel criteria for both stability analysis and controller design are derived in order to guarantee that the resultant closed-loop active suspension system is stochastically stable with simultaneous𝐻2 and𝐻∞performance requirements.Finally,the effectiveness of the proposed stochastic sampled-data multi-objective control method is verified via several numerical cases studies in both time domain and frequency domain under various road disturbance profiles. 展开更多
关键词 Active suspension system Electric vehicles In-wheel motor Stochastic sampling Dynamic dampers Sampled-data control multi-objective control
在线阅读 下载PDF
A multi-objective optimization approach for the virtual coupling train set driving strategy
4
作者 Junting Lin Maolin Li Xiaohui Qiu 《Railway Engineering Science》 2025年第2期169-191,共23页
This paper presents an improved virtual coupling train set(VCTS)operation control framework to deal with the lack of opti-mization of speed curves in the traditional techniques.The framework takes into account the tem... This paper presents an improved virtual coupling train set(VCTS)operation control framework to deal with the lack of opti-mization of speed curves in the traditional techniques.The framework takes into account the temporary speed limit on the railway line and the communication delay between trains,and it uses a VCTS consisting of three trains as an experimental object.It creates the virtual coupling train tracking and control process by improving the driving strategy of the leader train and using the leader-follower model.The follower train uses the improved speed curve of the leader train as its speed refer-ence curve through knowledge migration,and this completes the multi-objective optimization of the driving strategy for the VCTS.The experimental results confirm that the deep reinforcement learning algorithm effectively achieves the optimization goal of the train driving strategy.They also reveal that the intrinsic curiosity module prioritized experience replay dueling double deep Q-network(ICM-PER-D3QN)algorithm outperforms the deep Q-network(DQN)algorithm in optimizing the driving strategy of the leader train.The ICM-PER-D3QN algorithm enhances the leader train driving strategy by an average of 57%when compared to the DQN algorithm.Furthermore,the particle swarm optimization(PSO)-based model predictive control(MPC)algorithm has also demonstrated tracking accuracy and further improved safety during VCTS operation,with an average increase of 37.7%in tracking accuracy compared to the traditional MPC algorithm. 展开更多
关键词 High-speed trains Virtual coupling multi-objective optimization Deep reinforcement learning Knowledge transfer Model predictive control
在线阅读 下载PDF
AdaptiveMulti-Objective EnergyManagement Strategy Considering the Differentiated Demands of Distribution Networks with a High Proportion of New-Generation Sources and Loads
5
作者 Huang Tan Haibo Yu +2 位作者 Tianyang Chen Hanjun Deng Yetong Hu 《Energy Engineering》 2025年第5期1949-1973,共25页
With the increasing integration of emerging source-load types such as distributed photovoltaics,electric vehicles,and energy storage into distribution networks,the operational characteristics of these networks have ev... With the increasing integration of emerging source-load types such as distributed photovoltaics,electric vehicles,and energy storage into distribution networks,the operational characteristics of these networks have evolved from traditional single-load centers to complex multi-source,multi-load systems.This transition not only increases the difficulty of effectively classifying distribution networks due to their heightened complexity but also renders traditional energy management approaches-primarily focused on economic objectives-insufficient to meet the growing demands for flexible scheduling and dynamic response.To address these challenges,this paper proposes an adaptive multi-objective energy management strategy that accounts for the distinct operational requirements of distribution networks with a high penetration of new-type source-loads.The goal is to establish a comprehensive energy management framework that optimally balances energy efficiency,carbon reduction,and economic performance in modern distribution networks.To enhance classification accuracy,the strategy constructs amulti-dimensional scenario classification model that integrates environmental and climatic factors by analyzing the operational characteristics of new-type distribution networks and incorporating expert knowledge.An improved split-coupling K-means preclustering algorithm is employed to classify distribution networks effectively.Based on the classification results,fuzzy logic control is then utilized to dynamically optimize the weighting of each objective,allowing for an adaptive adjustment of priorities to achieve a flexible and responsivemulti-objective energy management strategy.The effectiveness of the proposed approach is validated through practical case studies.Simulation results indicate that the proposed method improves classification accuracy by 18.18%compared to traditional classification methods and enhances energy savings and carbon reduction by 4.34%and 20.94%,respectively,compared to the fixed-weight strategy. 展开更多
关键词 High-proportion new-type source-loads multi-dimensional scenario classification clustering algorithms fuzzy logic control adaptive multi-objective energy management
在线阅读 下载PDF
MGOKA:A Multi-Objective Optimization Algorithm for Controller Placement Problem Combining Network Partition with Cluster Fusion in Software Defined Network
6
作者 CHEN Jue XIAO Changwei +1 位作者 QIU Xihe LÜ Wenjing 《Wuhan University Journal of Natural Sciences》 CSCD 2024年第6期589-599,共11页
Software Defined Network(SDN)has been developed rapidly in technology and popularized in application due to its efficiency and flexibility in network management.In multi-controller SDN architecture,the Controller Plac... Software Defined Network(SDN)has been developed rapidly in technology and popularized in application due to its efficiency and flexibility in network management.In multi-controller SDN architecture,the Controller Placement Problem(CPP)must be solved carefully as it directly affects the whole network performance.This paper proposes a Multi-objective Greedy Optimized K-means Algorithm(MGOKA)to solve this problem to optimize worst-case and average delay between switches and controllers as well as synchronization delay and load balance among controllers for Wide Area Networks(WAN).MGOKA combines the process of network partition based on the K-means algorithm with cluster fusion based on the greedy algorithm and designs a normalization strategy to convert a multi-objective into a single-objective optimization problem.The simulation results depict that in different network scales with different numbers of controllers,the relative optimization rate of our proposed algorithm compared with K-means,K-means++,and GOKA can reach up to 101.5%,109.9%,and 79.8%,respectively.Moreover,the error rate between MGOKA and the global optimal solution is always less than 4%. 展开更多
关键词 Software Defined Network controller Placement Problem propagation delay load balance multi-objective optimization
原文传递
Multi-objective Stability Control Algorithm of Heavy Tractor Semi-trailer Based on Differential Braking 被引量:13
7
作者 ZONG Changfu ZHU Tianjun +1 位作者 WANG Chang LIU Haizhen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第1期88-97,共10页
Rollover and jack-knifing of tractor semi-trailer are serious threats for vehicle safety, and accordingly active safety technologies have been widely used to reduce or prevent the occurrence of such accidents. However... Rollover and jack-knifing of tractor semi-trailer are serious threats for vehicle safety, and accordingly active safety technologies have been widely used to reduce or prevent the occurrence of such accidents. However, currently tractor semi-trailer stability control is generally only a single hazardous condition (rollover or jack-knifing) control, it is difficult to ensure the vehicle comprehensive stability of various dangerous conditions. The main objective of this study is to introduce a multi-objective stability control algorithm which can improve the vehicle stability of a tractor semi-trailer by using differential braking. A vehicle controller is designed to minimize the likelihood of rollover and jack-knifing. First a linear vehicle model of tractor semi-trailer is constructed. Then an optimal yaw control for tractor using differential braking is applied to minimize the yaw rate and lateral acceleration deviation of tractor, as well as the hitch articulation angle of tractor semi-trailer, so as to improve the vehicle stability. Second a braking scheme and variable structure control with sliding mode control are introduced in order to achieve the best braking effect. Last Fishhook maneuver is introduced to the active safety simulation and the active control system effect verification. The simulation results show that multi-objective stability control algorithm of semi-trailer could improve the vehicle stability significantly during the transient maneuvers. The proposed multi-objective stability control algorithm is effective to prevent the vehicle rollover and jackknifing. 展开更多
关键词 ROLLOVER jack-knifing tractor semi-trailer multi-objective stability control
在线阅读 下载PDF
Effective control allocation using hierarchical multi-objective optimization for multi-phase flight 被引量:4
8
作者 Liguo SUN Qing ZHOU +2 位作者 Baoxu JIA Wenqian TAN Hangxu LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第7期2002-2013,共12页
For different flight phases in an overall flight mission,different control and allocation preferences should be pursued considering lift,drag or maneuverability characteristics.The multi-objective flight control alloc... For different flight phases in an overall flight mission,different control and allocation preferences should be pursued considering lift,drag or maneuverability characteristics.The multi-objective flight control allocation problem for a multi-phase flight mission is studied.For an overall flight mission,different flight phases namely climbing,cruise,maneuver and gliding phases are defined.Firstly,a multi-objective control allocation problem considering drag,lift or control energy preference is constructed.Secondly,considering different control preferences at different flight phases,the analytic hierarchical process method is used to construct a comprehensive performance index from different objectives such as lift or drag preferences.The active set based dynamic programming optimization method is used to solve the real-time optimization problem.For the validation,the Innovative Control Effector(ICE)tailless aircraft nonlinear model and the angular acceleration measurements based adaptive Incremental Backstepping(IBKS)are used to construct the validation platform.Finally,an overall flight mission is simulated to demonstrate the efficiency of the proposed multi-phase and multi-objective flight control allocation method.The results show that the comprehensive performance index for different phases,which are determined from the Analytic Hierarchy Process(AHP)method,can suitably satisfy the preference requirements for different flight phases. 展开更多
关键词 Adaptive control control allocation Flying-wing aircraft Multi-phase and multi-objective Real-time optimization
原文传递
Non-dominated sorting culture differential evolution algorithm for multi-objective optimal operation of Wind-Solar-Hydro complementary power generation system 被引量:4
9
作者 Guanjun Liu Hui Qin +2 位作者 Rui Tian Lingyun Tang Jie Li 《Global Energy Interconnection》 2019年第4期368-374,共7页
Due to the intermittency and instability of Wind-Solar energy and easy compensation of hydropower, this study proposes a Wind-Solar-Hydro power optimal scheduling model. This model is aimed at maximizing the total sys... Due to the intermittency and instability of Wind-Solar energy and easy compensation of hydropower, this study proposes a Wind-Solar-Hydro power optimal scheduling model. This model is aimed at maximizing the total system power generation and the minimum ten-day joint output. To effectively optimize the multi-objective model, a new algorithm named non-dominated sorting culture differential evolution algorithm(NSCDE) is proposed. The feasibility of NSCDE was verified through several well-known benchmark problems. It was then applied to the Jinping Wind-Solar-Hydro complementary power generation system. The results demonstrate that NSCDE can provide decision makers a series of optimized scheduling schemes. 展开更多
关键词 Wind-Solar-Hydro complementary power generation system Scheduling strategy multi-objective optimization CULTURE algorithm
在线阅读 下载PDF
Model predictive control for adaptive cruise control with multi-objectives: comfort,fuel-economy,safety and car-following 被引量:36
10
作者 Li-hua LUO Hong LIU Ping LI Hui WANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2010年第3期191-201,共11页
For automated vehicles,comfortable driving will improve passengers’ satisfaction.Reducing fuel consumption brings economic profits for car owners,decreases the impact on the environment and increases energy sustainab... For automated vehicles,comfortable driving will improve passengers’ satisfaction.Reducing fuel consumption brings economic profits for car owners,decreases the impact on the environment and increases energy sustainability.In addition to comfort and fuel-economy,automated vehicles also have the basic requirements of safety and car-following.For this purpose,an adaptive cruise control (ACC) algorithm with multi-objectives is proposed based on a model predictive control (MPC) framework.In the proposed ACC algorithm,safety is guaranteed by constraining the inter-distance within a safe range; the requirements of comfort and car-following are considered to be the performance criteria and some optimal reference trajectories are introduced to increase fuel-economy.The performances of the proposed ACC algorithm are simulated and analyzed in five representative traffic scenarios and multiple experiments.The results show that not only are safety and car-following objectives satisfied,but also driving comfort and fuel-economy are improved significantly. 展开更多
关键词 Adaptive cruise control (ACC) multi-objectives Comfort Fuel-economy Model predictive control (MPC)
原文传递
Aircraft Landing Gear Control with Multi-Objective Optimization Using Generalized Cell Mapping 被引量:3
11
作者 孙建桥 贾腾 +3 位作者 熊夫睿 秦志昌 吴卫国 丁千 《Transactions of Tianjin University》 EI CAS 2015年第2期140-146,共7页
This paper presents a numerical algorithm tuning aircraft landing gear control system with three objectives,including reducing relative vibration, reducing hydraulic strut force and controlling energy consumption. Sli... This paper presents a numerical algorithm tuning aircraft landing gear control system with three objectives,including reducing relative vibration, reducing hydraulic strut force and controlling energy consumption. Sliding mode control is applied to the vibration control of a simplified landing gear model with uncertainty. A two-stage generalized cell mapping algorithm is applied to search the Pareto set with gradient-free scheme. Drop test simulations over uneven runway show that the vibration and force interaction can be considerably reduced, and the Pareto optimum form a tight range in time domain. 展开更多
关键词 LANDING GEAR SLIDING mode control model uncertainty multi-objective optimization GENERALIZED cellmapping
在线阅读 下载PDF
Mixed Gl2/GH2 multi-channel multi-objective control synthesis for discrete time systems 被引量:5
12
作者 颜文俊 张森林 《Journal of Zhejiang University Science》 EI CSCD 2004年第7期827-834,共8页
This paper proposes a new approach for multi-objective robust control. The approach extends the standard generalized l2 (Gl2) and generalized H2 (GH2) conditions to a set of new linear matrix inequality (LMI) constra... This paper proposes a new approach for multi-objective robust control. The approach extends the standard generalized l2 (Gl2) and generalized H2 (GH2) conditions to a set of new linear matrix inequality (LMI) constraints based on a new stability condition. A technique for variable parameterization is introduced to the multi-objective control problem to preserve the linearity of the synthesis variables. Consequently, the multi-channel multi-objective mixed Gl2/GH2 control problem can be solved less conservatively using computationally tractable algorithms developed in the paper. 展开更多
关键词 Mixed Gl2/GH2 synthesis multi-objective optimization Robust control Discrete linear time-invariant systems G-shaping paradigm
在线阅读 下载PDF
ESO-based decoupling control with multi-objective optimization for boiler-turbine unit 被引量:3
13
作者 Zhu Jianzhong Wu Xiao Shen Jiong 《Journal of Southeast University(English Edition)》 EI CAS 2019年第1期64-71,共8页
A model-assistant extended state observer(MESO)-based decoupling control strategy is proposed for boiler-turbine units in the presence of unknown external disturbance and model-plant mismatch. For ease of implementati... A model-assistant extended state observer(MESO)-based decoupling control strategy is proposed for boiler-turbine units in the presence of unknown external disturbance and model-plant mismatch. For ease of implementation, the decoupling compensator is reduced to the proportion integration(PI) decoupler with the frequency domain analysis, where the decoupling error in collusion of uncertainties and disturbances can be estimated by the proposed MESO and then compensated. To decrease the sensitivity of the dynamic error for the decoupling control and fulfill various requirements of constraints, such as safety operation, energy conservation, emission reduction, etc., the plant is transmitted through a scheduled steady state region which is achieved from the optimized reference governor in advance. Simulation results show that the proposed control strategy can well suppress various disturbances including a decoupling error, and multi-objective optimization can meet multiple requirements with the premise of safety production. 展开更多
关键词 boiler-turbine unit extended state observer(ESO) decoupling control multi-objective optimization
在线阅读 下载PDF
PSO Based Multi-Objective Approach for Controlling PID Controller 被引量:4
14
作者 Harsh Goud Prakash Chandra Sharma +6 位作者 Kashif Nisar Ag.Asri Ag.Ibrahim Muhammad Reazul Haque Narendra Singh Yadav Pankaj Swarnkar Manoj Gupta Laxmi Chand 《Computers, Materials & Continua》 SCIE EI 2022年第6期4409-4423,共15页
CSTR(Continuous stirred tank reactor)is employed in process control and chemical industries to improve response characteristics and system efficiency.It has a highly nonlinear characteristic that includes complexities... CSTR(Continuous stirred tank reactor)is employed in process control and chemical industries to improve response characteristics and system efficiency.It has a highly nonlinear characteristic that includes complexities in its control and design.Dynamic performance is compassionate to change in system parameterswhich need more effort for planning a significant controller for CSTR.The reactor temperature changes in either direction from the defined reference value.It is important to note that the intensity of chemical actions inside the CSTR is dependent on the various levels of temperature,and deviation from reference values may cause degradation of biomass quality.Design and implementation of an appropriate adaptive controller for such a nonlinear system are essential.In this paper,a conventional Proportional Integral Derivative(PID)controller is designed.The conventional techniques to deal with constraints suffer severe limitations like it has fixed controller parameters.Hence,A novel method is applied for computing the PID controller parameters using a swarm algorithm that overcomes the conventional controller’s limitation.In the proposed technique,PID parameters are tuned by Particle Swarm Optimization(PSO).It is not easy to choose the suitable objective function to design a PID controller using PSO to get an optimal response.In this article,a multi-objective function is proposed for PSO based controller design of CSTR. 展开更多
关键词 Particle swarm optimization multi-objective PSO continuous stirred tank reactor proportional integral derivative controller
在线阅读 下载PDF
Multi-objective optimization for voltage and frequency control of smart grids based on controllable loads 被引量:2
15
作者 Yaxin Wang Donglian Qi Jianliang Zhang 《Global Energy Interconnection》 CAS CSCD 2021年第2期136-144,共9页
The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capabi... The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capability for nodal-power control.To maintain the system frequency and voltage magnitude around rated values,a new multi-objective optimization model for both voltage and frequency control is proposed.Moreover,a great similarity between the multiobjective optimization and game problems appears.To reduce the strong subjectivity of the traditional methods,the idea and method of the game theory are introduced into the solution.According to the present situational data and analysis of the voltage and frequency sensitivities to nodal-power variations,the design variables involved in the voltage and frequency control are classified into two strategy spaces for players using hierarchical clustering.Finally,the effectiveness and rationality of the proposed control are verified in MATLAB. 展开更多
关键词 multi-objective optimization Voltage control Frequency control Power flow controllable loads Game theory
在线阅读 下载PDF
Modelling and Multi-Objective Optimal Control of Batch Processes Using Recurrent Neuro-fuzzy Networks 被引量:2
16
作者 Jie Zhang 《International Journal of Automation and computing》 EI 2006年第1期1-7,共7页
In this paper, the modelling and multi-objective optimal control of batch processes, using a recurrent neuro-fuzzy network, are presented. The recurrent neuro-fuzzy network, forms a "global" nonlinear long-range pre... In this paper, the modelling and multi-objective optimal control of batch processes, using a recurrent neuro-fuzzy network, are presented. The recurrent neuro-fuzzy network, forms a "global" nonlinear long-range prediction model through the fuzzy conjunction of a number of "local" linear dynamic models. Network output is fed back to network input through one or more time delay units, which ensure that predictions from the recurrent neuro-fuzzy network are long-range. In building a recurrent neural network model, process knowledge is used initially to partition the processes non-linear characteristics into several local operating regions, and to aid in the initialisation of corresponding network weights. Process operational data is then used to train the network. Membership functions of the local regimes are identified, and local models are discovered via network training. Based on a recurrent neuro-fuzzy network model, a multi-objective optimal control policy can be obtained. The proposed technique is applied to a fed-batch reactor. 展开更多
关键词 Optimal control batch processes neural networks multi-objective optimisation.
在线阅读 下载PDF
Multi-objective quality control method for cold-rolled products oriented to customized requirements 被引量:2
17
作者 Yi-fan Yan Zhi-min Lü 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第8期1332-1342,共11页
To deal with the increasing demand for low-volume customization of the mechanical properties of cold-rolled products, a two-way control method based on mechanical property prediction and process parameter optimization... To deal with the increasing demand for low-volume customization of the mechanical properties of cold-rolled products, a two-way control method based on mechanical property prediction and process parameter optimization(PPO) has become an effective solution. Aiming at the multi-objective quality control problem of a company's cold-rolled products, based on industrial production data, we proposed a process parameter design and optimization method that combined multi-objective quality prediction and PPO. This method used the multi-output support vector regression(MSVR) method to simultaneously predict multiple quality indices. The MSVR prediction model was used as the effect verification model of the PPO results. It performed multi-process parameter collaborative design and realized the optimization of production process parameters for customized multi-objective quality requirements. The experimental results showed that, compared with the traditional single-objective quality prediction model based on support vector regression(SVR), the multi-objective prediction model could better take into account the coupling effect between process parameters and quality index, the MSVR model prediction accuracy was higher than that of the SVR, and the optimized process parameters were more capable and reflected the influence of metallurgical mechanism on the quality index,which were more in line with actual production process requirements. 展开更多
关键词 customized production quality control multi-objective prediction multi-output support vector regression process parameter optimization
在线阅读 下载PDF
Multi-objective nonlinear model predictive control through switching cost functions and its applications to chemical processes 被引量:1
18
作者 何德峰 余世明 俞立 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第10期1662-1669,共8页
This paper proposes a switching multi-objective model predictive control(MOMPC) algorithm for constrained nonlinear continuous-time process systems.Different cost functions to be minimized in MPC are switched to satis... This paper proposes a switching multi-objective model predictive control(MOMPC) algorithm for constrained nonlinear continuous-time process systems.Different cost functions to be minimized in MPC are switched to satisfy different performance criteria imposed at different sampling times.In order to ensure recursive feasibility of the switching MOMPC and stability of the resulted closed-loop system,the dual-mode control method is used to design the switching MOMPC controller.In this method,a local control law with some free-parameters is constructed using the control Lyapunov function technique to enlarge the terminal state set of MOMPC.The correction term is computed if the states are out of the terminal set and the free-parameters of the local control law are computed if the states are in the terminal set.The recursive feasibility of the MOMPC and stability of the resulted closed-loop system are established in the presence of constraints and arbitrary switches between cost functions.Finally,implementation of the switching MOMPC controller is demonstrated with a chemical process example for the continuous stirred tank reactor. 展开更多
关键词 Nonlinear system Model predictive control multi-objective control Switched control Continuous stirred tank reactor
在线阅读 下载PDF
Design for aircraft engine multi-objective controllers with switching characteristics 被引量:3
19
作者 Liu Xiaofeng Shi Jing +1 位作者 Qi Yiwen Yuan Ye 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第5期1097-1110,共14页
The aircraft engine multi-loop control system is described and the switching control theory is introduced to solve the regulating and protecting control problems in this paper. The aircraft engine multi-loop control s... The aircraft engine multi-loop control system is described and the switching control theory is introduced to solve the regulating and protecting control problems in this paper. The aircraft engine multi-loop control system is firstly described and the control problems are formulated. Secondly, the theory of the smooth switching control is devoted and a new extended scheme for the smooth switching of a switched control system is introduced. Then, for the key technologies of aero-engines switching control, a design algorithm is presented which can determine which candidate controller should be put in feedback with the plant to achieve a desired performance and the procedure to design the aircraft engine multi-loop control system is detailed. The switching performance objectives and the switching scheme are given and a family of PID controllers and compensators is designed. The simulation shows that using the switching control design method can not only improve the dynamic performance of the aircraft engine control system and reduce the switching times, but also guarantee the stability in some peculiar occasions. 展开更多
关键词 Aircraft engine Compensatory controller Min/Max switching multi-objectives control Smooth switching Switching scheme
原文传递
A multi-objective optimal PID control for a nonlinear system with time delay 被引量:1
20
作者 Furui Xiong Zhichang Qin +6 位作者 Carlos Hernndez Yousef Sardahi Yousef Narajani Wei Liang Yang Xue Oliver Schtze Jianqiao Sun 《Theoretical & Applied Mechanics Letters》 CAS 2013年第6期35-40,共6页
It is generally difficult to design feedback controls of nonlinear systems with time delay to meet time domain specifications such as rise time, overshoot, and tracking error. Furthermore, these time domain specificat... It is generally difficult to design feedback controls of nonlinear systems with time delay to meet time domain specifications such as rise time, overshoot, and tracking error. Furthermore, these time domain specifications tend to be conflicting to each other to make the control design even more challenging. This paper presents a cell mapping method for multi-objective optimal feedback control design in time domain for a nonlinear Duffing system with time delay. We first review the multi-objective optimization problem and its formulation for control design. We then introduce the cell mapping method and a hybrid algorithm for global optimal solutions. Numerical simulations of the PID control are presented to show the features of the multi-objective optimal design. @ 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1306306] 展开更多
关键词 delayed control system multi-objective optimal design cell mapping method hybridalgorithm Pareto optimal
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部