Since wireless links in Ad hoc networks are more fragile than those in traditional wireless networks due to route flapping,multi-node cooperation plays an important role in ensuring the quality of service( QoS). Based...Since wireless links in Ad hoc networks are more fragile than those in traditional wireless networks due to route flapping,multi-node cooperation plays an important role in ensuring the quality of service( QoS). Based on the authors' previous work,this paper proposes a receiver-controlled multi-node cooperation routing protocol,known as AODV-RCC. In this protocol,nodes form a cooperation group based on signal power. In a cooperation group,signal power between a partner and a transmitter,as well as signal power between the partner and the receiver,must be larger than the signal power between the transmitter and the receiver. Otherwise,the transmission will not benefit from cooperation. To avoid collision or congestion,each cooperation group only contains one partner. This partner offers both data and ACK cooperative retransmission. Its retransmission time should be shorter than the internal retry time of the transmitter's MAC layer,because it is better for the partner to retransmit firstly,as it offers a more reliable cooperative link. In AODV-RCC,it is the receiver that chooses the partner,because the link between the partner and the receiver is the most important. According to our simulation results,AODV-RCC shortens the end-to-end delay and increases the packet delivery ratio.展开更多
Closed form expressions for the PDF and MGF of the harmonic mean of two independent exponential variates are cited and derived, and then applied to study the performance of cellular multi-node and dual-hop cooperative...Closed form expressions for the PDF and MGF of the harmonic mean of two independent exponential variates are cited and derived, and then applied to study the performance of cellular multi-node and dual-hop cooperative communication systems with non-regenerative relays over flat Rayleigh fading channels. We derive the probability density function (PDF) and asymptotic symbol error rate (SER) expression with MRC scheme. Then we use Matlab to simulate the performance.展开更多
In recent years the variety and complexity of Wireless Sensor Network (WSN) applications, the nodes and the functions they are expected to perform have increased immensely. This poses the question of reducing the ti...In recent years the variety and complexity of Wireless Sensor Network (WSN) applications, the nodes and the functions they are expected to perform have increased immensely. This poses the question of reducing the time from initial design of WSN applications to their implementation as a major research topic. RF communication programs for WSN nodes are generally written on microcontroller units (MCUs) for universal asynchronous receiver/transmitter (UART) data communication, however nowadays radio frequency (RF) designs based on field-programmable gate array (FPGA) have emerged as a very powerful alternative, due to their parallel data processing ability and software reconfigurability. In this paper, the authors present a prototype of a flexible multi-node transceiver and monitoring system. The prototype is designed for time-critical applications and can be also reconfigured for other applications like event tracking. The processing power of FPGA is combined with a simple communication protocol. The system consists of three major parts: wireless nodes, the FPGA and display used for visualization of data processing. The transmission protocol is based on preamble and synchronous data transmission, where the receiver adjusts the receiving baud rate in the range from min. 300 to max. 2400 bps. The most important contribution of this work is using the virtual PicoBlaze Soft-Core Processor for controlling the data transmission through the RF modules. The proposed system has been evaluated based on logic utilization, in terms of the number of slice flip flops, the number of 4 input LUTs (Look-Up Tables) and the number of bonded lOBs (Input Output Blocks). The results for capacity usage are very promising as compared to other similar research.展开更多
The North China Plain is vital hub for agricultural production and urban development.However,decades of excessive groundwater extraction have resulted on significant land subsidence,posing severe threats to the region...The North China Plain is vital hub for agricultural production and urban development.However,decades of excessive groundwater extraction have resulted on significant land subsidence,posing severe threats to the region's socio-economic stability and sustainable development.The relationship between land deformation and groundwater storage Anomalies in this region remains insufficiently understood,and the driving factors behind land subsidence require further exploration.This study employs downscaled GRACE and SBAS InSAR technologies to monitor and analyze land subsidence and groundwater storage Anoma-lies in four representative cities of the North China Plain:Beijing,Tianjin,Cangzhou,and Hengshui.Using geodetector methods,the study investigates the driving factors of land subsidence,incorporating both natu-ral environmental and human activity factors.The results indicate that:(1)Groundwater storage in the North China Plain generally exhibited an overall declining trend from 2002 to 2022,with the rate of decrease weakening from southwest to northeast,showing a clear spatial clustering pattern.(2)While,land subsidence rates in the main urban areas of each city were relatively low,severe subsidence persisted in the surrounding suburban and rural areas.(3)The temporal trends of land subsidence were consistent with changes in groundwater storage across all cities.(4)Groundwater storage Anomalies emerged as the most significant factor influencing the spatial distribution of land subsidence,with a q-value of 0.387,followed by factors such as DEM,evapotranspiration,and rainfall.Seasonal characteristics were evident in land deformation corresponding to groundwater storage Anomalies:During the spring and summer irrigation periods,land subsidence occurred due to groundwater depletion,while in autumn and winter,the surface uplifted with increased groundwater storage.In Cangzhou and Hengshui,excessive deep groundwater extraction caused a lagged response in land subsidence relative to groundwater storage Anomalies.Further-more,interaction among various factors significantly amplified their influence on land subsidence.The interaction between groundwater storage Anomalies and rainfall had the strongest combined effect,under-scoring its critical role in shaping land subsidence in the study area.The findings offer valuable insights for the scientific prevention and management of land subsidence in the North China Plain.展开更多
The formation mechanism and influencing factors identification of soil erosion are the core and frontier issues of current research. However, studies on the multi-factor synthesis are still relatively lacked. In this ...The formation mechanism and influencing factors identification of soil erosion are the core and frontier issues of current research. However, studies on the multi-factor synthesis are still relatively lacked. In this study, the simulation of soil erosion and its quantitative attribution analysis have been conducted in different geomorphological types in a typical karst basin based on the RUSLE model and the geodetector method. The influencing factors, such as land use type, slope, rainfall, elevation, lithology and vegetation cover, have been taken into consideration. Results show that the strength of association between the six influencing factors and soil erosion was notably different in diverse geomorphological types. Land use type and slope were the dominant factors of soil erosion in the Sancha River Basin, especially for land use type whose power of determinant(q value) for soil erosion was much higher than other factors. The q value of slope declined with the increase of relief in mountainous areas, namely it was ranked as follows: middle elevation hill> small relief mountain> middle relief mountain. Multi-factors interactions were proven to significantly strengthen soil erosion, particularly for the combination of land use type with slope, which can explain 70% of soil erosion distribution. It can be found that soil erosion in the same land use type with different slopes(such as dry land with slopes of 5° and above 25°) or in the diverse land use types with the same slope(such as dry land and forest with a slope of 5°), varied much. These indicate that prohibiting steep slope cultivation and Grain for Green Project are reasonable measures to control soil erosion in karst areas. Based on statistics of soil erosion difference between diverse stratifications of each influencing factor, results of risk detector suggest that the amount of stratification combinations with significant difference accounted for 55% at least in small relief mountain and middle relief mountainous areas. Therefore, the spatial heterogeneity of soil erosion and its influencing factors in different geomorphological types should be investigated to control karst soil loss more effectively.展开更多
The present study aims to develop two hybrid models to optimize the factors and enhance the predictive ability of the landslide susceptibility models.For this,a landslide inventory map was created with 406 historical ...The present study aims to develop two hybrid models to optimize the factors and enhance the predictive ability of the landslide susceptibility models.For this,a landslide inventory map was created with 406 historical landslides and 2030 non-landslide points,which was randomly divided into two datasets for model training(70%)and model testing(30%).22 factors were initially selected to establish a landslide factor database.We applied the GeoDetector and recursive feature elimination method(RFE)to address factor optimization to reduce information redundancy and collinearity in the data.Thereafter,the frequency ratio method,multicollinearity test,and interactive detector were used to analyze and evaluate the optimized factors.Subsequently,the random forest(RF)model was used to create a landslide susceptibility map with original and optimized factors.The resultant hybrid models GeoDetector-RF and RFE-RF were evaluated and compared by the area under the receiver operating characteristic curve(AUC)and accuracy.The accuracy of the two hybrid models(0.868 for GeoDetector-RF and 0.869 for RFE-RF)were higher than that of the RF model(0.860),indicating that the hybrid models with factor optimization have high reliability and predictability.Both RFE-RF GeoDetector-RF had higher AUC values,respectively 0.863 and 0.860,than RF(0.853).These results confirm the ability of factor optimization methods to improve the performance of landslide susceptibility models.展开更多
基金Sponsored by the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(Grant No.HIT.NSRIF.2013029)the National Science and Technology Major Project(Grant No.2012ZX03004003)+1 种基金the National Basic Research Development Program of China(973 Program)(Grant No.2013CB329003)the National Natural Science Foundation of China(Grant No.61201148 and No.61101123)
文摘Since wireless links in Ad hoc networks are more fragile than those in traditional wireless networks due to route flapping,multi-node cooperation plays an important role in ensuring the quality of service( QoS). Based on the authors' previous work,this paper proposes a receiver-controlled multi-node cooperation routing protocol,known as AODV-RCC. In this protocol,nodes form a cooperation group based on signal power. In a cooperation group,signal power between a partner and a transmitter,as well as signal power between the partner and the receiver,must be larger than the signal power between the transmitter and the receiver. Otherwise,the transmission will not benefit from cooperation. To avoid collision or congestion,each cooperation group only contains one partner. This partner offers both data and ACK cooperative retransmission. Its retransmission time should be shorter than the internal retry time of the transmitter's MAC layer,because it is better for the partner to retransmit firstly,as it offers a more reliable cooperative link. In AODV-RCC,it is the receiver that chooses the partner,because the link between the partner and the receiver is the most important. According to our simulation results,AODV-RCC shortens the end-to-end delay and increases the packet delivery ratio.
文摘Closed form expressions for the PDF and MGF of the harmonic mean of two independent exponential variates are cited and derived, and then applied to study the performance of cellular multi-node and dual-hop cooperative communication systems with non-regenerative relays over flat Rayleigh fading channels. We derive the probability density function (PDF) and asymptotic symbol error rate (SER) expression with MRC scheme. Then we use Matlab to simulate the performance.
文摘In recent years the variety and complexity of Wireless Sensor Network (WSN) applications, the nodes and the functions they are expected to perform have increased immensely. This poses the question of reducing the time from initial design of WSN applications to their implementation as a major research topic. RF communication programs for WSN nodes are generally written on microcontroller units (MCUs) for universal asynchronous receiver/transmitter (UART) data communication, however nowadays radio frequency (RF) designs based on field-programmable gate array (FPGA) have emerged as a very powerful alternative, due to their parallel data processing ability and software reconfigurability. In this paper, the authors present a prototype of a flexible multi-node transceiver and monitoring system. The prototype is designed for time-critical applications and can be also reconfigured for other applications like event tracking. The processing power of FPGA is combined with a simple communication protocol. The system consists of three major parts: wireless nodes, the FPGA and display used for visualization of data processing. The transmission protocol is based on preamble and synchronous data transmission, where the receiver adjusts the receiving baud rate in the range from min. 300 to max. 2400 bps. The most important contribution of this work is using the virtual PicoBlaze Soft-Core Processor for controlling the data transmission through the RF modules. The proposed system has been evaluated based on logic utilization, in terms of the number of slice flip flops, the number of 4 input LUTs (Look-Up Tables) and the number of bonded lOBs (Input Output Blocks). The results for capacity usage are very promising as compared to other similar research.
基金supported by the Fundamental Research Funds for Central Public Welfare Research Institutes,CAGS(Project No.KY202302)China Geological Survey Project(DD20230719)China Geological Survey Project(DD20230427)。
文摘The North China Plain is vital hub for agricultural production and urban development.However,decades of excessive groundwater extraction have resulted on significant land subsidence,posing severe threats to the region's socio-economic stability and sustainable development.The relationship between land deformation and groundwater storage Anomalies in this region remains insufficiently understood,and the driving factors behind land subsidence require further exploration.This study employs downscaled GRACE and SBAS InSAR technologies to monitor and analyze land subsidence and groundwater storage Anoma-lies in four representative cities of the North China Plain:Beijing,Tianjin,Cangzhou,and Hengshui.Using geodetector methods,the study investigates the driving factors of land subsidence,incorporating both natu-ral environmental and human activity factors.The results indicate that:(1)Groundwater storage in the North China Plain generally exhibited an overall declining trend from 2002 to 2022,with the rate of decrease weakening from southwest to northeast,showing a clear spatial clustering pattern.(2)While,land subsidence rates in the main urban areas of each city were relatively low,severe subsidence persisted in the surrounding suburban and rural areas.(3)The temporal trends of land subsidence were consistent with changes in groundwater storage across all cities.(4)Groundwater storage Anomalies emerged as the most significant factor influencing the spatial distribution of land subsidence,with a q-value of 0.387,followed by factors such as DEM,evapotranspiration,and rainfall.Seasonal characteristics were evident in land deformation corresponding to groundwater storage Anomalies:During the spring and summer irrigation periods,land subsidence occurred due to groundwater depletion,while in autumn and winter,the surface uplifted with increased groundwater storage.In Cangzhou and Hengshui,excessive deep groundwater extraction caused a lagged response in land subsidence relative to groundwater storage Anomalies.Further-more,interaction among various factors significantly amplified their influence on land subsidence.The interaction between groundwater storage Anomalies and rainfall had the strongest combined effect,under-scoring its critical role in shaping land subsidence in the study area.The findings offer valuable insights for the scientific prevention and management of land subsidence in the North China Plain.
基金National Basic Research Program of China,No.2015CB452702National Natural Science Foundation of China,No.41671098,No.41530749
文摘The formation mechanism and influencing factors identification of soil erosion are the core and frontier issues of current research. However, studies on the multi-factor synthesis are still relatively lacked. In this study, the simulation of soil erosion and its quantitative attribution analysis have been conducted in different geomorphological types in a typical karst basin based on the RUSLE model and the geodetector method. The influencing factors, such as land use type, slope, rainfall, elevation, lithology and vegetation cover, have been taken into consideration. Results show that the strength of association between the six influencing factors and soil erosion was notably different in diverse geomorphological types. Land use type and slope were the dominant factors of soil erosion in the Sancha River Basin, especially for land use type whose power of determinant(q value) for soil erosion was much higher than other factors. The q value of slope declined with the increase of relief in mountainous areas, namely it was ranked as follows: middle elevation hill> small relief mountain> middle relief mountain. Multi-factors interactions were proven to significantly strengthen soil erosion, particularly for the combination of land use type with slope, which can explain 70% of soil erosion distribution. It can be found that soil erosion in the same land use type with different slopes(such as dry land with slopes of 5° and above 25°) or in the diverse land use types with the same slope(such as dry land and forest with a slope of 5°), varied much. These indicate that prohibiting steep slope cultivation and Grain for Green Project are reasonable measures to control soil erosion in karst areas. Based on statistics of soil erosion difference between diverse stratifications of each influencing factor, results of risk detector suggest that the amount of stratification combinations with significant difference accounted for 55% at least in small relief mountain and middle relief mountainous areas. Therefore, the spatial heterogeneity of soil erosion and its influencing factors in different geomorphological types should be investigated to control karst soil loss more effectively.
文摘The present study aims to develop two hybrid models to optimize the factors and enhance the predictive ability of the landslide susceptibility models.For this,a landslide inventory map was created with 406 historical landslides and 2030 non-landslide points,which was randomly divided into two datasets for model training(70%)and model testing(30%).22 factors were initially selected to establish a landslide factor database.We applied the GeoDetector and recursive feature elimination method(RFE)to address factor optimization to reduce information redundancy and collinearity in the data.Thereafter,the frequency ratio method,multicollinearity test,and interactive detector were used to analyze and evaluate the optimized factors.Subsequently,the random forest(RF)model was used to create a landslide susceptibility map with original and optimized factors.The resultant hybrid models GeoDetector-RF and RFE-RF were evaluated and compared by the area under the receiver operating characteristic curve(AUC)and accuracy.The accuracy of the two hybrid models(0.868 for GeoDetector-RF and 0.869 for RFE-RF)were higher than that of the RF model(0.860),indicating that the hybrid models with factor optimization have high reliability and predictability.Both RFE-RF GeoDetector-RF had higher AUC values,respectively 0.863 and 0.860,than RF(0.853).These results confirm the ability of factor optimization methods to improve the performance of landslide susceptibility models.