期刊文献+
共找到49篇文章
< 1 2 3 >
每页显示 20 50 100
An Improved Multi-objective Artificial Hummingbird Algorithm for Capacity Allocation of Supercapacitor Energy Storage Systems in Urban Rail Transit
1
作者 Xin Wang Jian Feng Yuxin Qin 《Journal of Bionic Engineering》 2025年第2期866-883,共18页
To address issues such as poor initial population diversity, low stability and local convergence accuracy, and easy local optima in the traditional Multi-Objective Artificial Hummingbird Algorithm (MOAHA), an Improved... To address issues such as poor initial population diversity, low stability and local convergence accuracy, and easy local optima in the traditional Multi-Objective Artificial Hummingbird Algorithm (MOAHA), an Improved MOAHA (IMOAHA) was proposed. The improvements involve Tent mapping based on random variables to initialize the population, a logarithmic decrease strategy for inertia weight to balance search capability, and the improved search operators in the territory foraging phase to enhance the ability to escape from local optima and increase convergence accuracy. The effectiveness of IMOAHA was verified through Matlab/Simulink. The results demonstrate that IMOAHA exhibits superior convergence, diversity, uniformity, and coverage of solutions across 6 test functions, outperforming 4 comparative algorithms. A Wilcoxon rank-sum test further confirmed its exceptional performance. To assess IMOAHA’s ability to solve engineering problems, an optimization model for a multi-track, multi-train urban rail traction power supply system with Supercapacitor Energy Storage Systems (SCESSs) was established, and IMOAHA was successfully applied to solving the capacity allocation problem of SCESSs, demonstrating that it is an effective tool for solving complex Multi-Objective Optimization Problems (MOOPs) in engineering domains. 展开更多
关键词 multi-objective artificial hummingbird algorithm Tent mapping based on random variables Urban rail transit Supercapacitor energy storage systems Capacity allocation
在线阅读 下载PDF
Improved multi-objective artificial bee colony algorithm for optimal power flow problem 被引量:1
2
作者 马连博 胡琨元 +1 位作者 朱云龙 陈瀚宁 《Journal of Central South University》 SCIE EI CAS 2014年第11期4220-4227,共8页
The artificial bee colony(ABC) algorithm is improved to construct a hybrid multi-objective ABC algorithm, called HMOABC, for resolving optimal power flow(OPF) problem by simultaneously optimizing three conflicting obj... The artificial bee colony(ABC) algorithm is improved to construct a hybrid multi-objective ABC algorithm, called HMOABC, for resolving optimal power flow(OPF) problem by simultaneously optimizing three conflicting objectives of OPF, instead of transforming multi-objective functions into a single objective function. The main idea of HMOABC is to extend original ABC algorithm to multi-objective and cooperative mode by combining the Pareto dominance and divide-and-conquer approach. HMOABC is then used in the 30-bus IEEE test system for solving the OPF problem considering the cost, loss, and emission impacts. The simulation results show that the HMOABC is superior to other algorithms in terms of optimization accuracy and computation robustness. 展开更多
关键词 cooperative artificial colony algorithm optimal power flow multi-objective optimization
在线阅读 下载PDF
Optimal Location and Sizing ofMulti-Resource Distributed Generator Based onMulti-Objective Artificial Bee Colony Algorithm
3
作者 Qiangfei Cao Huilai Wang +1 位作者 Zijia Hui Lingyun Chen 《Energy Engineering》 EI 2024年第2期499-521,共23页
Distribution generation(DG)technology based on a variety of renewable energy technologies has developed rapidly.A large number of multi-type DG are connected to the distribution network(DN),resulting in a decline in t... Distribution generation(DG)technology based on a variety of renewable energy technologies has developed rapidly.A large number of multi-type DG are connected to the distribution network(DN),resulting in a decline in the stability of DN operation.It is urgent to find a method that can effectively connect multi-energy DG to DN.photovoltaic(PV),wind power generation(WPG),fuel cell(FC),and micro gas turbine(MGT)are considered in this paper.A multi-objective optimization model was established based on the life cycle cost(LCC)of DG,voltage quality,voltage fluctuation,system network loss,power deviation of the tie-line,DG pollution emission index,and meteorological index weight of DN.Multi-objective artificial bee colony algorithm(MOABC)was used to determine the optimal location and capacity of the four kinds of DG access DN,and compared with the other three heuristic algorithms.Simulation tests based on IEEE 33 test node and IEEE 69 test node show that in IEEE 33 test node,the total voltage deviation,voltage fluctuation,and system network loss of DN decreased by 49.67%,7.47%and 48.12%,respectively,compared with that without DG configuration.In the IEEE 69 test node,the total voltage deviation,voltage fluctuation and system network loss of DN in the MOABC configuration scheme decreased by 54.98%,35.93%and 75.17%,respectively,compared with that without DG configuration,indicating that MOABC can reasonably plan the capacity and location of DG.Achieve the maximum trade-off between DG economy and DN operation stability. 展开更多
关键词 Distributed generation distribution network life cycle cost multi-objective artificial bee colony algorithm voltage stability
在线阅读 下载PDF
Binary Hybrid Artificial Hummingbird with Flower Pollination Algorithm for Feature Selection in Parkinson’s Disease Diagnosis 被引量:1
4
作者 Liuyan Feng Yongquan Zhou Qifang Luo 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第2期1003-1021,共19页
Parkinson’s disease is a neurodegenerative disorder that inflicts irreversible damage on humans.Some experimental data regarding Parkinson’s patients are redundant and irrelevant,posing significant challenges for di... Parkinson’s disease is a neurodegenerative disorder that inflicts irreversible damage on humans.Some experimental data regarding Parkinson’s patients are redundant and irrelevant,posing significant challenges for disease detection.Therefore,there is a need to devise an effective method for the selective extraction of disease-specific information,ensuring both accuracy and the utilization of fewer features.In this paper,a Binary Hybrid Artificial Hummingbird and Flower Pollination Algorithm(FPA),called BFAHA,is proposed to solve the problem of Parkinson’s disease diagnosis based on speech signals.First,combining FPA with Artificial Hummingbird Algorithm(AHA)can take advantage of the strong global exploration ability possessed by FPA to improve the disadvantages of AHA,such as premature convergence and easy falling into local optimum.Second,the Hemming distance is used to determine the difference between the other individuals in the population and the optimal individual after each iteration,if the difference is too significant,the cross-mutation strategy in the genetic algorithm(GA)is used to induce the population individuals to keep approaching the optimal individual in the random search process to speed up finding the optimal solution.Finally,an S-shaped function converts the improved algorithm into a binary version to suit the characteristics of the feature selection(FS)tasks.In this paper,10 high-dimensional datasets from UCI and the ASU are used to test the performance of BFAHA and apply it to Parkinson’s disease diagnosis.Compared with other state-of-the-art algorithms,BFAHA shows excellent competitiveness in both the test datasets and the classification problem,indicating that the algorithm proposed in this study has apparent advantages in the field of feature selection. 展开更多
关键词 artificial hummingbird algorithm Flower pollination algorithm Feature selection Parkinson’s disease Meta-heuristic
暂未订购
Modified Elite Opposition-Based Artificial Hummingbird Algorithm for Designing FOPID Controlled Cruise Control System 被引量:2
5
作者 Laith Abualigah Serdar Ekinci +1 位作者 Davut Izci Raed Abu Zitar 《Intelligent Automation & Soft Computing》 2023年第11期169-183,共15页
Efficient speed controllers for dynamic driving tasks in autonomous vehicles are crucial for ensuring safety and reliability.This study proposes a novel approach for designing a fractional order proportional-integral-... Efficient speed controllers for dynamic driving tasks in autonomous vehicles are crucial for ensuring safety and reliability.This study proposes a novel approach for designing a fractional order proportional-integral-derivative(FOPID)controller that utilizes a modified elite opposition-based artificial hummingbird algorithm(m-AHA)for optimal parameter tuning.Our approach outperforms existing optimization techniques on benchmark functions,and we demonstrate its effectiveness in controlling cruise control systems with increased flexibility and precision.Our study contributes to the advancement of autonomous vehicle technology by introducing a novel and efficient method for FOPID controller design that can enhance the driving experience while ensuring safety and reliability.We highlight the significance of our findings by demonstrating how our approach can improve the performance,safety,and reliability of autonomous vehicles.This study’s contributions are particularly relevant in the context of the growing demand for autonomous vehicles and the need for advanced control techniques to ensure their safe operation.Our research provides a promising avenue for further research and development in this area. 展开更多
关键词 Cruise control system FOPID controller artificial hummingbird algorithm elite opposition-based learning
在线阅读 下载PDF
Enhanced asphalt dynamic modulus prediction: A detailed analysis of artificial hummingbird algorithm-optimised boosted trees
6
作者 Ikenna D.Uwanuakwa Ilham Yahya Amir Lyce Ndolo Umba 《Journal of Road Engineering》 2024年第2期224-233,共10页
This study introduces and evaluates a novel artificial hummingbird algorithm-optimised boosted tree(AHAboosted)model for predicting the dynamic modulus(E*)of hot mix asphalt concrete.Using a substantial dataset from N... This study introduces and evaluates a novel artificial hummingbird algorithm-optimised boosted tree(AHAboosted)model for predicting the dynamic modulus(E*)of hot mix asphalt concrete.Using a substantial dataset from NCHRP Report-547,the model was trained and rigorously tested.Performance metrics,specifically RMSE,MAE,and R2,were employed to assess the model's predictive accuracy,robustness,and generalisability.When benchmarked against well-established models like support vector machines(SVM)and gaussian process regression(GPR),the AHA-boosted model demonstrated enhanced performance.It achieved R2 values of 0.997 in training and 0.974 in testing,using the traditional Witczak NCHRP 1-40D model inputs.Incorporating features such as test temperature,frequency,and asphalt content led to a 1.23%increase in the test R2,signifying an improvement in the model's accuracy.The study also explored feature importance and sensitivity through SHAP and permutation importance plots,highlighting binder complex modulus|G*|as a key predictor.Although the AHA-boosted model shows promise,a slight decrease in R2 from training to testing indicates a need for further validation.Overall,this study confirms the AHA-boosted model as a highly accurate and robust tool for predicting the dynamic modulus of hot mix asphalt concrete,making it a valuable asset for pavement engineering. 展开更多
关键词 ASPHALT Dynamic modulus PREDICTION artificial hummingbird algorithm Boosted tree
在线阅读 下载PDF
Hydraulic Optimization of a Double-channel Pump's Impeller Based on Multi-objective Genetic Algorithm 被引量:12
7
作者 ZHAO Binjuan WANG Yu +2 位作者 CHEN Huilong QIU Jing HOU Duohua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第3期634-640,共7页
Computational fluid dynamics(CFD) can give a lot of potentially very useful information for hydraulic optimization design of pumps, however, it cannot directly state what kind of modification should be made to impro... Computational fluid dynamics(CFD) can give a lot of potentially very useful information for hydraulic optimization design of pumps, however, it cannot directly state what kind of modification should be made to improve such hydrodynamic performance. In this paper, a more convenient and effective approach is proposed by combined using of CFD, multi-objective genetic algorithm(MOGA) and artificial neural networks(ANN) for a double-channel pump's impeller, with maximum head and efficiency set as optimization objectives, four key geometrical parameters including inlet diameter, outlet diameter, exit width and midline wrap angle chosen as optimization parameters. Firstly, a multi-fidelity fitness assignment system in which fitness of impellers serving as training and comparison samples for ANN is evaluated by CFD, meanwhile fitness of impellers generated by MOGA is evaluated by ANN, is established and dramatically reduces the computational expense. Then, a modified MOGA optimization process, in which selection is performed independently in two sub-populations according to two optimization objectives, crossover and mutation is performed afterword in the merged population, is developed to ensure the global optimal solution to be found. Finally, Pareto optimal frontier is found after 500 steps of iterations, and two optimal design schemes are chosen according to the design requirements. The preliminary and optimal design schemes are compared, and the comparing results show that hydraulic performances of both pumps 1 and 2 are improved, with the head and efficiency of pump 1 increased by 5.7% and 5.2%, respectively in the design working conditions, meanwhile shaft power decreased in all working conditions, the head and efficiency of pump 2 increased by 11.7% and 5.9%, respectively while shaft power increased by 5.5%. Inner flow field analyses also show that the backflow phenomenon significantly diminishes at the entrance of the optimal impellers 1 and 2, both the area of vortex and intensity of vortex decreases in the whole flow channel. This paper provides a promising tool to solve the hydraulic optimization problem of pumps' impellers. 展开更多
关键词 double-channel pump's impeller multi-objective genetic algorithm artificial neural network computational fluid dynamics(CFD) UNI
在线阅读 下载PDF
A Discrete Multi‑Objective Artificial Bee Colony Algorithm for a Real‑World Electronic Device Testing Machine Allocation Problem 被引量:2
8
作者 Jin Xie Xinyu Li Liang Gao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第6期136-150,共15页
With the continuous development of science and technology,electronic devices have begun to enter all aspects of human life,becoming increasingly closely related to human life.Users have higher quality requirements for... With the continuous development of science and technology,electronic devices have begun to enter all aspects of human life,becoming increasingly closely related to human life.Users have higher quality requirements for electronic devices.Electronic device testing has gradually become an irreplaceable engineering process in modern manufacturing enterprises to guarantee the quality of products while preventing inferior products from entering the market.Considering the large output of electronic devices,improving the testing efficiency while reducing the testing cost has become an urgent problem to be solved.This study investigates the electronic device testing machine allocation problem(EDTMAP),aiming to improve the production of electronic devices and reduce the scheduling distance among testing machines through reasonable machine allocation.First,a mathematical model was formulated for the EDTMAP to maximize both production and the scheduling distance among testing machines.Second,we developed a discrete multi-objective artificial bee colony(DMOABC)algorithm to solve EDTMAP.A crossover operator and local search operator were designed to improve the exploration and exploitation of the algorithm,respectively.Numerical experiments were conducted to evaluate the performance of the proposed algorithm.The experimental results demonstrate the superiority of the proposed algorithm compared with the non-dominated sorting genetic algorithm II(NSGA-II)and strength Pareto evolutionary algorithm 2(SPEA2).Finally,the mathematical model and DMOABC algorithm were applied to a real-world factory that tests radio-frequency modules.The results verify that our method can significantly improve production and reduce the scheduling distance among testing machines. 展开更多
关键词 Electronic device Machine allocation multi-objective optimization artificial bee colony algorithm
在线阅读 下载PDF
Artificial intelligence for sustainable development of smart cities and urban land-use management 被引量:2
9
作者 Zohreh Masoumi John van Genderen 《Geo-Spatial Information Science》 CSCD 2024年第4期1212-1236,共25页
The urban land-use allocation problem is a spatial optimization problem that allocates optimum land-uses to specific land units in urban areas.This problem is an NP(nondeterministic polynomial time)-hard problem becau... The urban land-use allocation problem is a spatial optimization problem that allocates optimum land-uses to specific land units in urban areas.This problem is an NP(nondeterministic polynomial time)-hard problem because of involving many objective functions,many constraints,and complex search space.Moreover,this subject is an important issue in smart cities and newly developed areas of cities to achieve a sustainable arrangement of land-uses.Different types ofMulti-Objective Optimization Algorithms(MOOAs)based on Artificial Intelligence(AI)have been frequently employed,but their ability and performance have not been evaluated and compared properly.This paper aims to employ and compare three commonly used MOOAs i.e.NSGA-II,MOPSO,and MOEA/D in urban land-use allocation problems.Selected algorithms belong to different categories of MOOAs family to investigate their advantage and disadvantages.The objective functions of this study are compatibility,dependency,suitability,and compactness of land-uses and the constraint is compensating of Per-Capita demand in the urban environment.Evaluation of results is based on the dispersion of the solutions,diversity of the solutions’space,and comparing the number of dominant solutions in Pareto-Fronts.The results showed that all three algorithms improved the objective functions related to the current arrangement of the land-uses.However,the run time of NSGA-II is the worst,related to the Diversity Metric(DM)which represents the regularity of the distance between solutions at the highest degree.Moreover,MOPSO provides the best Scattering Diversity Metric(SDM)which shows the diversity of solutions in the solution space.Furthermore,In terms of algorithm execution time,MOEA/D performed better than the other two.So,Decision-makers should consider different aspects in choosing the appropriate MOOA for land-use management problems. 展开更多
关键词 Urban land-use management geo-spatial information sciences multi-objective optimization algorithm smart cities artificial intelligence
原文传递
Metaheuristic multi-objective optimization with artificial neural networks surrogate modeling for optimal energy-economic performance for CSP technology
10
作者 A.Allouhi M.Benzakour Amine K.A.Tabet Aoul 《Energy and AI》 2025年第2期218-237,共20页
Among CSP technologies,the linear Fresnel reflector(LFR)can provide reliable carbon-neutral electricity for large-scale applications.In this study,the performance of a large solar LFR power plant under varying climati... Among CSP technologies,the linear Fresnel reflector(LFR)can provide reliable carbon-neutral electricity for large-scale applications.In this study,the performance of a large solar LFR power plant under varying climatic conditions and the dependency of the performance on major plant design specifications,such as solar multiple and full-load thermal storage hours,were examined.Next,artificial neural network(ANN)surrogate models were introduced to predict the annual capacity factor of 100 MWe power plants operating with LFR technology.Single-hidden-layer ANN models with different numbers of neurons in the hidden layer were used and the Levenberg–Marquardt training algorithm was adopted.To overcome overfitting,validation and Bayesian Regularization approaches were compared.As training and testing data,36 geographical sites with various combinations of design parameters were used.Through multi-objective optimization techniques,including the Multi-Objective Particle-Swarm Optimizer and Multi-Objective Grey Wolf Optimizer coupled with ANN surrogate modeling,this study navigates the trade-offs to identify Pareto-optimal solutions for large-scale LFR-based CSP integration based on the energy and cost criteria.The study also identified Site 4(S4)as a promising candidate for optimal balance between the capacity factor(51.05%)and specific cost(5246.71$/kW),showcasing the practical implications of the research for sustainable and efficient CSP plant implementation. 展开更多
关键词 artificial neural network Capacity factor Linear fresnelreflector multi-objective optimization Training algorithm Metaheuristics
在线阅读 下载PDF
基于改进人工蜂鸟算法优化支持向量机的人脸识别算法 被引量:1
11
作者 肖剑 黄博 +2 位作者 程鸿亮 胡欣 袁晔 《计算机工程》 北大核心 2025年第10期319-326,共8页
传统的人脸识别系统在最终人脸分类问题上,通常借助各种仿生学算法与支持向量机(SVM)相结合组成相应的人脸识别模型。该方法通过算法的迭代选取最优SVM参数,然而这种策略在人脸识别方法上存在分类精度较低、训练时间较长且容易陷入局部... 传统的人脸识别系统在最终人脸分类问题上,通常借助各种仿生学算法与支持向量机(SVM)相结合组成相应的人脸识别模型。该方法通过算法的迭代选取最优SVM参数,然而这种策略在人脸识别方法上存在分类精度较低、训练时间较长且容易陷入局部最优解的问题。针对上述问题,提出利用改进人工蜂鸟算法(AHA)优化SVM的人脸识别算法。首先通过引入Tent映射的混沌序列改进人工蜂鸟算法,使蜂鸟种群初始化更为均匀,避免算法陷入局部最优解;其次在SVM进行人脸识别的方法中引入改进AHA,通过设定一定的迭代次数,选择用来优化SVM的最优相关参数,达到提高人脸识别准确率的目的。实验结果表明,将改进的人工蜂鸟算法与灰狼优化(GWO)算法、麻雀搜索算法(SSA)、鲸鱼优化算法(WOA)进行对比,改进AHA在基准函数的求解上具有更快的收敛速度,同时在ORL人脸数据库进行人脸识别实验,将改进AHA与SVM相结合,相比于将GWO、SSA和WOA与SVM相结合,在人脸识别的准确率指标方面,改进AHA结合SVM方案具有更高的准确率和召回率,并且模型推理速度更快。 展开更多
关键词 人工蜂鸟算法 支持向量机 人脸识别 TENT映射 混沌序列
在线阅读 下载PDF
基于改进人工蜂鸟算法的装船调度优化方法
12
作者 刘文远 周如意 厉斌斌 《计算机应用研究》 北大核心 2025年第5期1462-1469,共8页
为提升散杂货进出港作业效率,减少船舶在港时间,提出一种基于改进人工蜂鸟算法的装船调度优化方法。首先,在综合考虑泊位、装船设备和堆场三部分因素相互影响的条件下,以船舶总在港时间为优化目标,构建协同调度优化模型。然后,鉴于人工... 为提升散杂货进出港作业效率,减少船舶在港时间,提出一种基于改进人工蜂鸟算法的装船调度优化方法。首先,在综合考虑泊位、装船设备和堆场三部分因素相互影响的条件下,以船舶总在港时间为优化目标,构建协同调度优化模型。然后,鉴于人工蜂鸟算法在求解离散问题的局限性,对人工蜂鸟算法进行离散化改造,进而提出一种改进型人工蜂鸟算法,引入自适应飞行参数控制蜂鸟个体的飞行方式,同时通过改进最优个体引导策略优化AHA的位置更新过程,进一步平衡AHA的全局探索与局部开发能力。为了进一步增强算法避免局部最优解的能力,引入了变异策略调整和优化蜂鸟的位置。最后,在基准测试函数上进行有效性实验,并与其他群智能优化算法进行对比,验证改进算法的寻优性能。进一步通过对散杂货港口的历史数据进行测试,采用改进算法进行求解计算,并与基础的人工蜂鸟算法进行了比较。实验结果表明,该策略缩短了船舶的在港时间,能够得出相对较优的调度方案,为港口船舶优化调度提供新方案,有一定的实际意义。 展开更多
关键词 人工蜂鸟算法 群体智能 优化 散杂货港口
在线阅读 下载PDF
基于改进人工蜂鸟算法的在线航空行李三维装箱 被引量:2
13
作者 杜文龙 罗福源 臧铁钢 《包装工程》 北大核心 2025年第3期179-185,共7页
目的当前航空托运行李大量依赖人工码放,而现有的三维装箱自动码放算法解决强异构行李装箱还存在空间利用率不高的问题,亟须进行算法改进研究。方法根据机场行李托运与码放实际需求进行数学建模,通过前置传感器提前获取一定数量托运行... 目的当前航空托运行李大量依赖人工码放,而现有的三维装箱自动码放算法解决强异构行李装箱还存在空间利用率不高的问题,亟须进行算法改进研究。方法根据机场行李托运与码放实际需求进行数学建模,通过前置传感器提前获取一定数量托运行李的尺寸、质量和装载顺序等信息,对行李的码放位姿进行优化调整,进而设计适应度函数并结合剩余空间启发式搜索原理对原有的人工蜂鸟算法(Artificial Hummingbird Algorithm,AHA)进行改进,形成一套更加有效的装箱策略。结果采用提出的算法对3×200件真实机场行李进行码放仿真计算,快速完成码垛计算,并将行李车的平均空间利用率提升9.3%。结论改进的算法计算时间短,空间利用率高,装载布局稳定性强,可为机场物流现代化与智能化提供有力支撑。 展开更多
关键词 航空托运行李 三维装箱 改进的人工蜂鸟算法 剩余空间
在线阅读 下载PDF
基于多目标人工蜂鸟算法的研制保证等级分配 被引量:2
14
作者 崔瑀欣 陆中 周伽 《航空学报》 北大核心 2025年第4期300-311,共12页
分配研制保证等级(DAL)是飞机系统研制过程中的一项重要工作,通常要求在满足DAL分配原则的基础上使得研制成本最小。构建了一种面向DAL分配的多目标优化模型,该模型将DAL分配原则和顶层失效状态概率要求分别作为定性和定量约束条件,以... 分配研制保证等级(DAL)是飞机系统研制过程中的一项重要工作,通常要求在满足DAL分配原则的基础上使得研制成本最小。构建了一种面向DAL分配的多目标优化模型,该模型将DAL分配原则和顶层失效状态概率要求分别作为定性和定量约束条件,以研制成本和系统重量最小化为优化目标,将为系统中功能或项目分配的DAL作为决策变量;在此基础上,提出了基于多目标人工蜂鸟算法的DAL分配方法。结合某飞机电传飞控系统给出了DAL分配实例,得到DAL分配的非支配解集。在相同测试条件下,与多目标粒子群算法相比,提出方法的运行时间缩短了17.59%,超体积指标(HV)提高了63.49%,表明提出方法能够快速收敛、求得的解集具有良好的分布性。 展开更多
关键词 系统安全性 研制保证等级分配 多目标优化 多目标人工蜂鸟优化算法 失效概率
原文传递
多传感器快速恒温槽校准与控温性能优化研究
15
作者 姜永元 张守亮 +4 位作者 胡元元 吴任翔 陈康 李远知 李延康 《低温工程》 北大核心 2025年第5期23-32,41,共11页
针对以传统恒温槽为热源的表面温度控温精度低和校准能力不足的问题,开展了多路传感器校准恒温槽搅拌腔优化设计研究。设计了一种多传感器同时校验的便携式恒温槽,并提出了一种基于人工蜂鸟优化算法(AHA)的自适应调节方法。首先,通过优... 针对以传统恒温槽为热源的表面温度控温精度低和校准能力不足的问题,开展了多路传感器校准恒温槽搅拌腔优化设计研究。设计了一种多传感器同时校验的便携式恒温槽,并提出了一种基于人工蜂鸟优化算法(AHA)的自适应调节方法。首先,通过优化下沉式法兰盘结构,提高了温度场分布的均匀性;同时引入磁吸式表面温度传感器,实现多点同步校准,从而提升测温的准确性和校准效率。其次,对恒温槽内部温度场进行了数值模拟,分析了不同工况下的温度分布特性。最后,制作实验样机并开展性能测试。结果表明,8个测温位点的稳态温度分布接近,波动性均小于0.2℃/10 min,且在50℃工况下的最大温差仅为0.004℃,该恒温槽在控温精度和校准能力方面均优于传统设计,能够满足高精度温度控制和多路磁吸式表面温度传感器的校准需求。 展开更多
关键词 恒温槽 FLUENT 仿真 人工蜂鸟算法( AHA) 多传感器校准 控温精度
在线阅读 下载PDF
基于改进AHA-ELM的光伏并网断路器异常检测方法 被引量:1
16
作者 沈兴杰 陈沛 +1 位作者 于孟 卢道明 《水利水电技术(中英文)》 北大核心 2025年第S1期941-947,共7页
针对传统光伏并网断路器检测方法对复杂非线性特征提取和分类能力不足的问题,提出一种基于改进人工蜂鸟算法(AHA)优化极限学习机(ELM)的伏并网断路器异常检测方法。首先,研究影响光伏并网断路器健康状态因素,分析断路器常见故障类型和... 针对传统光伏并网断路器检测方法对复杂非线性特征提取和分类能力不足的问题,提出一种基于改进人工蜂鸟算法(AHA)优化极限学习机(ELM)的伏并网断路器异常检测方法。首先,研究影响光伏并网断路器健康状态因素,分析断路器常见故障类型和故障特征,选取适当的特征信号作为能够反映断路器工作状态的高质量数据集;其次,引入动态飞行策略和混沌映射机制优化人工蜂鸟算法,利用改进后的人工蜂鸟算法对极限学习机的输入权重和隐藏层偏置进行优化,增强模型对高维复杂特征的学习能力;然后,采用改进的AHA-ELM算法快速获取断路器各种故障下的数据特征,训练得到光伏并网断路器异常检测模型,对断路器状态进行异常检测;最后,基于某实际含光伏并网的配电网进行仿真验证,结果表明所提方法的具有可行性和有效性。 展开更多
关键词 光伏并网断路器 异常检测 极限学习机 人工蜂鸟算法 混沌映射
在线阅读 下载PDF
基于多准则优化参数的滚动轴承微弱故障诊断方法
17
作者 栾孝驰 张振鹏 +2 位作者 柳贡民 沙云东 王胜红 《哈尔滨工程大学学报》 北大核心 2025年第10期2003-2011,共9页
为有效地提取强背景噪声下航空发动机滚动轴承微弱故障特征,本文提出一种多准则优化参数的滚动轴承微弱故障诊断方法。为了自适应选取变模态分解和最大相关峭度解卷积中的参数并提高故障诊断的正确率,使用人工蜂鸟算法优化变模态分解中... 为有效地提取强背景噪声下航空发动机滚动轴承微弱故障特征,本文提出一种多准则优化参数的滚动轴承微弱故障诊断方法。为了自适应选取变模态分解和最大相关峭度解卷积中的参数并提高故障诊断的正确率,使用人工蜂鸟算法优化变模态分解中的参数分解层数和惩罚因子,并引入一种新的指标——有效加权峭度作为适应度函数,利用优化后的变模态分解对信号进行分解并以有效加权峭度作为评价指标,筛选指标最大的分量作为最优分量。以故障特征能量比作为适应度函数优化最大相关峭度解卷积以增强故障特征。采用包络谱分析提取实际故障特征频率实现故障诊断。本文使用公开数据和自行开展的主轴承故障模拟实验进行了方法验证。结果表明,本文方法可以有效突显滚动轴承的故障特征频率及其倍频,实现了在强背景噪声下航空发动机滚动轴承微弱故障诊断。 展开更多
关键词 航空发动机 滚动轴承 变模态分解 最大相关峭度解卷积 有效加权峭度 人工蜂鸟算法 故障诊断
在线阅读 下载PDF
基于输出电流自适应的最优控制参数自整定方法
18
作者 袁硕 张小平 +1 位作者 谈宜雯 李庆 《电子测量与仪器学报》 北大核心 2025年第7期54-62,共9页
针对基于比例积分-矢量比例积分复合控制的新型低纹波可调直流稳压电源在变负载工况下也即其输出电流变化时其输出电压纹波系数及稳态精度受其输出电流影响大的问题,提出一种基于输出电流自适应的最优控制参数自整定方法。文中介绍了该... 针对基于比例积分-矢量比例积分复合控制的新型低纹波可调直流稳压电源在变负载工况下也即其输出电流变化时其输出电压纹波系数及稳态精度受其输出电流影响大的问题,提出一种基于输出电流自适应的最优控制参数自整定方法。文中介绍了该直流稳压电源的拓扑结构及所采用的比例积分-矢量比例积分复合控制方法,并以该控制方法各控制参数为优化对象,以该直流稳压电源输出电压纹波系数和稳态精度为优化目标,通过建立其优化对象与优化目标间的数学模型及其多目标优化适应度函数,提出采用多目标人工蜂鸟优化算法对其控制参数进行优化,并在此基础上研究确定了各最优控制参数随电源输出电流变化的函数关系式,最后对其效果进行了仿真与实验验证,同时与传统控制方法进行了对比分析。结果表明,针对基于比例积分-矢量比例积分复合控制的新型低纹波可调直流稳压电源所提出的最优控制参数自整定方法,能根据电源实际输出电流大小实时调整其最优控制参数,从而使其在变负载工况下均能获得最佳的输出电压纹波系数和稳态精度,如在该电源额定输出电流范围内任取1.8、3.4 A两组输出电流值,采用所提方法相较于传统固定控制参数法,所得输出电压纹波系数分别下降了22.5%及19.0%,而稳态精度则分别提高了21.4%及19.1%,可见采用所提方法使电源技术性能得到了明显提升,因而具有较好的实际应用价值。 展开更多
关键词 新型低纹波可调直流稳压电源 控制参数优化 多目标人工蜂鸟优化算法 参数自整定方法
原文传递
一种多策略融合改进的人工蜂鸟算法
19
作者 王红旗 张超 《信息与电脑》 2025年第6期139-143,共5页
针对人工蜂鸟算法全局搜索能力不强、易陷入局部最优的问题,提出了一种多策略融合改进的人工蜂鸟算法(Improved Artificial Hummingbird Algorithm,IAHA)。首先,在引导觅食阶段对最大未访问次数候选食物源的数量进行分类,以提升全局搜... 针对人工蜂鸟算法全局搜索能力不强、易陷入局部最优的问题,提出了一种多策略融合改进的人工蜂鸟算法(Improved Artificial Hummingbird Algorithm,IAHA)。首先,在引导觅食阶段对最大未访问次数候选食物源的数量进行分类,以提升全局搜索能力;其次,在区域觅食阶段引入Levy飞行及历史最佳位置,以提升跳出局部最优能力;最后,在迁徙觅食阶段增加更新次数表,以提升种群多样性和跳出局部最优能力。在MATLAB2020上进行IAHA和三种对比算法的性能对比实验,测试函数选择CEC2022函数测试集。实验结果表明,IAHA算法性能优于对比算法。 展开更多
关键词 群体智能优化算法 人工蜂鸟算法 收敛精度 收敛速度
在线阅读 下载PDF
考虑电网电压稳定性的电-氢混合储能系统优化配置
20
作者 胡文波 刘建飞 +3 位作者 陈杰 张天闻 苗霞 杨博 《山东电力技术》 2025年第10期81-90,共10页
综合能源系统(integrated energy system,IES)是推进能源结构调整的关键平台,合理规划其设备配置能显著提高IES运行经济和系统稳定性。此外,由于可再生能源发电固有的随机性和间歇性以及负荷的峰谷特性,导致IES中多能耦合设备的输出波动... 综合能源系统(integrated energy system,IES)是推进能源结构调整的关键平台,合理规划其设备配置能显著提高IES运行经济和系统稳定性。此外,由于可再生能源发电固有的随机性和间歇性以及负荷的峰谷特性,导致IES中多能耦合设备的输出波动,严重威胁IES的运行稳定性。为应对上述挑战,针对IES的经济和稳定运行,以混合储能系统配置成本,系统电压偏差以及净负荷波动最小化为目标,建立一个电-氢混合储能系统多目标优化规划模型。该模型在IEEE-33标准测试系统下,利用多目标人工蜂鸟算法(multi-objective artificial hummingbird algorithm,MOAHA)对电-氢混合储能系统的容量和位置进行优化规划。仿真结果表明,所提的优化规划方法能有效改善IES配电网络的电压分布和净负荷水平,同时凭借电-氢混合储能的互补特性使得IES的运行灵活性得到了提升。 展开更多
关键词 电-氢混合储能系统 优化规划 综合能源系统 多目标人工蜂鸟优化算法
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部