期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
An Improved Multi-objective Artificial Hummingbird Algorithm for Capacity Allocation of Supercapacitor Energy Storage Systems in Urban Rail Transit
1
作者 Xin Wang Jian Feng Yuxin Qin 《Journal of Bionic Engineering》 2025年第2期866-883,共18页
To address issues such as poor initial population diversity, low stability and local convergence accuracy, and easy local optima in the traditional Multi-Objective Artificial Hummingbird Algorithm (MOAHA), an Improved... To address issues such as poor initial population diversity, low stability and local convergence accuracy, and easy local optima in the traditional Multi-Objective Artificial Hummingbird Algorithm (MOAHA), an Improved MOAHA (IMOAHA) was proposed. The improvements involve Tent mapping based on random variables to initialize the population, a logarithmic decrease strategy for inertia weight to balance search capability, and the improved search operators in the territory foraging phase to enhance the ability to escape from local optima and increase convergence accuracy. The effectiveness of IMOAHA was verified through Matlab/Simulink. The results demonstrate that IMOAHA exhibits superior convergence, diversity, uniformity, and coverage of solutions across 6 test functions, outperforming 4 comparative algorithms. A Wilcoxon rank-sum test further confirmed its exceptional performance. To assess IMOAHA’s ability to solve engineering problems, an optimization model for a multi-track, multi-train urban rail traction power supply system with Supercapacitor Energy Storage Systems (SCESSs) was established, and IMOAHA was successfully applied to solving the capacity allocation problem of SCESSs, demonstrating that it is an effective tool for solving complex Multi-Objective Optimization Problems (MOOPs) in engineering domains. 展开更多
关键词 multi-objective artificial hummingbird algorithm Tent mapping based on random variables Urban rail transit Supercapacitor energy storage systems Capacity allocation
在线阅读 下载PDF
Improved multi-objective artificial bee colony algorithm for optimal power flow problem 被引量:1
2
作者 马连博 胡琨元 +1 位作者 朱云龙 陈瀚宁 《Journal of Central South University》 SCIE EI CAS 2014年第11期4220-4227,共8页
The artificial bee colony(ABC) algorithm is improved to construct a hybrid multi-objective ABC algorithm, called HMOABC, for resolving optimal power flow(OPF) problem by simultaneously optimizing three conflicting obj... The artificial bee colony(ABC) algorithm is improved to construct a hybrid multi-objective ABC algorithm, called HMOABC, for resolving optimal power flow(OPF) problem by simultaneously optimizing three conflicting objectives of OPF, instead of transforming multi-objective functions into a single objective function. The main idea of HMOABC is to extend original ABC algorithm to multi-objective and cooperative mode by combining the Pareto dominance and divide-and-conquer approach. HMOABC is then used in the 30-bus IEEE test system for solving the OPF problem considering the cost, loss, and emission impacts. The simulation results show that the HMOABC is superior to other algorithms in terms of optimization accuracy and computation robustness. 展开更多
关键词 cooperative artificial colony algorithm optimal power flow multi-objective optimization
在线阅读 下载PDF
A Discrete Multi‑Objective Artificial Bee Colony Algorithm for a Real‑World Electronic Device Testing Machine Allocation Problem 被引量:2
3
作者 Jin Xie Xinyu Li Liang Gao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第6期136-150,共15页
With the continuous development of science and technology,electronic devices have begun to enter all aspects of human life,becoming increasingly closely related to human life.Users have higher quality requirements for... With the continuous development of science and technology,electronic devices have begun to enter all aspects of human life,becoming increasingly closely related to human life.Users have higher quality requirements for electronic devices.Electronic device testing has gradually become an irreplaceable engineering process in modern manufacturing enterprises to guarantee the quality of products while preventing inferior products from entering the market.Considering the large output of electronic devices,improving the testing efficiency while reducing the testing cost has become an urgent problem to be solved.This study investigates the electronic device testing machine allocation problem(EDTMAP),aiming to improve the production of electronic devices and reduce the scheduling distance among testing machines through reasonable machine allocation.First,a mathematical model was formulated for the EDTMAP to maximize both production and the scheduling distance among testing machines.Second,we developed a discrete multi-objective artificial bee colony(DMOABC)algorithm to solve EDTMAP.A crossover operator and local search operator were designed to improve the exploration and exploitation of the algorithm,respectively.Numerical experiments were conducted to evaluate the performance of the proposed algorithm.The experimental results demonstrate the superiority of the proposed algorithm compared with the non-dominated sorting genetic algorithm II(NSGA-II)and strength Pareto evolutionary algorithm 2(SPEA2).Finally,the mathematical model and DMOABC algorithm were applied to a real-world factory that tests radio-frequency modules.The results verify that our method can significantly improve production and reduce the scheduling distance among testing machines. 展开更多
关键词 Electronic device Machine allocation multi-objective optimization artificial bee colony algorithm
在线阅读 下载PDF
Metaheuristic multi-objective optimization with artificial neural networks surrogate modeling for optimal energy-economic performance for CSP technology
4
作者 A.Allouhi M.Benzakour Amine K.A.Tabet Aoul 《Energy and AI》 2025年第2期218-237,共20页
Among CSP technologies,the linear Fresnel reflector(LFR)can provide reliable carbon-neutral electricity for large-scale applications.In this study,the performance of a large solar LFR power plant under varying climati... Among CSP technologies,the linear Fresnel reflector(LFR)can provide reliable carbon-neutral electricity for large-scale applications.In this study,the performance of a large solar LFR power plant under varying climatic conditions and the dependency of the performance on major plant design specifications,such as solar multiple and full-load thermal storage hours,were examined.Next,artificial neural network(ANN)surrogate models were introduced to predict the annual capacity factor of 100 MWe power plants operating with LFR technology.Single-hidden-layer ANN models with different numbers of neurons in the hidden layer were used and the Levenberg–Marquardt training algorithm was adopted.To overcome overfitting,validation and Bayesian Regularization approaches were compared.As training and testing data,36 geographical sites with various combinations of design parameters were used.Through multi-objective optimization techniques,including the Multi-Objective Particle-Swarm Optimizer and Multi-Objective Grey Wolf Optimizer coupled with ANN surrogate modeling,this study navigates the trade-offs to identify Pareto-optimal solutions for large-scale LFR-based CSP integration based on the energy and cost criteria.The study also identified Site 4(S4)as a promising candidate for optimal balance between the capacity factor(51.05%)and specific cost(5246.71$/kW),showcasing the practical implications of the research for sustainable and efficient CSP plant implementation. 展开更多
关键词 artificial neural network Capacity factor Linear fresnelreflector multi-objective optimization Training algorithm Metaheuristics
在线阅读 下载PDF
Artificial intelligence for sustainable development of smart cities and urban land-use management 被引量:2
5
作者 Zohreh Masoumi John van Genderen 《Geo-Spatial Information Science》 CSCD 2024年第4期1212-1236,共25页
The urban land-use allocation problem is a spatial optimization problem that allocates optimum land-uses to specific land units in urban areas.This problem is an NP(nondeterministic polynomial time)-hard problem becau... The urban land-use allocation problem is a spatial optimization problem that allocates optimum land-uses to specific land units in urban areas.This problem is an NP(nondeterministic polynomial time)-hard problem because of involving many objective functions,many constraints,and complex search space.Moreover,this subject is an important issue in smart cities and newly developed areas of cities to achieve a sustainable arrangement of land-uses.Different types ofMulti-Objective Optimization Algorithms(MOOAs)based on Artificial Intelligence(AI)have been frequently employed,but their ability and performance have not been evaluated and compared properly.This paper aims to employ and compare three commonly used MOOAs i.e.NSGA-II,MOPSO,and MOEA/D in urban land-use allocation problems.Selected algorithms belong to different categories of MOOAs family to investigate their advantage and disadvantages.The objective functions of this study are compatibility,dependency,suitability,and compactness of land-uses and the constraint is compensating of Per-Capita demand in the urban environment.Evaluation of results is based on the dispersion of the solutions,diversity of the solutions’space,and comparing the number of dominant solutions in Pareto-Fronts.The results showed that all three algorithms improved the objective functions related to the current arrangement of the land-uses.However,the run time of NSGA-II is the worst,related to the Diversity Metric(DM)which represents the regularity of the distance between solutions at the highest degree.Moreover,MOPSO provides the best Scattering Diversity Metric(SDM)which shows the diversity of solutions in the solution space.Furthermore,In terms of algorithm execution time,MOEA/D performed better than the other two.So,Decision-makers should consider different aspects in choosing the appropriate MOOA for land-use management problems. 展开更多
关键词 Urban land-use management geo-spatial information sciences multi-objective optimization algorithm smart cities artificial intelligence
原文传递
An application of a genetic algorithm in co-optimization of geological CO_(2) storage based on artificial neural networks 被引量:1
6
作者 Pouya Vaziri Behnam Sedaee 《Clean Energy》 EI CSCD 2024年第1期111-125,共15页
Global warming,driven by human-induced disruptions to the natural carbon dioxide(CO_(2))cycle,is a pressing concern.To mitigate this,carbon capture and storage has emerged as a key strategy that enables the continued ... Global warming,driven by human-induced disruptions to the natural carbon dioxide(CO_(2))cycle,is a pressing concern.To mitigate this,carbon capture and storage has emerged as a key strategy that enables the continued use of fossil fuels while transitioning to cleaner energy sources.Deep saline aquifers are of particular interest due to their substantial CO_(2) storage potential,often located near fossil fuel reservoirs.In this study,a deep saline aquifer model with a saline water production well was constructed to develop the optimization workflow.Due to the time-consuming nature of each realization of the numerical simulation,we introduce a sur-rogate aquifer model derived from extracted data.The novelty of our work lies in the pioneering of simultaneous optimization using machine learning within an integrated framework.Unlike previous studies,which typically focused on single-parameter optimiza-tion,our research addresses this gap by performing multi-objective optimization for CO_(2) storage and breakthrough time in deep sa-line aquifers using a data-driven model.Our methodology encompasses preprocessing and feature selection,identifying eight pivotal parameters.Evaluation metrics include root mean square error(RMSE),mean absolute percentage error(MAPE)and R^(2).In predicting CO_(2) storage values,RMSE,MAPE and R^(2)in test data were 2.07%,1.52% and 0.99,respectively,while in blind data,they were 2.5%,2.05% and 0.99.For the CO_(2) breakthrough time,RMSE,MAPE and R^(2) in the test data were 2.1%,1.77% and 0.93,while in the blind data they were 2.8%,2.23% and 0.92,respectively.In addressing the substantial computational demands and time-consuming nature of coup-ling a numerical simulator with an optimization algorithm,we have adopted a strategy in which the trained artificial neural network is seamlessly integrated with a multi-objective genetic algorithm.Within this framework,we conducted 5000 comprehensive experi-ments to rigorously validate the development of the Pareto front,highlighting the depth of our computational approach.The findings of the study promise insights into the interplay between CO_(2) breakthrough time and storage in aquifer-based carbon capture and storage processes within an integrated framework based on data-driven coupled multi-objective optimization. 展开更多
关键词 carbon capture and storage deep saline aquifer artificial neural network multi-objective optimization genetic algorithm breakthrough time geological storage
原文传递
An Optimized Framework for Surgical Team Selection
7
作者 Hemant Petwal Rinkle Rani 《Computers, Materials & Continua》 SCIE EI 2021年第11期2563-2582,共20页
In the healthcare system,a surgical team is a unit of experienced personnel who provide medical care to surgical patients during surgery.Selecting a surgical team is challenging for a multispecialty hospital as the pe... In the healthcare system,a surgical team is a unit of experienced personnel who provide medical care to surgical patients during surgery.Selecting a surgical team is challenging for a multispecialty hospital as the performance of its members affects the efficiency and reliability of the hospital’s patient care.The effectiveness of a surgical team depends not only on its individual members but also on the coordination among them.In this paper,we addressed the challenges of surgical team selection faced by a multispecialty hospital and proposed a decision-making framework for selecting the optimal list of surgical teams for a given patient.The proposed framework focused on improving the existing surgical history management system by arranging surgery-bound patients into optimal subgroups based on similar characteristics and selecting an optimal list of surgical teams for a new surgical patient based on the patient’s subgroups.For this end,two population-based meta-heuristic algorithms for clustering of mixed datasets and multi-objective optimization were proposed.The proposed algorithms were tested using different datasets and benchmark functions.Furthermore,the proposed framework was validated through a case study of a real postoperative surgical dataset obtained from the orthopedic surgery department of a multispecialty hospital in India.The results revealed that the proposed framework was efficient in arranging patients in optimal groups as well as selecting optimal surgical teams for a given patient. 展开更多
关键词 multi-objective optimization artificial electric field algorithm mixed dataset clustering surgical team strength Pareto
在线阅读 下载PDF
基于改进人工蜂鸟算法的装船调度优化方法
8
作者 刘文远 周如意 厉斌斌 《计算机应用研究》 北大核心 2025年第5期1462-1469,共8页
为提升散杂货进出港作业效率,减少船舶在港时间,提出一种基于改进人工蜂鸟算法的装船调度优化方法。首先,在综合考虑泊位、装船设备和堆场三部分因素相互影响的条件下,以船舶总在港时间为优化目标,构建协同调度优化模型。然后,鉴于人工... 为提升散杂货进出港作业效率,减少船舶在港时间,提出一种基于改进人工蜂鸟算法的装船调度优化方法。首先,在综合考虑泊位、装船设备和堆场三部分因素相互影响的条件下,以船舶总在港时间为优化目标,构建协同调度优化模型。然后,鉴于人工蜂鸟算法在求解离散问题的局限性,对人工蜂鸟算法进行离散化改造,进而提出一种改进型人工蜂鸟算法,引入自适应飞行参数控制蜂鸟个体的飞行方式,同时通过改进最优个体引导策略优化AHA的位置更新过程,进一步平衡AHA的全局探索与局部开发能力。为了进一步增强算法避免局部最优解的能力,引入了变异策略调整和优化蜂鸟的位置。最后,在基准测试函数上进行有效性实验,并与其他群智能优化算法进行对比,验证改进算法的寻优性能。进一步通过对散杂货港口的历史数据进行测试,采用改进算法进行求解计算,并与基础的人工蜂鸟算法进行了比较。实验结果表明,该策略缩短了船舶的在港时间,能够得出相对较优的调度方案,为港口船舶优化调度提供新方案,有一定的实际意义。 展开更多
关键词 人工蜂鸟算法 群体智能 优化 散杂货港口
在线阅读 下载PDF
基于多目标人工蜂鸟算法的研制保证等级分配 被引量:2
9
作者 崔瑀欣 陆中 周伽 《航空学报》 北大核心 2025年第4期300-311,共12页
分配研制保证等级(DAL)是飞机系统研制过程中的一项重要工作,通常要求在满足DAL分配原则的基础上使得研制成本最小。构建了一种面向DAL分配的多目标优化模型,该模型将DAL分配原则和顶层失效状态概率要求分别作为定性和定量约束条件,以... 分配研制保证等级(DAL)是飞机系统研制过程中的一项重要工作,通常要求在满足DAL分配原则的基础上使得研制成本最小。构建了一种面向DAL分配的多目标优化模型,该模型将DAL分配原则和顶层失效状态概率要求分别作为定性和定量约束条件,以研制成本和系统重量最小化为优化目标,将为系统中功能或项目分配的DAL作为决策变量;在此基础上,提出了基于多目标人工蜂鸟算法的DAL分配方法。结合某飞机电传飞控系统给出了DAL分配实例,得到DAL分配的非支配解集。在相同测试条件下,与多目标粒子群算法相比,提出方法的运行时间缩短了17.59%,超体积指标(HV)提高了63.49%,表明提出方法能够快速收敛、求得的解集具有良好的分布性。 展开更多
关键词 系统安全性 研制保证等级分配 多目标优化 多目标人工蜂鸟优化算法 失效概率
原文传递
基于输出电流自适应的最优控制参数自整定方法
10
作者 袁硕 张小平 +1 位作者 谈宜雯 李庆 《电子测量与仪器学报》 北大核心 2025年第7期54-62,共9页
针对基于比例积分-矢量比例积分复合控制的新型低纹波可调直流稳压电源在变负载工况下也即其输出电流变化时其输出电压纹波系数及稳态精度受其输出电流影响大的问题,提出一种基于输出电流自适应的最优控制参数自整定方法。文中介绍了该... 针对基于比例积分-矢量比例积分复合控制的新型低纹波可调直流稳压电源在变负载工况下也即其输出电流变化时其输出电压纹波系数及稳态精度受其输出电流影响大的问题,提出一种基于输出电流自适应的最优控制参数自整定方法。文中介绍了该直流稳压电源的拓扑结构及所采用的比例积分-矢量比例积分复合控制方法,并以该控制方法各控制参数为优化对象,以该直流稳压电源输出电压纹波系数和稳态精度为优化目标,通过建立其优化对象与优化目标间的数学模型及其多目标优化适应度函数,提出采用多目标人工蜂鸟优化算法对其控制参数进行优化,并在此基础上研究确定了各最优控制参数随电源输出电流变化的函数关系式,最后对其效果进行了仿真与实验验证,同时与传统控制方法进行了对比分析。结果表明,针对基于比例积分-矢量比例积分复合控制的新型低纹波可调直流稳压电源所提出的最优控制参数自整定方法,能根据电源实际输出电流大小实时调整其最优控制参数,从而使其在变负载工况下均能获得最佳的输出电压纹波系数和稳态精度,如在该电源额定输出电流范围内任取1.8、3.4 A两组输出电流值,采用所提方法相较于传统固定控制参数法,所得输出电压纹波系数分别下降了22.5%及19.0%,而稳态精度则分别提高了21.4%及19.1%,可见采用所提方法使电源技术性能得到了明显提升,因而具有较好的实际应用价值。 展开更多
关键词 新型低纹波可调直流稳压电源 控制参数优化 多目标人工蜂鸟优化算法 参数自整定方法
原文传递
一种多策略融合改进的人工蜂鸟算法
11
作者 王红旗 张超 《信息与电脑》 2025年第6期139-143,共5页
针对人工蜂鸟算法全局搜索能力不强、易陷入局部最优的问题,提出了一种多策略融合改进的人工蜂鸟算法(Improved Artificial Hummingbird Algorithm,IAHA)。首先,在引导觅食阶段对最大未访问次数候选食物源的数量进行分类,以提升全局搜... 针对人工蜂鸟算法全局搜索能力不强、易陷入局部最优的问题,提出了一种多策略融合改进的人工蜂鸟算法(Improved Artificial Hummingbird Algorithm,IAHA)。首先,在引导觅食阶段对最大未访问次数候选食物源的数量进行分类,以提升全局搜索能力;其次,在区域觅食阶段引入Levy飞行及历史最佳位置,以提升跳出局部最优能力;最后,在迁徙觅食阶段增加更新次数表,以提升种群多样性和跳出局部最优能力。在MATLAB2020上进行IAHA和三种对比算法的性能对比实验,测试函数选择CEC2022函数测试集。实验结果表明,IAHA算法性能优于对比算法。 展开更多
关键词 群体智能优化算法 人工蜂鸟算法 收敛精度 收敛速度
在线阅读 下载PDF
考虑电网电压稳定性的电-氢混合储能系统优化配置
12
作者 胡文波 刘建飞 +3 位作者 陈杰 张天闻 苗霞 杨博 《山东电力技术》 2025年第10期81-90,共10页
综合能源系统(integrated energy system,IES)是推进能源结构调整的关键平台,合理规划其设备配置能显著提高IES运行经济和系统稳定性。此外,由于可再生能源发电固有的随机性和间歇性以及负荷的峰谷特性,导致IES中多能耦合设备的输出波动... 综合能源系统(integrated energy system,IES)是推进能源结构调整的关键平台,合理规划其设备配置能显著提高IES运行经济和系统稳定性。此外,由于可再生能源发电固有的随机性和间歇性以及负荷的峰谷特性,导致IES中多能耦合设备的输出波动,严重威胁IES的运行稳定性。为应对上述挑战,针对IES的经济和稳定运行,以混合储能系统配置成本,系统电压偏差以及净负荷波动最小化为目标,建立一个电-氢混合储能系统多目标优化规划模型。该模型在IEEE-33标准测试系统下,利用多目标人工蜂鸟算法(multi-objective artificial hummingbird algorithm,MOAHA)对电-氢混合储能系统的容量和位置进行优化规划。仿真结果表明,所提的优化规划方法能有效改善IES配电网络的电压分布和净负荷水平,同时凭借电-氢混合储能的互补特性使得IES的运行灵活性得到了提升。 展开更多
关键词 电-氢混合储能系统 优化规划 综合能源系统 多目标人工蜂鸟优化算法
在线阅读 下载PDF
基于改进人工蜂鸟算法的无人机三维航迹规划
13
作者 周建新 何洋 《电光与控制》 北大核心 2025年第9期21-27,共7页
针对城市复杂环境中无人机三维航迹规划问题,提出一种改进人工蜂鸟算法(IAHA)。采用Halton缩放序列对算法初始化方式进行调整,通过随机翻转和缩放的方法生成更具多样性和随机性的种群位置;优化飞行策略侧重全向和轴向飞行,减小对角飞行... 针对城市复杂环境中无人机三维航迹规划问题,提出一种改进人工蜂鸟算法(IAHA)。采用Halton缩放序列对算法初始化方式进行调整,通过随机翻转和缩放的方法生成更具多样性和随机性的种群位置;优化飞行策略侧重全向和轴向飞行,减小对角飞行概率;增加随机游走策略使个体在面临未知或难以解释的环境时更具适应性,提高整体搜索效率。建立无人机三维航迹规划模型,将IAHA应用于该模型并与原算法、其他算法比较,IAHA搭建的模型能更有效地躲避威胁区,快速获得航迹代价最小的安全飞行航迹,表明该算法适用于无人机三维航迹规划。 展开更多
关键词 无人机 三维航迹规划 人工蜂鸟算法 优化飞行策略
在线阅读 下载PDF
基于多目标人工蜂鸟的氢锂混合动力系统能量管理策略
14
作者 黄文杰 《船电技术》 2025年第12期84-89,共6页
针对轨道交通氢锂混合动力系统中的多目标协同优化问题,本文提出了一种基于多目标人工蜂鸟算法(Multi-Objective Artificial Hummingbird Algorithm,MOAHA)的能量管理策略。通过构建等效氢耗、燃料电池寿命退化及锂电池容量衰退的多目... 针对轨道交通氢锂混合动力系统中的多目标协同优化问题,本文提出了一种基于多目标人工蜂鸟算法(Multi-Objective Artificial Hummingbird Algorithm,MOAHA)的能量管理策略。通过构建等效氢耗、燃料电池寿命退化及锂电池容量衰退的多目标优化模型,采用MOAHA算法求解帕累托最优解集,避免人为设定权重的主观偏差。结果表明,所提出方法可获得涵盖“燃料经济优先”至“系统寿命优先”的连续非劣解集,实现多目标的自适应协同优化。该策略可提升系统的综合能效与运行可靠性,为氢锂混合动力系统提供兼顾燃料经济性和系统耐久性的策略。 展开更多
关键词 混合动力系统 多目标优化 能量管理策略 人工蜂鸟算法
在线阅读 下载PDF
基于人工蜂鸟算法的门式起重机主梁安全优化设计 被引量:8
15
作者 肖浩 肖林 +1 位作者 贺宾 赵章焰 《机械设计与研究》 CSCD 北大核心 2023年第3期222-226,231,共6页
针对门式起重机主梁传统设计方法设计余量大、耗材高,现有智能优化设计方法结果安全性不直观、无法设计特定安全要求下主梁的问题,提出一种基于人工蜂鸟算法的主梁安全优化设计方法。以三标度模糊层次综合评价法为安全量化方法,获得任... 针对门式起重机主梁传统设计方法设计余量大、耗材高,现有智能优化设计方法结果安全性不直观、无法设计特定安全要求下主梁的问题,提出一种基于人工蜂鸟算法的主梁安全优化设计方法。以三标度模糊层次综合评价法为安全量化方法,获得任意设计参数下的主梁安全评分。以主梁截面面积为目标函数,截面尺寸参数为设计变量,特定安全评分及尺寸要求为约束条件构建优化模型,使用人工蜂鸟算法获取轻量化最优解。经工程实例验证,主梁优化结果相较于原始设计自重大幅减轻且满足一定安全要求。 展开更多
关键词 人工蜂鸟算法 门式起重机 主梁 安全评价 优化设计
原文传递
变权-混合决策评估的复合功能并网逆变器多目标协同优化控制方法 被引量:3
16
作者 杨帆 卫水平 +2 位作者 任意 陈秭龙 乐健 《中国电力》 CSCD 北大核心 2024年第3期113-125,共13页
复合功能并网逆变器(multi-functional grid-connected inverter,MFGCI)在完成功率输出的同时,具备解决配电网中多种电能质量问题的能力,但该能力往往受其可用于电能质量治理的补偿容量的限制。以MFGCI的控制结构为基础,给出了无锁相环... 复合功能并网逆变器(multi-functional grid-connected inverter,MFGCI)在完成功率输出的同时,具备解决配电网中多种电能质量问题的能力,但该能力往往受其可用于电能质量治理的补偿容量的限制。以MFGCI的控制结构为基础,给出了无锁相环补偿指令电流及并网跟踪电流指令,提出了基于变权-混合决策评估的多目标协同优化方法,以更好适用于因新能源不确定性及非线性负荷接入导致的电能质量指标波动问题。构建了以电能质量补偿效果最佳和所需补偿容量最小的多目标函数,采用基于多目标人工蜂鸟算法(multi-objective artificial hummingbird algorithm,MOAHA)更新机制的优化算法,求解补偿各电能质量问题的最优容量分配系数,并通过多种场景下仿真,验证了所提方法的正确性和有效性。 展开更多
关键词 电能质量 复合功能并网逆变器 协同优化 变权-混合决策 多目标人工蜂鸟算法
在线阅读 下载PDF
分布式储能接入偏远山区配电网的规划方法 被引量:3
17
作者 刘禾 田佳钰 +1 位作者 罗俊 闵永智 《广东电力》 北大核心 2024年第12期61-69,共9页
针对分布式储能接入偏远山区配电网的规划优化问题,提出一种兼顾经济性与可靠性的储能并网规划方法。以储能并网容量最大、投资运维成本最低以及网损最小为经济性规划目标,以电压偏差、电压波动指标为规划约束,建立分布式储能接入偏远... 针对分布式储能接入偏远山区配电网的规划优化问题,提出一种兼顾经济性与可靠性的储能并网规划方法。以储能并网容量最大、投资运维成本最低以及网损最小为经济性规划目标,以电压偏差、电压波动指标为规划约束,建立分布式储能接入偏远山区配电网的多目标规划优化模型;采用多目标人工蜂鸟算法求解规划模型;最后,根据西北某偏远山区实际数据,结合IEEE 33节点配电网系统进行验证。仿真结果表明,通过合理的配置储能系统,配电网末端电压偏差降低3.7%,系统总有功网损降低37.91%,可实现在保证储能经济性的同时,提升偏远山区配电网的电压质量的目的。 展开更多
关键词 偏远山区 分布式储能 电压质量 多目标人工蜂鸟算法 规划优化
在线阅读 下载PDF
Improvement of building energy flexibility with PV battery system based on prediction and load management
18
作者 Cangbin Dai Tao Ma +2 位作者 Yijie Zhang Shengjie Weng Jinqing Peng 《Building Simulation》 2025年第1期65-85,共21页
With the rapid increase in solar photovoltaic(PV)installation capacity,the strain on grid transmission burden has intensified.A house energy management system is recognized as an effective solution to mitigate this gr... With the rapid increase in solar photovoltaic(PV)installation capacity,the strain on grid transmission burden has intensified.A house energy management system is recognized as an effective solution to mitigate this grid burden.However,existing research has not fully explored the potential of battery utilization and the forecasting of uncertainties.In this paper,a novel multi-objective optimization framework based on the genetic algorithm-based method for the house energy management system is proposed,to enhance renewable self-consumption,improve on-site renewable self-sufficiency,and optimize economic benefits for users.The framework integrates an artificial neural network for predictions of meteorological data and user load at a 5-minute temporal resolution,enabling the simulation and optimization of the PV-battery-flexible load system.Emphasizing deferrable loads,constant-temperature control loads,and batteries,the proposed framework devises optimal strategies for distributed PV battery systems in residential.It harnesses load flexibility and battery storage capabilities while incorporating comfort assessment metrics.This approach significantly improves the system’s economic and technical performance metrics,with system self-consumption rate,self-sufficiency rate,and cost reduction ratio improved by 13.5%,11.3%,and 6.2%,respectively,compared to the basic strategy.Additionally,the optimization of the air conditioning system enhances alignment with the photovoltaic generation,resulting in a 9.8%reduction in energy consumption and a 9.4%decrease in electricity costs,while maintaining user comfort at an acceptable level.The proposed framework promotes the practical application of renewable management systems,highlighting renewable energy efficient utilization,grid dependency reduction,and user economic benefit increase. 展开更多
关键词 demand side management genetic algorithm multi-objective optimization artificial neural network photovoltaic-battery system
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部