Since wireless links in Ad hoc networks are more fragile than those in traditional wireless networks due to route flapping,multi-node cooperation plays an important role in ensuring the quality of service( QoS). Based...Since wireless links in Ad hoc networks are more fragile than those in traditional wireless networks due to route flapping,multi-node cooperation plays an important role in ensuring the quality of service( QoS). Based on the authors' previous work,this paper proposes a receiver-controlled multi-node cooperation routing protocol,known as AODV-RCC. In this protocol,nodes form a cooperation group based on signal power. In a cooperation group,signal power between a partner and a transmitter,as well as signal power between the partner and the receiver,must be larger than the signal power between the transmitter and the receiver. Otherwise,the transmission will not benefit from cooperation. To avoid collision or congestion,each cooperation group only contains one partner. This partner offers both data and ACK cooperative retransmission. Its retransmission time should be shorter than the internal retry time of the transmitter's MAC layer,because it is better for the partner to retransmit firstly,as it offers a more reliable cooperative link. In AODV-RCC,it is the receiver that chooses the partner,because the link between the partner and the receiver is the most important. According to our simulation results,AODV-RCC shortens the end-to-end delay and increases the packet delivery ratio.展开更多
Closed form expressions for the PDF and MGF of the harmonic mean of two independent exponential variates are cited and derived, and then applied to study the performance of cellular multi-node and dual-hop cooperative...Closed form expressions for the PDF and MGF of the harmonic mean of two independent exponential variates are cited and derived, and then applied to study the performance of cellular multi-node and dual-hop cooperative communication systems with non-regenerative relays over flat Rayleigh fading channels. We derive the probability density function (PDF) and asymptotic symbol error rate (SER) expression with MRC scheme. Then we use Matlab to simulate the performance.展开更多
In recent years the variety and complexity of Wireless Sensor Network (WSN) applications, the nodes and the functions they are expected to perform have increased immensely. This poses the question of reducing the ti...In recent years the variety and complexity of Wireless Sensor Network (WSN) applications, the nodes and the functions they are expected to perform have increased immensely. This poses the question of reducing the time from initial design of WSN applications to their implementation as a major research topic. RF communication programs for WSN nodes are generally written on microcontroller units (MCUs) for universal asynchronous receiver/transmitter (UART) data communication, however nowadays radio frequency (RF) designs based on field-programmable gate array (FPGA) have emerged as a very powerful alternative, due to their parallel data processing ability and software reconfigurability. In this paper, the authors present a prototype of a flexible multi-node transceiver and monitoring system. The prototype is designed for time-critical applications and can be also reconfigured for other applications like event tracking. The processing power of FPGA is combined with a simple communication protocol. The system consists of three major parts: wireless nodes, the FPGA and display used for visualization of data processing. The transmission protocol is based on preamble and synchronous data transmission, where the receiver adjusts the receiving baud rate in the range from min. 300 to max. 2400 bps. The most important contribution of this work is using the virtual PicoBlaze Soft-Core Processor for controlling the data transmission through the RF modules. The proposed system has been evaluated based on logic utilization, in terms of the number of slice flip flops, the number of 4 input LUTs (Look-Up Tables) and the number of bonded lOBs (Input Output Blocks). The results for capacity usage are very promising as compared to other similar research.展开更多
Most developing countries continue to face challenges in accessing sustainable energy.This study investigates a solar panel and battery-powered system for an urban off-grid microgrid in Nigeria,where demand-sideflexib...Most developing countries continue to face challenges in accessing sustainable energy.This study investigates a solar panel and battery-powered system for an urban off-grid microgrid in Nigeria,where demand-sideflexibility and strategic interactions between households and utilities can optimize system sizing.A nonlinear programming model is built using bilevel problem formulation that incorporates both the households’willingness to reduce their energy consumption and the utility’s agreement to provide price rebates.The results show that,for an energy community of 10 households with annual energy demand of 7.8 MWh,an oversized solar-storage system is required(12 kWp of photovoltaic solar panels and 26 kWh of battery storage).The calculated average cost of 0.31€/kWh is three times higher than the current tariff,making it unaffordable for most Nigerian households.To address this,the utility company could implement Demand Response programs with direct load control that delay the use of certain appliances,such as fans,irons and air conditioners.If these measures reduce total demand by 5%,both the required system size and overall costs could decrease significantly,by approximately one-third.This adjustment leads to a reduced tariffof 0.20€/kWh.When Demand Response is imple-mented through negotiation between the utility and households,the amount of load-shaving achieved is lower.This is because house-holds experience discomfort from curtailment and are generally less willing to provideflexibility.However,negotiation allows for greaterflexibility than direct control,due to dynamic interactions and more active consumer participation in the energy transition.Nonetheless,tariffs remain higher than current market prices.Off-grid contracts could become competitive iffinancial support is pro-vided,such as low-interest loans and capital grants covering up to 75%of the upfront cost.展开更多
With the direct rise of the social demand for renewable energy,as a new type of energy supply model in the new era,the operation control and optimization of microgrid play an important role in solving the problem of r...With the direct rise of the social demand for renewable energy,as a new type of energy supply model in the new era,the operation control and optimization of microgrid play an important role in solving the problem of resource sharing.Microgrid can realize the flexibility of distributed power supply and the application of high efficiency,solving the problem of a large number and variety of forms of the power grid.Based on this,this paper will discuss the operation control strategy of microgrid based on a new energy grid connection,and provide constructive ideas for high-quality operation of microgrid.展开更多
With the rapid development of renewable energy,the Microgrid Coalition(MGC)has become an important approach to improving energy utilization efficiency and economic performance.To address the operational optimization p...With the rapid development of renewable energy,the Microgrid Coalition(MGC)has become an important approach to improving energy utilization efficiency and economic performance.To address the operational optimization problem inmulti-microgrid cooperation,a cooperative game strategy based on the Nash bargainingmodel is proposed,aiming to enable collaboration among microgrids to maximize overall benefits while considering energy trading and cost optimization.First,each microgrid is regarded as a game participant,and a multi-microgrid cooperative game model based on Nash bargaining theory is constructed,targeting the minimization of total operational cost under constraints such as power balance and energy storage limits.Second,the Nash bargaining solution is introduced as the benefit allocation scheme to ensure individual rationality and coalition stability.Finally,theAlternating Direction Method of Multipliers(ADMM)is employed to decompose the centralized optimization problem into distributed subproblems for iterative solution,thereby reducing communication burden and protecting privacy.Case studies reveal that the operational costs of the threemicrogrids are reduced by 26.28%,19.00%,and 17.19%,respectively,and the overall renewable energy consumption rate is improved by approximately 66.11%.展开更多
Modern shipboard microgrids(SMGs)incorporating distributed energy resources(DERs)enhance energy resilience and reduce carbon emissions.However,the hierarchical control schemes of DERs bring challenges to the tradition...Modern shipboard microgrids(SMGs)incorporating distributed energy resources(DERs)enhance energy resilience and reduce carbon emissions.However,the hierarchical control schemes of DERs bring challenges to the traditional power flow methods.This paper devises a generalized three-phase power flow approach for SMGs that integrate hierarchically controlled DERs.The main contributions include:(1)a droop-controlled three-phase Newton power flow algorithm that automatically incorporates the droop characteristics of DERs;(2)a secondary-controlled three-phase power flow method for power sharing and voltage regulation;and(3)modified Jacobian matrices to incorporate various hierarchical control modes.Numerical results demonstrate the effectiveness of the devised approach in both balanced and unbalanced three-phase hierarchically controlled SMG systems with arbitrary config-urations.展开更多
The supply of electricity to remote regions is a significant challenge owing to the pivotal transition in the global energy landscape.To address this issue,an off-grid microgrid solution integrated with energy storage...The supply of electricity to remote regions is a significant challenge owing to the pivotal transition in the global energy landscape.To address this issue,an off-grid microgrid solution integrated with energy storage systems is proposed in this study.Off-grid microgrids are self-sufficient electrical networks that are capable of effectively resolving electricity access problems in remote areas by providing stable and reliable power to local residents.A comprehensive review of the design,control strategies,energy management,and optimization of off-grid microgrids based on domestic and international research is presented in this study.It also explores the critical role of energy stor-age systems in enhancing microgrid stability and economic efficiency.Additionally,the capacity configurations of energy storage systems within off-grid networks are analyzed.Energy storage systems not only mitigate the intermittency and volatility of renewable energy gen-eration but also supply power support during peak demand periods,thereby improving grid stability and reliability.By comparing different energy storage technologies,such as lithium-ion batteries,pumped hydro storage,and compressed air energy storage,the optimal energy storage capacity configurations tailored to various application scenarios are proposed in this study.Finally,using a typical micro-grid as a case study,an empirical analysis of off-grid microgrids and energy storage integration has been conducted.The optimal con-figuration of energy storage systems is determined,and the impact of wind and solar power integration under various scenarios on grid balance is explored.It has been found that a rational configuration of energy storage systems can significantly enhance the utilization rate of renewable energy,reduce system operating costs,and strengthen grid resilience under extreme conditions.This study provides essential theoretical support and practical guidance for the design and implementation of off-grid microgrids in remote areas.展开更多
This paper deeply introduces a brand-new research method for the synchronous characteristics of DC microgrid bus voltage and an improved synchronous control strategy.This method mainly targets the problem of bus volta...This paper deeply introduces a brand-new research method for the synchronous characteristics of DC microgrid bus voltage and an improved synchronous control strategy.This method mainly targets the problem of bus voltage oscillation caused by the bifurcation behavior of DC microgrid converters.Firstly,the article elaborately establishes a mathematical model of a single distributed power source with hierarchical control.On this basis,a smallworld network model that can better adapt to the topology structure of DC microgrids is further constructed.Then,a voltage synchronization analysis method based on the main stability function is proposed,and the synchronous characteristics of DC bus voltage are deeply studied by analyzing the size of the minimum non-zero eigenvalue.In view of the situation that the line coupling strength between distributed power sources is insufficient to achieve bus voltage synchronization,this paper innovatively proposes a new improved adaptive controller to effectively control voltage synchronization.And the convergence of the designed controller is strictly proved by using Lyapunov’s stability theorem.Finally,the effectiveness and feasibility of the designed controller in this paper are fully verified through detailed simulation experiments.After comparative analysis with the traditional adaptive controller,it is found that the newly designed controller can make the bus voltages of each distributed power source achieve synchronization more quickly,and is significantly superior to the traditional adaptive controller in terms of anti-interference performance.展开更多
The advent of microgrids in modern energy systems heralds a promising era of resilience,sustainability,and efficiency.Within the realm of grid-tied microgrids,the selection of an optimal optimization algorithm is crit...The advent of microgrids in modern energy systems heralds a promising era of resilience,sustainability,and efficiency.Within the realm of grid-tied microgrids,the selection of an optimal optimization algorithm is critical for effective energy management,particularly in economic dispatching.This study compares the performance of Particle Swarm Optimization(PSO)and Genetic Algorithms(GA)in microgrid energy management systems,implemented using MATLAB tools.Through a comprehensive review of the literature and sim-ulations conducted in MATLAB,the study analyzes performance metrics,convergence speed,and the overall efficacy of GA and PSO,with a focus on economic dispatching tasks.Notably,a significant distinction emerges between the cost curves generated by the two algo-rithms for microgrid operation,with the PSO algorithm consistently resulting in lower costs due to its effective economic dispatching capabilities.Specifically,the utilization of the PSO approach could potentially lead to substantial savings on the power bill,amounting to approximately$15.30 in this evaluation.Thefindings provide insights into the strengths and limitations of each algorithm within the complex dynamics of grid-tied microgrids,thereby assisting stakeholders and researchers in arriving at informed decisions.This study contributes to the discourse on sustainable energy management by offering actionable guidance for the advancement of grid-tied micro-grid technologies through MATLAB-implemented optimization algorithms.展开更多
A multi-strategy Improved Multi-Objective Particle Swarm Algorithm(IMOPSO)method for microgrid operation optimization is proposed for the coordinated optimization problem of microgrid economy and environmental protect...A multi-strategy Improved Multi-Objective Particle Swarm Algorithm(IMOPSO)method for microgrid operation optimization is proposed for the coordinated optimization problem of microgrid economy and environmental protection.A grid-connected microgrid model containing photovoltaic cells,wind power,micro gas turbine,diesel generator,and storage battery is constructed with the aim of optimizing the multi-objective grid-connected microgrid economic optimization problem with minimum power generation cost and environmental management cost.Based on the optimization of the standard multi-objective particle swarm optimization algorithm,four strategies are introduced to improve the algorithm,namely,Logistic chaotic mapping,adaptive inertia weight adjustment,adaptive meshing using congestion distance mechanism,and fuzzy comprehensive evaluation.The proposed IMOPSO is applied to the microgrid optimization problem and the performance is compared with other unimproved multi-objective gray wolf algorithm(MOGWO),multi-objective ant colony algorithm(MOACO),and MOPSO algorithms,and the total cost of the proposed method is reduced by 3.15%,8.34%,and 10.27%,respectively.The simulation results show that IMOPSO can more effectively reduce the cost and optimize power distribution,and verify the effectiveness of the proposed method.展开更多
In response to the increasing global energy demand and environmental pollution,microgrids have emerged as an innovative solution by integrating distributed energy resources(DERs),energy storage systems,and loads to im...In response to the increasing global energy demand and environmental pollution,microgrids have emerged as an innovative solution by integrating distributed energy resources(DERs),energy storage systems,and loads to improve energy efficiency and reliability.This study proposes a novel hybrid optimization algorithm,DE-HHO,combining differential evolution(DE)and Harris Hawks optimization(HHO)to address microgrid scheduling issues.The proposed method adopts a multi-objective optimization framework that simultaneously minimizes operational costs and environmental impacts.The DE-HHO algorithm demonstrates significant advantages in convergence speed and global search capability through the analysis of wind,solar,micro-gas turbine,and battery models.Comprehensive simulation tests show that DE-HHO converges rapidly within 10 iterations and achieves a 4.5%reduction in total cost compared to PSO and a 5.4%reduction compared to HHO.Specifically,DE-HHO attains an optimal total cost of$20,221.37,outperforming PSO($21,184.45)and HHO($21,372.24).The maximum cost obtained by DE-HHO is$23,420.55,with a mean of$21,615.77,indicating stability and cost control capabilities.These results highlight the effectiveness of DE-HHO in reducing operational costs and enhancing system stability for efficient and sustainable microgrid operation.展开更多
The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.Thi...The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.This paper presents a novel sparrow search algorithm(SSA)-tuned proportional-integral(PI)controller for grid-connected photovoltaic(PV)systems,designed to optimize dynamic perfor-mance,energy extraction,and power quality.Key contributions include the development of a systematic SSA-based optimization frame-work for real-time PI parameter tuning,ensuring precise voltage and current regulation,improved maximum power point tracking(MPPT)efficiency,and minimized total harmonic distortion(THD).The proposed approach is evaluated against conventional PSO-based and P&O controllers through comprehensive simulations,demonstrating its superior performance across key metrics:a 39.47%faster response time compared to PSO,a 12.06%increase in peak active power relative to P&O,and a 52.38%reduction in THD,ensuring compliance with IEEE grid standards.Moreover,the SSA-tuned PI controller exhibits enhanced adaptability to dynamic irradiancefluc-tuations,rapid response time,and robust grid integration under varying conditions,making it highly suitable for real-time smart grid applications.This work establishes the SSA-tuned PI controller as a reliable and efficient solution for improving PV system performance in grid-connected scenarios,while also setting the foundation for future research into multi-objective optimization,experimental valida-tion,and hybrid renewable energy systems.展开更多
Conventional coordinated control strategies for DC bus voltage signal(DBS)in islanded DC microgrids(IDCMGs)struggle with coordinating multiple distributed generators(DGs)and cannot effectively incorporate state of cha...Conventional coordinated control strategies for DC bus voltage signal(DBS)in islanded DC microgrids(IDCMGs)struggle with coordinating multiple distributed generators(DGs)and cannot effectively incorporate state of charge(SOC)information of the energy storage system,thereby reducing the system flexibility.In this study,we propose an adaptive coordinated control strategy that employs a two-layer fuzzy neural network controller(FNNC)to adapt to varying operating conditions in an IDCMG with multiple PV and battery energy storage system(BESS)units.The first-layer FNNC generates optimal operating mode commands for each DG,thereby avoiding the requirement for complex operating modes based on SOC segmentation.An optimal switching sequence logic prioritizes the most appropriate units during mode transitions.The second-layer FNNC dynamically adjusts the droop power to overcome power distribution challenges among DG groups.This helps in preventing the PV power from exceeding the limits and mitigating the risk of BESS overcharging or over-discharging.The simulation results indicate that the proposed strategy enhances the coordinated operation of multi-DG IDCMGs,thereby ensuring the efficient and safe utilization of PV and BESS.展开更多
The proliferation of distributed and renewable energy resources introduces additional operational challenges to power distribution systems.Transactive energy management,which allows networked neighborhood communities ...The proliferation of distributed and renewable energy resources introduces additional operational challenges to power distribution systems.Transactive energy management,which allows networked neighborhood communities and houses to trade energy,is expected to be developed as an effective method for accommodating additional uncertainties and security mandates pertaining to distributed energy resources.This paper proposes and analyzes a two-layer transactive energy market in which houses in networked neighborhood community microgrids will trade energy in respective market layers.This paper studies the blockchain applications to satisfy socioeconomic and technological concerns of secure transactive energy management in a two-level power distribution system.The numerical results for practical networked microgrids located at IllinoisTech−Bronzeville in Chicago illustrate the validity of the proposed blockchain-based transactive energy management for devising a distributed,scalable,efficient,and cybersecured power grid operation.The conclusion of the paper summarizes the prospects for blockchain applications to transactive energy management in power distribution systems.展开更多
Given the rapid development of advanced information systems,microgrids(MGs)suffer from more potential attacks that affect their operational performance.Conventional distributed secondary control with a small,fixed sam...Given the rapid development of advanced information systems,microgrids(MGs)suffer from more potential attacks that affect their operational performance.Conventional distributed secondary control with a small,fixed sampling time period inevitably causes the wasteful use of communication resources.This paper proposes a self-triggered secondary control scheme under perturbations from false data injection(FDI)attacks.We designed a linear clock for each DG to trigger its controller at aperiodic and intermittent instants.Sub-sequently,a hash-based defense mechanism(HDM)is designed for detecting and eliminating malicious data infiltrated in the MGs.With the aid of HDM,a self-triggered control scheme achieves the secondary control objectives even in the presence of FDI attacks.Rigorous theoretical analyses and simulation results indicate that the introduced secondary control scheme significantly reduces communication costs and enhances the resilience of MGs under FDI attacks.展开更多
Electric vehicles(EVs)are gradually being deployed in the transportation sector.Although they have a high impact on reducing greenhouse gas emissions,their penetration is challenged by their random energy demand and d...Electric vehicles(EVs)are gradually being deployed in the transportation sector.Although they have a high impact on reducing greenhouse gas emissions,their penetration is challenged by their random energy demand and difficult scheduling of their optimal charging.To cope with these problems,this paper presents a novel approach for photovoltaic grid-connected microgrid EV charging station energy demand forecasting.The present study is part of a comprehensive framework involving emerging technologies such as drones and artificial intelligence designed to support the EVs’charging scheduling task.By using predictive algorithms for solar generation and load demand estimation,this approach aimed at ensuring dynamic and efficient energy flow between the solar energy source,the grid and the electric vehicles.The main contribution of this paper lies in developing an intelligent approach based on deep recurrent neural networks to forecast the energy demand using only its previous records.Therefore,various forecasters based on Long Short-term Memory,Gated Recurrent Unit,and their bi-directional and stacked variants were investigated using a real dataset collected from an EV charging station located at Trieste University(Italy).The developed forecasters have been evaluated and compared according to different metrics,including R,RMSE,MAE,and MAPE.We found that the obtained R values for both PV power generation and energy demand ranged between 97%and 98%.These study findings can be used for reliable and efficient decision-making on the management side of the optimal scheduling of the charging operations.展开更多
Low-voltage direct current(DC)microgrids have recently emerged as a promising and viable alternative to traditional alternating cur-rent(AC)microgrids,offering numerous advantages.Consequently,researchers are explorin...Low-voltage direct current(DC)microgrids have recently emerged as a promising and viable alternative to traditional alternating cur-rent(AC)microgrids,offering numerous advantages.Consequently,researchers are exploring the potential of DC microgrids across var-ious configurations.However,despite the sustainability and accuracy offered by DC microgrids,they pose various challenges when integrated into modern power distribution systems.Among these challenges,fault diagnosis holds significant importance.Rapid fault detection in DC microgrids is essential to maintain stability and ensure an uninterrupted power supply to critical loads.A primary chal-lenge is the lack of standards and guidelines for the protection and safety of DC microgrids,including fault detection,location,and clear-ing procedures for both grid-connected and islanded modes.In response,this study presents a brief overview of various approaches for protecting DC microgrids.展开更多
The rapid proliferation of renewable energy integration and escalating grid operational complexity have intensified demands for resilient self-healing mechanisms in modern power systems.Conventional approaches relying...The rapid proliferation of renewable energy integration and escalating grid operational complexity have intensified demands for resilient self-healing mechanisms in modern power systems.Conventional approaches relying on static models and heuristic rules exhibit limitations in addressing dynamic fault propagation and multimodal data fusion.This study proposes a Transformer-enhanced intelligent microgrid self-healing framework that synergizes large languagemodels(LLMs)with adaptive optimization,achieving three key innovations:(1)Ahierarchical attention mechanism incorporating grid impedance characteristics for spatiotemporal feature extraction,(2)Dynamic covariance estimation Kalman filtering with wavelet packet energy entropy thresholds(Daubechies-4 basis,6-level decomposition),and(3)A grouping-stratified ant colony optimization algorithm featuring penalty-based pheromone updating.Validated on IEEE 33/100-node systems,our framework demonstrates 96.7%fault localization accuracy(23%improvement over STGCN)and 0.82-s protection delay,outperforming MILP-basedmethods by 37%in reconfiguration speed.The system maintains 98.4%self-healing success rate under cascading faults,resolving 89.3%of phase-toground faults within 500 ms through adaptive impedance matching.Field tests on 220 kV substations with 45%renewable penetration show 99.1%voltage stability(±5%deviation threshold)and 40%communication efficiency gains via compressed GOOSE message parsing.Comparative analysis reveals 12.6×faster convergence than conventional ACO in 1000-node networks,with 95.2%robustness against±25%load fluctuations.These advancements provide a scalable solution for real-time fault recovery in renewable-dense grids,reducing outage duration by 63%inmulti-agent simulations compared to centralized architectures.展开更多
The integration of large-scale-distributed new energy resources has led to heightened source‒load uncertainty.As energy prosumers,microgrids urgently require enhanced real-time regulation capabilities over controllabl...The integration of large-scale-distributed new energy resources has led to heightened source‒load uncertainty.As energy prosumers,microgrids urgently require enhanced real-time regulation capabilities over controllable resources amid uncertain environments,rendering real-time and rapid decision-making a critical issue.This paper proposes a tailored twin delayed deep deterministic policy gradient(TD3)reinforcement learning algorithm that explicitly accounts for source‒load uncertainty.First,following an expert experience-based methodology,Gaussian process regression was implemented using the radial basis function covariance with historical source and load data.The parameters were adaptively adjusted by maximum likelihood estimation to generate the expected curves of demand and wind‒solar power generation,along with their 95%confidence regions,which were treated as representative uncertainty scenarios.Second,the traditional scheduling model was transformed into a deep reinforcement learning(DRL)environment through a Markov process.To minimize the total operational cost of the microgrid,the tailored TD3 algorithm was applied to formulate rapid intraday scheduling decisions.Finally,simulations were conducted using real historical data from an actual region in Zhejiang province,China,to verify the efficacy of the proposed method.The results demonstrate the potential of the algorithm for achieving economic scheduling for microgrids.展开更多
基金Sponsored by the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(Grant No.HIT.NSRIF.2013029)the National Science and Technology Major Project(Grant No.2012ZX03004003)+1 种基金the National Basic Research Development Program of China(973 Program)(Grant No.2013CB329003)the National Natural Science Foundation of China(Grant No.61201148 and No.61101123)
文摘Since wireless links in Ad hoc networks are more fragile than those in traditional wireless networks due to route flapping,multi-node cooperation plays an important role in ensuring the quality of service( QoS). Based on the authors' previous work,this paper proposes a receiver-controlled multi-node cooperation routing protocol,known as AODV-RCC. In this protocol,nodes form a cooperation group based on signal power. In a cooperation group,signal power between a partner and a transmitter,as well as signal power between the partner and the receiver,must be larger than the signal power between the transmitter and the receiver. Otherwise,the transmission will not benefit from cooperation. To avoid collision or congestion,each cooperation group only contains one partner. This partner offers both data and ACK cooperative retransmission. Its retransmission time should be shorter than the internal retry time of the transmitter's MAC layer,because it is better for the partner to retransmit firstly,as it offers a more reliable cooperative link. In AODV-RCC,it is the receiver that chooses the partner,because the link between the partner and the receiver is the most important. According to our simulation results,AODV-RCC shortens the end-to-end delay and increases the packet delivery ratio.
文摘Closed form expressions for the PDF and MGF of the harmonic mean of two independent exponential variates are cited and derived, and then applied to study the performance of cellular multi-node and dual-hop cooperative communication systems with non-regenerative relays over flat Rayleigh fading channels. We derive the probability density function (PDF) and asymptotic symbol error rate (SER) expression with MRC scheme. Then we use Matlab to simulate the performance.
文摘In recent years the variety and complexity of Wireless Sensor Network (WSN) applications, the nodes and the functions they are expected to perform have increased immensely. This poses the question of reducing the time from initial design of WSN applications to their implementation as a major research topic. RF communication programs for WSN nodes are generally written on microcontroller units (MCUs) for universal asynchronous receiver/transmitter (UART) data communication, however nowadays radio frequency (RF) designs based on field-programmable gate array (FPGA) have emerged as a very powerful alternative, due to their parallel data processing ability and software reconfigurability. In this paper, the authors present a prototype of a flexible multi-node transceiver and monitoring system. The prototype is designed for time-critical applications and can be also reconfigured for other applications like event tracking. The processing power of FPGA is combined with a simple communication protocol. The system consists of three major parts: wireless nodes, the FPGA and display used for visualization of data processing. The transmission protocol is based on preamble and synchronous data transmission, where the receiver adjusts the receiving baud rate in the range from min. 300 to max. 2400 bps. The most important contribution of this work is using the virtual PicoBlaze Soft-Core Processor for controlling the data transmission through the RF modules. The proposed system has been evaluated based on logic utilization, in terms of the number of slice flip flops, the number of 4 input LUTs (Look-Up Tables) and the number of bonded lOBs (Input Output Blocks). The results for capacity usage are very promising as compared to other similar research.
基金support from Nantes Universite through the project AAP II GENOME(Ges-tion des Energies Nouvelles et Optimisation Electrique)and LEAP-RE MiDiNa project,grant N°NR-23-LERE-0002-01.
文摘Most developing countries continue to face challenges in accessing sustainable energy.This study investigates a solar panel and battery-powered system for an urban off-grid microgrid in Nigeria,where demand-sideflexibility and strategic interactions between households and utilities can optimize system sizing.A nonlinear programming model is built using bilevel problem formulation that incorporates both the households’willingness to reduce their energy consumption and the utility’s agreement to provide price rebates.The results show that,for an energy community of 10 households with annual energy demand of 7.8 MWh,an oversized solar-storage system is required(12 kWp of photovoltaic solar panels and 26 kWh of battery storage).The calculated average cost of 0.31€/kWh is three times higher than the current tariff,making it unaffordable for most Nigerian households.To address this,the utility company could implement Demand Response programs with direct load control that delay the use of certain appliances,such as fans,irons and air conditioners.If these measures reduce total demand by 5%,both the required system size and overall costs could decrease significantly,by approximately one-third.This adjustment leads to a reduced tariffof 0.20€/kWh.When Demand Response is imple-mented through negotiation between the utility and households,the amount of load-shaving achieved is lower.This is because house-holds experience discomfort from curtailment and are generally less willing to provideflexibility.However,negotiation allows for greaterflexibility than direct control,due to dynamic interactions and more active consumer participation in the energy transition.Nonetheless,tariffs remain higher than current market prices.Off-grid contracts could become competitive iffinancial support is pro-vided,such as low-interest loans and capital grants covering up to 75%of the upfront cost.
文摘With the direct rise of the social demand for renewable energy,as a new type of energy supply model in the new era,the operation control and optimization of microgrid play an important role in solving the problem of resource sharing.Microgrid can realize the flexibility of distributed power supply and the application of high efficiency,solving the problem of a large number and variety of forms of the power grid.Based on this,this paper will discuss the operation control strategy of microgrid based on a new energy grid connection,and provide constructive ideas for high-quality operation of microgrid.
基金funded by StateGrid Beijing Electric PowerCompany Technology Project,grant number 520210230004.
文摘With the rapid development of renewable energy,the Microgrid Coalition(MGC)has become an important approach to improving energy utilization efficiency and economic performance.To address the operational optimization problem inmulti-microgrid cooperation,a cooperative game strategy based on the Nash bargainingmodel is proposed,aiming to enable collaboration among microgrids to maximize overall benefits while considering energy trading and cost optimization.First,each microgrid is regarded as a game participant,and a multi-microgrid cooperative game model based on Nash bargaining theory is constructed,targeting the minimization of total operational cost under constraints such as power balance and energy storage limits.Second,the Nash bargaining solution is introduced as the benefit allocation scheme to ensure individual rationality and coalition stability.Finally,theAlternating Direction Method of Multipliers(ADMM)is employed to decompose the centralized optimization problem into distributed subproblems for iterative solution,thereby reducing communication burden and protecting privacy.Case studies reveal that the operational costs of the threemicrogrids are reduced by 26.28%,19.00%,and 17.19%,respectively,and the overall renewable energy consumption rate is improved by approximately 66.11%.
基金supported in part by the Department of Navy award N00014-24-1-2287 and N00014-23-1-2124。
文摘Modern shipboard microgrids(SMGs)incorporating distributed energy resources(DERs)enhance energy resilience and reduce carbon emissions.However,the hierarchical control schemes of DERs bring challenges to the traditional power flow methods.This paper devises a generalized three-phase power flow approach for SMGs that integrate hierarchically controlled DERs.The main contributions include:(1)a droop-controlled three-phase Newton power flow algorithm that automatically incorporates the droop characteristics of DERs;(2)a secondary-controlled three-phase power flow method for power sharing and voltage regulation;and(3)modified Jacobian matrices to incorporate various hierarchical control modes.Numerical results demonstrate the effectiveness of the devised approach in both balanced and unbalanced three-phase hierarchically controlled SMG systems with arbitrary config-urations.
基金funded by Humanities and Social Sciences of Ministry of Education Planning Fund of China(21YJA790009)National Natural Science Foundation of China(72140001).
文摘The supply of electricity to remote regions is a significant challenge owing to the pivotal transition in the global energy landscape.To address this issue,an off-grid microgrid solution integrated with energy storage systems is proposed in this study.Off-grid microgrids are self-sufficient electrical networks that are capable of effectively resolving electricity access problems in remote areas by providing stable and reliable power to local residents.A comprehensive review of the design,control strategies,energy management,and optimization of off-grid microgrids based on domestic and international research is presented in this study.It also explores the critical role of energy stor-age systems in enhancing microgrid stability and economic efficiency.Additionally,the capacity configurations of energy storage systems within off-grid networks are analyzed.Energy storage systems not only mitigate the intermittency and volatility of renewable energy gen-eration but also supply power support during peak demand periods,thereby improving grid stability and reliability.By comparing different energy storage technologies,such as lithium-ion batteries,pumped hydro storage,and compressed air energy storage,the optimal energy storage capacity configurations tailored to various application scenarios are proposed in this study.Finally,using a typical micro-grid as a case study,an empirical analysis of off-grid microgrids and energy storage integration has been conducted.The optimal con-figuration of energy storage systems is determined,and the impact of wind and solar power integration under various scenarios on grid balance is explored.It has been found that a rational configuration of energy storage systems can significantly enhance the utilization rate of renewable energy,reduce system operating costs,and strengthen grid resilience under extreme conditions.This study provides essential theoretical support and practical guidance for the design and implementation of off-grid microgrids in remote areas.
基金supported by the National Natural Science Foundation of China(Nos.51767017 and 51867015)the Basic Research and Innovation Group Project of Gansu(No.18JR3RA13)the Major Science and Technology Project of Gansu(No.19ZD2GA003).
文摘This paper deeply introduces a brand-new research method for the synchronous characteristics of DC microgrid bus voltage and an improved synchronous control strategy.This method mainly targets the problem of bus voltage oscillation caused by the bifurcation behavior of DC microgrid converters.Firstly,the article elaborately establishes a mathematical model of a single distributed power source with hierarchical control.On this basis,a smallworld network model that can better adapt to the topology structure of DC microgrids is further constructed.Then,a voltage synchronization analysis method based on the main stability function is proposed,and the synchronous characteristics of DC bus voltage are deeply studied by analyzing the size of the minimum non-zero eigenvalue.In view of the situation that the line coupling strength between distributed power sources is insufficient to achieve bus voltage synchronization,this paper innovatively proposes a new improved adaptive controller to effectively control voltage synchronization.And the convergence of the designed controller is strictly proved by using Lyapunov’s stability theorem.Finally,the effectiveness and feasibility of the designed controller in this paper are fully verified through detailed simulation experiments.After comparative analysis with the traditional adaptive controller,it is found that the newly designed controller can make the bus voltages of each distributed power source achieve synchronization more quickly,and is significantly superior to the traditional adaptive controller in terms of anti-interference performance.
文摘The advent of microgrids in modern energy systems heralds a promising era of resilience,sustainability,and efficiency.Within the realm of grid-tied microgrids,the selection of an optimal optimization algorithm is critical for effective energy management,particularly in economic dispatching.This study compares the performance of Particle Swarm Optimization(PSO)and Genetic Algorithms(GA)in microgrid energy management systems,implemented using MATLAB tools.Through a comprehensive review of the literature and sim-ulations conducted in MATLAB,the study analyzes performance metrics,convergence speed,and the overall efficacy of GA and PSO,with a focus on economic dispatching tasks.Notably,a significant distinction emerges between the cost curves generated by the two algo-rithms for microgrid operation,with the PSO algorithm consistently resulting in lower costs due to its effective economic dispatching capabilities.Specifically,the utilization of the PSO approach could potentially lead to substantial savings on the power bill,amounting to approximately$15.30 in this evaluation.Thefindings provide insights into the strengths and limitations of each algorithm within the complex dynamics of grid-tied microgrids,thereby assisting stakeholders and researchers in arriving at informed decisions.This study contributes to the discourse on sustainable energy management by offering actionable guidance for the advancement of grid-tied micro-grid technologies through MATLAB-implemented optimization algorithms.
基金supported by the“Science and Technology Innovation Action Plan”project of Shanghai in 2021 program(21DZ1207502).
文摘A multi-strategy Improved Multi-Objective Particle Swarm Algorithm(IMOPSO)method for microgrid operation optimization is proposed for the coordinated optimization problem of microgrid economy and environmental protection.A grid-connected microgrid model containing photovoltaic cells,wind power,micro gas turbine,diesel generator,and storage battery is constructed with the aim of optimizing the multi-objective grid-connected microgrid economic optimization problem with minimum power generation cost and environmental management cost.Based on the optimization of the standard multi-objective particle swarm optimization algorithm,four strategies are introduced to improve the algorithm,namely,Logistic chaotic mapping,adaptive inertia weight adjustment,adaptive meshing using congestion distance mechanism,and fuzzy comprehensive evaluation.The proposed IMOPSO is applied to the microgrid optimization problem and the performance is compared with other unimproved multi-objective gray wolf algorithm(MOGWO),multi-objective ant colony algorithm(MOACO),and MOPSO algorithms,and the total cost of the proposed method is reduced by 3.15%,8.34%,and 10.27%,respectively.The simulation results show that IMOPSO can more effectively reduce the cost and optimize power distribution,and verify the effectiveness of the proposed method.
文摘In response to the increasing global energy demand and environmental pollution,microgrids have emerged as an innovative solution by integrating distributed energy resources(DERs),energy storage systems,and loads to improve energy efficiency and reliability.This study proposes a novel hybrid optimization algorithm,DE-HHO,combining differential evolution(DE)and Harris Hawks optimization(HHO)to address microgrid scheduling issues.The proposed method adopts a multi-objective optimization framework that simultaneously minimizes operational costs and environmental impacts.The DE-HHO algorithm demonstrates significant advantages in convergence speed and global search capability through the analysis of wind,solar,micro-gas turbine,and battery models.Comprehensive simulation tests show that DE-HHO converges rapidly within 10 iterations and achieves a 4.5%reduction in total cost compared to PSO and a 5.4%reduction compared to HHO.Specifically,DE-HHO attains an optimal total cost of$20,221.37,outperforming PSO($21,184.45)and HHO($21,372.24).The maximum cost obtained by DE-HHO is$23,420.55,with a mean of$21,615.77,indicating stability and cost control capabilities.These results highlight the effectiveness of DE-HHO in reducing operational costs and enhancing system stability for efficient and sustainable microgrid operation.
文摘The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.This paper presents a novel sparrow search algorithm(SSA)-tuned proportional-integral(PI)controller for grid-connected photovoltaic(PV)systems,designed to optimize dynamic perfor-mance,energy extraction,and power quality.Key contributions include the development of a systematic SSA-based optimization frame-work for real-time PI parameter tuning,ensuring precise voltage and current regulation,improved maximum power point tracking(MPPT)efficiency,and minimized total harmonic distortion(THD).The proposed approach is evaluated against conventional PSO-based and P&O controllers through comprehensive simulations,demonstrating its superior performance across key metrics:a 39.47%faster response time compared to PSO,a 12.06%increase in peak active power relative to P&O,and a 52.38%reduction in THD,ensuring compliance with IEEE grid standards.Moreover,the SSA-tuned PI controller exhibits enhanced adaptability to dynamic irradiancefluc-tuations,rapid response time,and robust grid integration under varying conditions,making it highly suitable for real-time smart grid applications.This work establishes the SSA-tuned PI controller as a reliable and efficient solution for improving PV system performance in grid-connected scenarios,while also setting the foundation for future research into multi-objective optimization,experimental valida-tion,and hybrid renewable energy systems.
基金supported by National Key R&D Program of ChinaunderGrant,(2021YFB2601403).
文摘Conventional coordinated control strategies for DC bus voltage signal(DBS)in islanded DC microgrids(IDCMGs)struggle with coordinating multiple distributed generators(DGs)and cannot effectively incorporate state of charge(SOC)information of the energy storage system,thereby reducing the system flexibility.In this study,we propose an adaptive coordinated control strategy that employs a two-layer fuzzy neural network controller(FNNC)to adapt to varying operating conditions in an IDCMG with multiple PV and battery energy storage system(BESS)units.The first-layer FNNC generates optimal operating mode commands for each DG,thereby avoiding the requirement for complex operating modes based on SOC segmentation.An optimal switching sequence logic prioritizes the most appropriate units during mode transitions.The second-layer FNNC dynamically adjusts the droop power to overcome power distribution challenges among DG groups.This helps in preventing the PV power from exceeding the limits and mitigating the risk of BESS overcharging or over-discharging.The simulation results indicate that the proposed strategy enhances the coordinated operation of multi-DG IDCMGs,thereby ensuring the efficient and safe utilization of PV and BESS.
基金funded in part by Grant No.RG-15-135-43 from the Deanship of Scientific Research(DSR)at King Abdulaziz University in Saudi Arabia.
文摘The proliferation of distributed and renewable energy resources introduces additional operational challenges to power distribution systems.Transactive energy management,which allows networked neighborhood communities and houses to trade energy,is expected to be developed as an effective method for accommodating additional uncertainties and security mandates pertaining to distributed energy resources.This paper proposes and analyzes a two-layer transactive energy market in which houses in networked neighborhood community microgrids will trade energy in respective market layers.This paper studies the blockchain applications to satisfy socioeconomic and technological concerns of secure transactive energy management in a two-level power distribution system.The numerical results for practical networked microgrids located at IllinoisTech−Bronzeville in Chicago illustrate the validity of the proposed blockchain-based transactive energy management for devising a distributed,scalable,efficient,and cybersecured power grid operation.The conclusion of the paper summarizes the prospects for blockchain applications to transactive energy management in power distribution systems.
基金supported by Hainan Provincial Natural Science Foundation of China(No.524RC532)Research Startup Funding from Hainan Institute of Zhejiang University(No.0210-6602-A12202)Project of Sanya Yazhou Bay Science and Technology City(No.SKJC-2022-PTDX-009/010/011).
文摘Given the rapid development of advanced information systems,microgrids(MGs)suffer from more potential attacks that affect their operational performance.Conventional distributed secondary control with a small,fixed sampling time period inevitably causes the wasteful use of communication resources.This paper proposes a self-triggered secondary control scheme under perturbations from false data injection(FDI)attacks.We designed a linear clock for each DG to trigger its controller at aperiodic and intermittent instants.Sub-sequently,a hash-based defense mechanism(HDM)is designed for detecting and eliminating malicious data infiltrated in the MGs.With the aid of HDM,a self-triggered control scheme achieves the secondary control objectives even in the presence of FDI attacks.Rigorous theoretical analyses and simulation results indicate that the introduced secondary control scheme significantly reduces communication costs and enhances the resilience of MGs under FDI attacks.
基金University of Jeddah,Jeddah,Saudi Arabia,grant No.(UJ-23-SRP-10).
文摘Electric vehicles(EVs)are gradually being deployed in the transportation sector.Although they have a high impact on reducing greenhouse gas emissions,their penetration is challenged by their random energy demand and difficult scheduling of their optimal charging.To cope with these problems,this paper presents a novel approach for photovoltaic grid-connected microgrid EV charging station energy demand forecasting.The present study is part of a comprehensive framework involving emerging technologies such as drones and artificial intelligence designed to support the EVs’charging scheduling task.By using predictive algorithms for solar generation and load demand estimation,this approach aimed at ensuring dynamic and efficient energy flow between the solar energy source,the grid and the electric vehicles.The main contribution of this paper lies in developing an intelligent approach based on deep recurrent neural networks to forecast the energy demand using only its previous records.Therefore,various forecasters based on Long Short-term Memory,Gated Recurrent Unit,and their bi-directional and stacked variants were investigated using a real dataset collected from an EV charging station located at Trieste University(Italy).The developed forecasters have been evaluated and compared according to different metrics,including R,RMSE,MAE,and MAPE.We found that the obtained R values for both PV power generation and energy demand ranged between 97%and 98%.These study findings can be used for reliable and efficient decision-making on the management side of the optimal scheduling of the charging operations.
文摘Low-voltage direct current(DC)microgrids have recently emerged as a promising and viable alternative to traditional alternating cur-rent(AC)microgrids,offering numerous advantages.Consequently,researchers are exploring the potential of DC microgrids across var-ious configurations.However,despite the sustainability and accuracy offered by DC microgrids,they pose various challenges when integrated into modern power distribution systems.Among these challenges,fault diagnosis holds significant importance.Rapid fault detection in DC microgrids is essential to maintain stability and ensure an uninterrupted power supply to critical loads.A primary chal-lenge is the lack of standards and guidelines for the protection and safety of DC microgrids,including fault detection,location,and clear-ing procedures for both grid-connected and islanded modes.In response,this study presents a brief overview of various approaches for protecting DC microgrids.
基金the project“Research on Power SafetyDecision Support SystemBased on Large Language Models”(Science and Technology Project of Huaian Hongneng Group Co.,Ltd.)under Contract No.SGTYHT/23-JS-001.
文摘The rapid proliferation of renewable energy integration and escalating grid operational complexity have intensified demands for resilient self-healing mechanisms in modern power systems.Conventional approaches relying on static models and heuristic rules exhibit limitations in addressing dynamic fault propagation and multimodal data fusion.This study proposes a Transformer-enhanced intelligent microgrid self-healing framework that synergizes large languagemodels(LLMs)with adaptive optimization,achieving three key innovations:(1)Ahierarchical attention mechanism incorporating grid impedance characteristics for spatiotemporal feature extraction,(2)Dynamic covariance estimation Kalman filtering with wavelet packet energy entropy thresholds(Daubechies-4 basis,6-level decomposition),and(3)A grouping-stratified ant colony optimization algorithm featuring penalty-based pheromone updating.Validated on IEEE 33/100-node systems,our framework demonstrates 96.7%fault localization accuracy(23%improvement over STGCN)and 0.82-s protection delay,outperforming MILP-basedmethods by 37%in reconfiguration speed.The system maintains 98.4%self-healing success rate under cascading faults,resolving 89.3%of phase-toground faults within 500 ms through adaptive impedance matching.Field tests on 220 kV substations with 45%renewable penetration show 99.1%voltage stability(±5%deviation threshold)and 40%communication efficiency gains via compressed GOOSE message parsing.Comparative analysis reveals 12.6×faster convergence than conventional ACO in 1000-node networks,with 95.2%robustness against±25%load fluctuations.These advancements provide a scalable solution for real-time fault recovery in renewable-dense grids,reducing outage duration by 63%inmulti-agent simulations compared to centralized architectures.
基金supported in part by Science and Technology Project of State Grid Corporation of China(No.5400-202319829A-4-1-KJ).
文摘The integration of large-scale-distributed new energy resources has led to heightened source‒load uncertainty.As energy prosumers,microgrids urgently require enhanced real-time regulation capabilities over controllable resources amid uncertain environments,rendering real-time and rapid decision-making a critical issue.This paper proposes a tailored twin delayed deep deterministic policy gradient(TD3)reinforcement learning algorithm that explicitly accounts for source‒load uncertainty.First,following an expert experience-based methodology,Gaussian process regression was implemented using the radial basis function covariance with historical source and load data.The parameters were adaptively adjusted by maximum likelihood estimation to generate the expected curves of demand and wind‒solar power generation,along with their 95%confidence regions,which were treated as representative uncertainty scenarios.Second,the traditional scheduling model was transformed into a deep reinforcement learning(DRL)environment through a Markov process.To minimize the total operational cost of the microgrid,the tailored TD3 algorithm was applied to formulate rapid intraday scheduling decisions.Finally,simulations were conducted using real historical data from an actual region in Zhejiang province,China,to verify the efficacy of the proposed method.The results demonstrate the potential of the algorithm for achieving economic scheduling for microgrids.