With the rising adoption of blockchain technology due to its decentralized,secure,and transparent features,ensuring its resilience against network threats,especially Distributed Denial of Service(DDoS)attacks,is cruci...With the rising adoption of blockchain technology due to its decentralized,secure,and transparent features,ensuring its resilience against network threats,especially Distributed Denial of Service(DDoS)attacks,is crucial.This research addresses the vulnerability of blockchain systems to DDoS assaults,which undermine their core decentralized characteristics,posing threats to their security and reliability.We have devised a novel adaptive integration technique for the detection and identification of varied DDoS attacks.To ensure the robustness and validity of our approach,a dataset amalgamating multiple DDoS attacks was derived from the CIC-DDoS2019 dataset.Using this,our methodology was applied to detect DDoS threats and further classify them into seven unique attack subcategories.To cope with the broad spectrum of DDoS attack variations,a holistic framework has been pro-posed that seamlessly integrates five machine learning models:Gate Recurrent Unit(GRU),Convolutional Neural Networks(CNN),Long-Short Term Memory(LSTM),Deep Neural Networks(DNN),and Support Vector Machine(SVM).The innovative aspect of our framework is the introduction of a dynamic weight adjustment mechanism,enhancing the system’s adaptability.Experimental results substantiate the superiority of our ensemble method in comparison to singular models across various evaluation metrics.The framework displayed remarkable accuracy,with rates reaching 99.71%for detection and 87.62%for classification tasks.By developing a comprehensive and adaptive methodology,this study paves the way for strengthening the defense mechanisms of blockchain systems against DDoS attacks.The ensemble approach,combined with the dynamic weight adjustment,offers promise in ensuring blockchain’s enduring security and trustworthiness.展开更多
As the process comes into 28nm node and below,lithography struggles stronger between high resolution (high NA) and enough process window especially for hole layers (Contacts and Vias).Taking more care of process windo...As the process comes into 28nm node and below,lithography struggles stronger between high resolution (high NA) and enough process window especially for hole layers (Contacts and Vias).Taking more care of process window may result in lower image quality of structures and bigger uncertainty in OPC model accuracy.Besides,it is difficult to cover all kinds of test structures within acceptable accuracy in one OPC model because of distinct difference of image quality of different patterns.To solve these problems,this paper introduces an innovative method of applying multi-models in one layer OPC.According to different characteristic features,multiple models are applied respectively and the fitting on these features with poor resolution can be improved by re-optimizing based on related model.A practice for 28 nm Via layer modeling calibration is given,and it shows an evident improvement of model accuracy through the implementing of multiple models scheme.展开更多
In this study,we conducted an experiment to construct multi-model ensemble(MME)predictions for the El Niño-Southern Oscillation(ENSO)using a neural network,based on hindcast data released from five coupled oceana...In this study,we conducted an experiment to construct multi-model ensemble(MME)predictions for the El Niño-Southern Oscillation(ENSO)using a neural network,based on hindcast data released from five coupled oceanatmosphere models,which exhibit varying levels of complexity.This nonlinear approach demonstrated extraordinary superiority and effectiveness in constructing ENSO MME.Subsequently,we employed the leave-one-out crossvalidation and the moving base methods to further validate the robustness of the neural network model in the formulation of ENSO MME.In conclusion,the neural network algorithm outperforms the conventional approach of assigning a uniform weight to all models.This is evidenced by an enhancement in correlation coefficients and reduction in prediction errors,which have the potential to provide a more accurate ENSO forecast.展开更多
Given the extremely high inter-patient heterogeneity of acute myeloid leukemia(AML),the identification of biomarkers for prognostic assessment and therapeutic guidance is critical.Cell surface markers(CSMs)have been s...Given the extremely high inter-patient heterogeneity of acute myeloid leukemia(AML),the identification of biomarkers for prognostic assessment and therapeutic guidance is critical.Cell surface markers(CSMs)have been shown to play an important role in AML leukemogenesis and progression.In the current study,we evaluated the prognostic potential of all human CSMs in 130 AML patients from The Cancer Genome Atlas(TCGA)based on differential gene expression analysis and univariable Cox proportional hazards regression analysis.By using multi-model analysis,including Adaptive LASSO regression,LASSO regression,and Elastic Net,we constructed a 9-CSMs prognostic model for risk stratification of the AML patients.The predictive value of the 9-CSMs risk score was further validated at the transcriptome and proteome levels.Multivariable Cox regression analysis showed that the risk score was an independent prognostic factor for the AML patients.The AML patients with high 9-CSMs risk scores had a shorter overall and event-free survival time than those with low scores.Notably,single-cell RNA-sequencing analysis indicated that patients with high 9-CSMs risk scores exhibited chemotherapy resistance.Furthermore,PI3K inhibitors were identified as potential treatments for these high-risk patients.In conclusion,we constructed a 9-CSMs prognostic model that served as an independent prognostic factor for the survival of AML patients and held the potential for guiding drug therapy.展开更多
Traditional global sensitivity analysis(GSA)neglects the epistemic uncertainties associated with the probabilistic characteristics(i.e.type of distribution type and its parameters)of input rock properties emanating du...Traditional global sensitivity analysis(GSA)neglects the epistemic uncertainties associated with the probabilistic characteristics(i.e.type of distribution type and its parameters)of input rock properties emanating due to the small size of datasets while mapping the relative importance of properties to the model response.This paper proposes an augmented Bayesian multi-model inference(BMMI)coupled with GSA methodology(BMMI-GSA)to address this issue by estimating the imprecision in the momentindependent sensitivity indices of rock structures arising from the small size of input data.The methodology employs BMMI to quantify the epistemic uncertainties associated with model type and parameters of input properties.The estimated uncertainties are propagated in estimating imprecision in moment-independent Borgonovo’s indices by employing a reweighting approach on candidate probabilistic models.The proposed methodology is showcased for a rock slope prone to stress-controlled failure in the Himalayan region of India.The proposed methodology was superior to the conventional GSA(neglects all epistemic uncertainties)and Bayesian coupled GSA(B-GSA)(neglects model uncertainty)due to its capability to incorporate the uncertainties in both model type and parameters of properties.Imprecise Borgonovo’s indices estimated via proposed methodology provide the confidence intervals of the sensitivity indices instead of their fixed-point estimates,which makes the user more informed in the data collection efforts.Analyses performed with the varying sample sizes suggested that the uncertainties in sensitivity indices reduce significantly with the increasing sample sizes.The accurate importance ranking of properties was only possible via samples of large sizes.Further,the impact of the prior knowledge in terms of prior ranges and distributions was significant;hence,any related assumption should be made carefully.展开更多
In the continually evolving landscape of data-driven methodologies addressing car crash patterns,a holistic analysis remains critical to decode the complex nuances of this phenomenon.This study bridges this knowledge ...In the continually evolving landscape of data-driven methodologies addressing car crash patterns,a holistic analysis remains critical to decode the complex nuances of this phenomenon.This study bridges this knowledge gap with a robust examination of car crash occurrence dynamics and the influencing variables in the Greater Melbourne area,Australia.We employed a comprehensive multi-model machine learning and geospatial analytics approach,unveiling the complicated interactions intrinsic to vehicular incidents.By harnessing Random Forest with SHAP(Shapley Additive Explanations),GLR(Generalized Linear Regression),and GWR(Geographically Weighted Regression),our research not only highlighted pivotal contributing elements but also enriched our findings by capturing often overlooked complexities.Using the Random Forest model,essential factors were emphasized,and with the aid of SHAP,we accessed the interaction of these factors.To complement our methodology,we incorporated hexagonalized geographic units,refining the granularity of crash density evaluations.In our multi-model study of car crash dynamics in Greater Melbourne,road geometry emerged as a key factor,with intersections showing a significant positive correlation with crashes.The average land surface temperature had variable significance across scales.Socio-economically,regions with a higher proportion of childless populations were identified as more prone to accidents.Public transit usage displayed a strong positive association with crashes,especially in densely populated areas.The convergence of insights from both Generalized Linear Regression and Random Forest’s SHAP values offered a comprehensive understanding of underlying patterns,pinpointing high-risk zones and influential determinants.These findings offer pivotal insights for targeted safety interventions in Greater Melbourne,Australia.展开更多
The fast increase of online communities has brought about an increase in cyber threats inclusive of cyberbullying, hate speech, misinformation, and online harassment, making content moderation a pressing necessity. Tr...The fast increase of online communities has brought about an increase in cyber threats inclusive of cyberbullying, hate speech, misinformation, and online harassment, making content moderation a pressing necessity. Traditional single-modal AI-based detection systems, which analyze both text, photos, or movies in isolation, have established useless at taking pictures multi-modal threats, in which malicious actors spread dangerous content throughout a couple of formats. To cope with these demanding situations, we advise a multi-modal deep mastering framework that integrates Natural Language Processing (NLP), Convolutional Neural Networks (CNNs), and Long Short-Term Memory (LSTM) networks to become aware of and mitigate online threats effectively. Our proposed model combines BERT for text class, ResNet50 for photograph processing, and a hybrid LSTM-3-d CNN community for video content material analysis. We constructed a large-scale dataset comprising 500,000 textual posts, 200,000 offensive images, and 50,000 annotated motion pictures from more than one platform, which includes Twitter, Reddit, YouTube, and online gaming forums. The system became carefully evaluated using trendy gadget mastering metrics which include accuracy, precision, remember, F1-score, and ROC-AUC curves. Experimental outcomes demonstrate that our multi-modal method extensively outperforms single-modal AI classifiers, achieving an accuracy of 92.3%, precision of 91.2%, do not forget of 90.1%, and an AUC rating of 0.95. The findings validate the necessity of integrating multi-modal AI for actual-time, high-accuracy online chance detection and moderation. Future paintings will have consciousness on improving hostile robustness, enhancing scalability for real-world deployment, and addressing ethical worries associated with AI-driven content moderation.展开更多
Spartina alterniflora is now listed among the world’s 100 most dangerous invasive species,severely affecting the ecological balance of coastal wetlands.Remote sensing technologies based on deep learning enable large-...Spartina alterniflora is now listed among the world’s 100 most dangerous invasive species,severely affecting the ecological balance of coastal wetlands.Remote sensing technologies based on deep learning enable large-scale monitoring of Spartina alterniflora,but they require large datasets and have poor interpretability.A new method is proposed to detect Spartina alterniflora from Sentinel-2 imagery.Firstly,to get the high canopy cover and dense community characteristics of Spartina alterniflora,multi-dimensional shallow features are extracted from the imagery.Secondly,to detect different objects from satellite imagery,index features are extracted,and the statistical features of the Gray-Level Co-occurrence Matrix(GLCM)are derived using principal component analysis.Then,ensemble learning methods,including random forest,extreme gradient boosting,and light gradient boosting machine models,are employed for image classification.Meanwhile,Recursive Feature Elimination with Cross-Validation(RFECV)is used to select the best feature subset.Finally,to enhance the interpretability of the models,the best features are utilized to classify multi-temporal images and SHapley Additive exPlanations(SHAP)is combined with these classifications to explain the model prediction process.The method is validated by using Sentinel-2 imageries and previous observations of Spartina alterniflora in Chongming Island,it is found that the model combining image texture features such as GLCM covariance can significantly improve the detection accuracy of Spartina alterniflora by about 8%compared with the model without image texture features.Through multiple model comparisons and feature selection via RFECV,the selected model and eight features demonstrated good classification accuracy when applied to data from different time periods,proving that feature reduction can effectively enhance model generalization.Additionally,visualizing model decisions using SHAP revealed that the image texture feature component_1_GLCMVariance is particularly important for identifying each land cover type.展开更多
The 21-yr ensemble predictions of model precipitation and circulation in the East Asian and western North Pacific (Asia-Pacific) summer monsoon region (0°-50°N, 100° 150°E) were evaluated in ni...The 21-yr ensemble predictions of model precipitation and circulation in the East Asian and western North Pacific (Asia-Pacific) summer monsoon region (0°-50°N, 100° 150°E) were evaluated in nine different AGCM, used in the Asia-Pacific Economic Cooperation Climate Center (APCC) multi-model ensemble seasonal prediction system. The analysis indicates that the precipitation anomaly patterns of model ensemble predictions are substantially different from the observed counterparts in this region, but the summer monsoon circulations are reasonably predicted. For example, all models can well produce the interannual variability of the western North Pacific monsoon index (WNPMI) defined by 850 hPa winds, but they failed to predict the relationship between WNPMI and precipitation anomalies. The interannual variability of the 500 hPa geopotential height (GPH) can be well predicted by the models in contrast to precipitation anomalies. On the basis of such model performances and the relationship between the interannual variations of 500 hPa GPH and precipitation anomalies, we developed a statistical scheme used to downscale the summer monsoon precipitation anomaly on the basis of EOF and singular value decomposition (SVD). In this scheme, the three leading EOF modes of 500 hPa GPH anomaly fields predicted by the models are firstly corrected by the linear regression between the principal components in each model and observation, respectively. Then, the corrected model GPH is chosen as the predictor to downscale the precipitation anomaly field, which is assembled by the forecasted expansion coefficients of model 500 hPa GPH and the three leading SVD modes of observed precipitation anomaly corresponding to the prediction of model 500 hPa GPH during a 19-year training period. The cross-validated forecasts suggest that this downscaling scheme may have a potential to improve the forecast skill of the precipitation anomaly in the South China Sea, western North Pacific and the East Asia Pacific regions, where the anomaly correlation coefficient (ACC) has been improved by 0.14, corresponding to the reduced RMSE of 10.4% in the conventional multi-model ensemble (MME) forecast.展开更多
This study investigates multi-model ensemble forecasts of track and intensity of tropical cyclones over the western Pacific, based on forecast outputs from the China Meteorological Administration, European Centre for ...This study investigates multi-model ensemble forecasts of track and intensity of tropical cyclones over the western Pacific, based on forecast outputs from the China Meteorological Administration, European Centre for Medium-Range Weather Forecasts, Japan Meteorological Agency and National Centers for Environmental Prediction in the THORPEX Interactive Grand Global Ensemble(TIGGE) datasets. The multi-model ensemble schemes, namely the bias-removed ensemble mean(BREM) and superensemble(SUP), are compared with the ensemble mean(EMN) and single-model forecasts. Moreover, a new model bias estimation scheme is investigated and applied to the BREM and SUP schemes. The results showed that, compared with single-model forecasts and EMN, the multi-model ensembles of the BREM and SUP schemes can have smaller errors in most cases. However, there were also circumstances where BREM was less skillful than EMN, indicating that using a time-averaged error as model bias is not optimal. A new model bias estimation scheme of the biweight mean is introduced. Through minimizing the negative influence of singular errors, this scheme can obtain a more accurate model bias estimation and improve the BREM forecast skill. The application of the biweight mean in the bias calculation of SUP also resulted in improved skill. The results indicate that the modification of multi-model ensemble schemes through this bias estimation method is feasible.展开更多
In order to reduce the uncertainty of offline land surface model (LSM) simulations of land evapotranspiration (ET), we used ensemble simulations based on three meteorological forcing datasets [Princeton, ITPCAS (...In order to reduce the uncertainty of offline land surface model (LSM) simulations of land evapotranspiration (ET), we used ensemble simulations based on three meteorological forcing datasets [Princeton, ITPCAS (Institute of Tibetan Plateau Research, Chinese Academy of Sciences), Qian] and four LSMs (BATS, VIC, CLM3.0 and CLM3.5), to explore the trends and spatiotemporal characteristics of ET, as well as the spatiotemporal pattern of ET in response to climate factors over China's Mainland during 1982-2007. The results showed that various simulations of each member and their arithmetic mean (EnsAVlean) could capture the spatial distribution and seasonal pattern of ET sufficiently well, where they exhibited more significant spatial and seasonal variation in the ET compared with observation-based ET estimates (Obs_MTE). For the mean annual ET, we found that the BATS forced by Princeton forcing overestimated the annual mean ET compared with Obs_MTE for most of the basins in China, whereas the VIC forced by Princeton forcing showed underestimations. By contrast, the Ens_Mean was closer to Obs_MTE, although the results were underestimated over Southeast China. Furthermore, both the Obs_MTE and Ens_Mean exhibited a significant increasing trend during 1982-98; whereas after 1998, when the last big EI Nifio event occurred, the Ens_Mean tended to decrease significantly between 1999 and 2007, although the change was not significant for Obs_MTE. Changes in air temperature and shortwave radiation played key roles in the long-term variation in ET over the humid area of China, but precipitation mainly controlled the long-term variation in ET in arid and semi-arid areas of China.展开更多
The control of ultra-supercritical(USC) power unit is a difficult issue for its characteristic of the nonlinearity, large dead time and coupling of the unit. In this paper, model predictive control(MPC) based on multi...The control of ultra-supercritical(USC) power unit is a difficult issue for its characteristic of the nonlinearity, large dead time and coupling of the unit. In this paper, model predictive control(MPC) based on multi-model and double layered optimization is introduced for coordinated control of USC unit. The linear programming(LP) combined with quadratic programming(QP) is used in steady optimization for computation of the ideal value of dynamic optimization. Three inputs(i.e. valve opening, coal flow and feedwater flow) are employed to control three outputs(i.e. load, main steam temperature and main steam pressure). The step response models for the dynamic matrix control(DMC) are constructed using the three inputs and the three outputs. Piecewise models are built at selected operation points. Double-layered multi-model predictive controller is implemented in simulation with satisfactory performance.展开更多
Seasonal prediction of summer rainfall over the Yangtze River valley(YRV) is valuable for agricultural and industrial production and freshwater resource management in China, but remains a major challenge. Earlier mu...Seasonal prediction of summer rainfall over the Yangtze River valley(YRV) is valuable for agricultural and industrial production and freshwater resource management in China, but remains a major challenge. Earlier multi-model ensemble(MME) prediction schemes for summer rainfall over China focus on single-value prediction, which cannot provide the necessary uncertainty information, while commonly-used ensemble schemes for probability density function(PDF) prediction are not adapted to YRV summer rainfall prediction. In the present study, an MME PDF prediction scheme is proposed based on the ENSEMBLES hindcasts. It is similar to the earlier Bayesian ensemble prediction scheme, but with optimization of ensemble members and a revision of the variance modeling of the likelihood function. The optimized ensemble members are regressed YRV summer rainfall with factors selected from model outputs of synchronous 500-h Pa geopotential height as predictors. The revised variance modeling of the likelihood function is a simple linear regression with ensemble spread as the predictor. The cross-validation skill of 1960–2002 YRV summer rainfall prediction shows that the new scheme produces a skillful PDF prediction, and is much better-calibrated, sharper, and more accurate than the earlier Bayesian ensemble and raw ensemble.展开更多
Dissolved oxygen(DO)is an important indicator of aquaculture,and its accurate forecasting can effectively improve the quality of aquatic products.In this paper,a new DO hybrid forecasting model is proposed that includ...Dissolved oxygen(DO)is an important indicator of aquaculture,and its accurate forecasting can effectively improve the quality of aquatic products.In this paper,a new DO hybrid forecasting model is proposed that includes three stages:multi-factor analysis,adaptive decomposition,and an optimizationbased ensemble.First,considering the complex factors affecting DO,the grey relational(GR)degree method is used to screen out the environmental factors most closely related to DO.The consideration of multiple factors makes model fusion more effective.Second,the series of DO,water temperature,salinity,and oxygen saturation are decomposed adaptively into sub-series by means of the empirical wavelet transform(EWT)method.Then,five benchmark models are utilized to forecast the sub-series of EWT decomposition.The ensemble weights of these five sub-forecasting models are calculated by particle swarm optimization and gravitational search algorithm(PSOGSA).Finally,a multi-factor ensemble model for DO is obtained by weighted allocation.The performance of the proposed model is verified by timeseries data collected by the pacific islands ocean observing system(PacIOOS)from the WQB04 station at Hilo.The evaluation indicators involved in the experiment include the Nash–Sutcliffe efficiency(NSE),Kling–Gupta efficiency(KGE),mean absolute percent error(MAPE),standard deviation of error(SDE),and coefficient of determination(R^(2)).Example analysis demonstrates that:①The proposed model can obtain excellent DO forecasting results;②the proposed model is superior to other comparison models;and③the forecasting model can be used to analyze the trend of DO and enable managers to make better management decisions.展开更多
In this paper, a support vector machine-based multi-model predictive control is proposed, in which SVM classification combines well with SVM regression. At first, each working environment is modeled by SVM regression ...In this paper, a support vector machine-based multi-model predictive control is proposed, in which SVM classification combines well with SVM regression. At first, each working environment is modeled by SVM regression and the support vector machine network-based model predictive control (SVMN-MPC) algorithm corresponding to each environment is developed, and then a multi-class SVM model is established to recognize multiple operating conditions. As for control, the current environment is identified by the multi-class SVM model and then the corresponding SVMN-MPC controller is activated at each sampling instant. The proposed modeling, switching and controller design is demonstrated in simulation results.展开更多
Because model switching system is a typical form of Takagi-Sugeno(T-S) model which is an universal approximator of continuous nonlinear systems, we describe the model switching system as mixed logical dynamical (ML...Because model switching system is a typical form of Takagi-Sugeno(T-S) model which is an universal approximator of continuous nonlinear systems, we describe the model switching system as mixed logical dynamical (MLD) system and use it in model predictive control (MPC) in this paper. Considering that each local model is only valid in each local region,we add local constraints to local models. The stability of proposed multi-model predictive control (MMPC) algorithm is analyzed, and the performance of MMPC is also demonstrated on an inulti-multi-output(MIMO) simulated pH neutralization process.展开更多
Ultra-supercritical(USC) coal-fired unit is more and more popular in these years for its advantages.But the control of USC unit is a difficult issue for its characteristic of nonlinearity, large dead time and coupling...Ultra-supercritical(USC) coal-fired unit is more and more popular in these years for its advantages.But the control of USC unit is a difficult issue for its characteristic of nonlinearity, large dead time and coupling among inputs and outputs. In this paper, model predictive control(MPC) method based on multi-model and double layered optimization is introduced for coordinated control of USC unit running in sliding pressure mode and fixed pressure mode. Three inputs(i.e. valve opening, coal flow and feedwater flow) are employed to control three outputs(i.e. output power, main steam temperature and main steam pressure). The step responses for the dynamic matrix control(DMC) are constructed using the three inputs by the three outputs under both pressure control mode. Piecewise models are built at selected operation points. In simulation, the output power follows load demand quickly and main steam temperature can be controlled around the setpoint closely in load tracking control. The simulation results show the effectiveness of the proposed methods.展开更多
Based on the multi-model principle, the fuzzy identification for nonlinear systems with multirate sampled data is studied.Firstly, the nonlinear system with multirate sampled data can be shown as the nonlinear weighte...Based on the multi-model principle, the fuzzy identification for nonlinear systems with multirate sampled data is studied.Firstly, the nonlinear system with multirate sampled data can be shown as the nonlinear weighted combination of some linear models at multiple local working points. On this basis, the fuzzy model of the multirate sampled nonlinear system is built. The premise structure of the fuzzy model is confirmed by using fuzzy competitive learning, and the conclusion parameters of the fuzzy model are estimated by the random gradient descent algorithm. The convergence of the proposed identification algorithm is given by using the martingale theorem and lemmas. The fuzzy model of the PH neutralization process of acid-base titration for hair quality detection is constructed to demonstrate the effectiveness of the proposed method.展开更多
The mechanical properties of hot rolled strip are the key index of product quality,and the soft sensing of them is an important decision basis for the control and optimization of hot rolling process.To solve the probl...The mechanical properties of hot rolled strip are the key index of product quality,and the soft sensing of them is an important decision basis for the control and optimization of hot rolling process.To solve the problem that it is difficult to measure the mechanical properties of hot rolled strip in time and accurately,a soft sensor based on ensemble local modeling was proposed.Firstly,outliers of process data are removed by local outlier factor.After standardization and transformation,normal data that can be used in the model are obtained.Next,in order to avoid redundant variables participating in modeling and reducing performance of models,feature selection was applied combing the mechanism of hot rolling process and mutual information among variables.Then,features of samples were extracted by supervised local preserving projection,and a prediction model was constructed by Gaussian process regression based on just-in-time learning(JITL).Other JITL-based models,such as support vector regression and gradient boosting regression tree models,keep all variables and make up for the lost information during dimension reduction.Finally,the soft sensor was developed by integrating individual models through stacking method.Superiority and reliability of proposed soft sensors were verified by actual process data from a real hot rolling process.展开更多
This paper deals with the massive point cloud segmentation processing technology on the basis of machine vision, which is the second essential factor for the intelligent data processing of three dimensional conformati...This paper deals with the massive point cloud segmentation processing technology on the basis of machine vision, which is the second essential factor for the intelligent data processing of three dimensional conformation in digital photogrammetry. In this paper, multi-model fitting method is used to segment the point cloud according to the spatial distribution and spatial geometric structure of point clouds by fitting the point cloud into different geometric primitives models. Because point cloud usually possesses large amount of 3D points, which are uneven distributed over various complex structures, this paper proposes a point cloud segmentation method based on multi-model fitting. Firstly, the pre-segmentation of point cloud is conducted by using the clustering method based on density distribution. And then the follow fitting and segmentation are carried out by using the multi-model fitting method based on split and merging. For the plane and the arc surface, this paper uses different fitting methods, and finally realizing the indoor dense point cloud segmentation. The experimental results show that this method can achieve the automatic segmentation of the point cloud without setting the number of models in advance. Compared with the existing point cloud segmentation methods, this method has obvious advantages in segmentation effect and time cost, and can achieve higher segmentation accuracy. After processed by method proposed in this paper, the point cloud even with large-scale and complex structures can often be segmented into 3D geometric elements with finer and accurate model parameters, which can give rise to an accurate 3D conformation.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.62162022,62162024)Hainan Provincial Natural Science Foundation of China(Grant Nos.723QN238,621RC612).
文摘With the rising adoption of blockchain technology due to its decentralized,secure,and transparent features,ensuring its resilience against network threats,especially Distributed Denial of Service(DDoS)attacks,is crucial.This research addresses the vulnerability of blockchain systems to DDoS assaults,which undermine their core decentralized characteristics,posing threats to their security and reliability.We have devised a novel adaptive integration technique for the detection and identification of varied DDoS attacks.To ensure the robustness and validity of our approach,a dataset amalgamating multiple DDoS attacks was derived from the CIC-DDoS2019 dataset.Using this,our methodology was applied to detect DDoS threats and further classify them into seven unique attack subcategories.To cope with the broad spectrum of DDoS attack variations,a holistic framework has been pro-posed that seamlessly integrates five machine learning models:Gate Recurrent Unit(GRU),Convolutional Neural Networks(CNN),Long-Short Term Memory(LSTM),Deep Neural Networks(DNN),and Support Vector Machine(SVM).The innovative aspect of our framework is the introduction of a dynamic weight adjustment mechanism,enhancing the system’s adaptability.Experimental results substantiate the superiority of our ensemble method in comparison to singular models across various evaluation metrics.The framework displayed remarkable accuracy,with rates reaching 99.71%for detection and 87.62%for classification tasks.By developing a comprehensive and adaptive methodology,this study paves the way for strengthening the defense mechanisms of blockchain systems against DDoS attacks.The ensemble approach,combined with the dynamic weight adjustment,offers promise in ensuring blockchain’s enduring security and trustworthiness.
文摘As the process comes into 28nm node and below,lithography struggles stronger between high resolution (high NA) and enough process window especially for hole layers (Contacts and Vias).Taking more care of process window may result in lower image quality of structures and bigger uncertainty in OPC model accuracy.Besides,it is difficult to cover all kinds of test structures within acceptable accuracy in one OPC model because of distinct difference of image quality of different patterns.To solve these problems,this paper introduces an innovative method of applying multi-models in one layer OPC.According to different characteristic features,multiple models are applied respectively and the fitting on these features with poor resolution can be improved by re-optimizing based on related model.A practice for 28 nm Via layer modeling calibration is given,and it shows an evident improvement of model accuracy through the implementing of multiple models scheme.
基金The fund from Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)under contract No.SML2021SP310the National Natural Science Foundation of China under contract Nos 42227901 and 42475061the Key R&D Program of Zhejiang Province under contract No.2024C03257.
文摘In this study,we conducted an experiment to construct multi-model ensemble(MME)predictions for the El Niño-Southern Oscillation(ENSO)using a neural network,based on hindcast data released from five coupled oceanatmosphere models,which exhibit varying levels of complexity.This nonlinear approach demonstrated extraordinary superiority and effectiveness in constructing ENSO MME.Subsequently,we employed the leave-one-out crossvalidation and the moving base methods to further validate the robustness of the neural network model in the formulation of ENSO MME.In conclusion,the neural network algorithm outperforms the conventional approach of assigning a uniform weight to all models.This is evidenced by an enhancement in correlation coefficients and reduction in prediction errors,which have the potential to provide a more accurate ENSO forecast.
基金supported by the National Natural Science Foundation of China(Grant Nos.32200590 to K.L.,81972358 to Q.W.,91959113 to Q.W.,and 82372897 to Q.W.)the Natural Science Foundation of Jiangsu Province(Grant No.BK20210530 to K.L.).
文摘Given the extremely high inter-patient heterogeneity of acute myeloid leukemia(AML),the identification of biomarkers for prognostic assessment and therapeutic guidance is critical.Cell surface markers(CSMs)have been shown to play an important role in AML leukemogenesis and progression.In the current study,we evaluated the prognostic potential of all human CSMs in 130 AML patients from The Cancer Genome Atlas(TCGA)based on differential gene expression analysis and univariable Cox proportional hazards regression analysis.By using multi-model analysis,including Adaptive LASSO regression,LASSO regression,and Elastic Net,we constructed a 9-CSMs prognostic model for risk stratification of the AML patients.The predictive value of the 9-CSMs risk score was further validated at the transcriptome and proteome levels.Multivariable Cox regression analysis showed that the risk score was an independent prognostic factor for the AML patients.The AML patients with high 9-CSMs risk scores had a shorter overall and event-free survival time than those with low scores.Notably,single-cell RNA-sequencing analysis indicated that patients with high 9-CSMs risk scores exhibited chemotherapy resistance.Furthermore,PI3K inhibitors were identified as potential treatments for these high-risk patients.In conclusion,we constructed a 9-CSMs prognostic model that served as an independent prognostic factor for the survival of AML patients and held the potential for guiding drug therapy.
文摘Traditional global sensitivity analysis(GSA)neglects the epistemic uncertainties associated with the probabilistic characteristics(i.e.type of distribution type and its parameters)of input rock properties emanating due to the small size of datasets while mapping the relative importance of properties to the model response.This paper proposes an augmented Bayesian multi-model inference(BMMI)coupled with GSA methodology(BMMI-GSA)to address this issue by estimating the imprecision in the momentindependent sensitivity indices of rock structures arising from the small size of input data.The methodology employs BMMI to quantify the epistemic uncertainties associated with model type and parameters of input properties.The estimated uncertainties are propagated in estimating imprecision in moment-independent Borgonovo’s indices by employing a reweighting approach on candidate probabilistic models.The proposed methodology is showcased for a rock slope prone to stress-controlled failure in the Himalayan region of India.The proposed methodology was superior to the conventional GSA(neglects all epistemic uncertainties)and Bayesian coupled GSA(B-GSA)(neglects model uncertainty)due to its capability to incorporate the uncertainties in both model type and parameters of properties.Imprecise Borgonovo’s indices estimated via proposed methodology provide the confidence intervals of the sensitivity indices instead of their fixed-point estimates,which makes the user more informed in the data collection efforts.Analyses performed with the varying sample sizes suggested that the uncertainties in sensitivity indices reduce significantly with the increasing sample sizes.The accurate importance ranking of properties was only possible via samples of large sizes.Further,the impact of the prior knowledge in terms of prior ranges and distributions was significant;hence,any related assumption should be made carefully.
基金Linking Health,Place and Urban Planning through the Australian Urban Observatory by Ian Potter Foundation,Australia.
文摘In the continually evolving landscape of data-driven methodologies addressing car crash patterns,a holistic analysis remains critical to decode the complex nuances of this phenomenon.This study bridges this knowledge gap with a robust examination of car crash occurrence dynamics and the influencing variables in the Greater Melbourne area,Australia.We employed a comprehensive multi-model machine learning and geospatial analytics approach,unveiling the complicated interactions intrinsic to vehicular incidents.By harnessing Random Forest with SHAP(Shapley Additive Explanations),GLR(Generalized Linear Regression),and GWR(Geographically Weighted Regression),our research not only highlighted pivotal contributing elements but also enriched our findings by capturing often overlooked complexities.Using the Random Forest model,essential factors were emphasized,and with the aid of SHAP,we accessed the interaction of these factors.To complement our methodology,we incorporated hexagonalized geographic units,refining the granularity of crash density evaluations.In our multi-model study of car crash dynamics in Greater Melbourne,road geometry emerged as a key factor,with intersections showing a significant positive correlation with crashes.The average land surface temperature had variable significance across scales.Socio-economically,regions with a higher proportion of childless populations were identified as more prone to accidents.Public transit usage displayed a strong positive association with crashes,especially in densely populated areas.The convergence of insights from both Generalized Linear Regression and Random Forest’s SHAP values offered a comprehensive understanding of underlying patterns,pinpointing high-risk zones and influential determinants.These findings offer pivotal insights for targeted safety interventions in Greater Melbourne,Australia.
文摘The fast increase of online communities has brought about an increase in cyber threats inclusive of cyberbullying, hate speech, misinformation, and online harassment, making content moderation a pressing necessity. Traditional single-modal AI-based detection systems, which analyze both text, photos, or movies in isolation, have established useless at taking pictures multi-modal threats, in which malicious actors spread dangerous content throughout a couple of formats. To cope with these demanding situations, we advise a multi-modal deep mastering framework that integrates Natural Language Processing (NLP), Convolutional Neural Networks (CNNs), and Long Short-Term Memory (LSTM) networks to become aware of and mitigate online threats effectively. Our proposed model combines BERT for text class, ResNet50 for photograph processing, and a hybrid LSTM-3-d CNN community for video content material analysis. We constructed a large-scale dataset comprising 500,000 textual posts, 200,000 offensive images, and 50,000 annotated motion pictures from more than one platform, which includes Twitter, Reddit, YouTube, and online gaming forums. The system became carefully evaluated using trendy gadget mastering metrics which include accuracy, precision, remember, F1-score, and ROC-AUC curves. Experimental outcomes demonstrate that our multi-modal method extensively outperforms single-modal AI classifiers, achieving an accuracy of 92.3%, precision of 91.2%, do not forget of 90.1%, and an AUC rating of 0.95. The findings validate the necessity of integrating multi-modal AI for actual-time, high-accuracy online chance detection and moderation. Future paintings will have consciousness on improving hostile robustness, enhancing scalability for real-world deployment, and addressing ethical worries associated with AI-driven content moderation.
基金The National Key Research and Development Program of China under contract No.2023YFC3008204the National Natural Science Foundation of China under contract Nos 41977302 and 42476217.
文摘Spartina alterniflora is now listed among the world’s 100 most dangerous invasive species,severely affecting the ecological balance of coastal wetlands.Remote sensing technologies based on deep learning enable large-scale monitoring of Spartina alterniflora,but they require large datasets and have poor interpretability.A new method is proposed to detect Spartina alterniflora from Sentinel-2 imagery.Firstly,to get the high canopy cover and dense community characteristics of Spartina alterniflora,multi-dimensional shallow features are extracted from the imagery.Secondly,to detect different objects from satellite imagery,index features are extracted,and the statistical features of the Gray-Level Co-occurrence Matrix(GLCM)are derived using principal component analysis.Then,ensemble learning methods,including random forest,extreme gradient boosting,and light gradient boosting machine models,are employed for image classification.Meanwhile,Recursive Feature Elimination with Cross-Validation(RFECV)is used to select the best feature subset.Finally,to enhance the interpretability of the models,the best features are utilized to classify multi-temporal images and SHapley Additive exPlanations(SHAP)is combined with these classifications to explain the model prediction process.The method is validated by using Sentinel-2 imageries and previous observations of Spartina alterniflora in Chongming Island,it is found that the model combining image texture features such as GLCM covariance can significantly improve the detection accuracy of Spartina alterniflora by about 8%compared with the model without image texture features.Through multiple model comparisons and feature selection via RFECV,the selected model and eight features demonstrated good classification accuracy when applied to data from different time periods,proving that feature reduction can effectively enhance model generalization.Additionally,visualizing model decisions using SHAP revealed that the image texture feature component_1_GLCMVariance is particularly important for identifying each land cover type.
基金The National Nat-ural Science Foundation of China (NSFC), Grant Nos.90711003, 40375014the program of GYHY200706005, and the APCC Visiting Scientist Program jointly supportedthis work.
文摘The 21-yr ensemble predictions of model precipitation and circulation in the East Asian and western North Pacific (Asia-Pacific) summer monsoon region (0°-50°N, 100° 150°E) were evaluated in nine different AGCM, used in the Asia-Pacific Economic Cooperation Climate Center (APCC) multi-model ensemble seasonal prediction system. The analysis indicates that the precipitation anomaly patterns of model ensemble predictions are substantially different from the observed counterparts in this region, but the summer monsoon circulations are reasonably predicted. For example, all models can well produce the interannual variability of the western North Pacific monsoon index (WNPMI) defined by 850 hPa winds, but they failed to predict the relationship between WNPMI and precipitation anomalies. The interannual variability of the 500 hPa geopotential height (GPH) can be well predicted by the models in contrast to precipitation anomalies. On the basis of such model performances and the relationship between the interannual variations of 500 hPa GPH and precipitation anomalies, we developed a statistical scheme used to downscale the summer monsoon precipitation anomaly on the basis of EOF and singular value decomposition (SVD). In this scheme, the three leading EOF modes of 500 hPa GPH anomaly fields predicted by the models are firstly corrected by the linear regression between the principal components in each model and observation, respectively. Then, the corrected model GPH is chosen as the predictor to downscale the precipitation anomaly field, which is assembled by the forecasted expansion coefficients of model 500 hPa GPH and the three leading SVD modes of observed precipitation anomaly corresponding to the prediction of model 500 hPa GPH during a 19-year training period. The cross-validated forecasts suggest that this downscaling scheme may have a potential to improve the forecast skill of the precipitation anomaly in the South China Sea, western North Pacific and the East Asia Pacific regions, where the anomaly correlation coefficient (ACC) has been improved by 0.14, corresponding to the reduced RMSE of 10.4% in the conventional multi-model ensemble (MME) forecast.
基金Special Research Program for Public Welfare(Meteorology)of China(GYHY200906009,GYHY201006015,GYHY200906007)National Natural Science Foundation of China(4107503541475044)
文摘This study investigates multi-model ensemble forecasts of track and intensity of tropical cyclones over the western Pacific, based on forecast outputs from the China Meteorological Administration, European Centre for Medium-Range Weather Forecasts, Japan Meteorological Agency and National Centers for Environmental Prediction in the THORPEX Interactive Grand Global Ensemble(TIGGE) datasets. The multi-model ensemble schemes, namely the bias-removed ensemble mean(BREM) and superensemble(SUP), are compared with the ensemble mean(EMN) and single-model forecasts. Moreover, a new model bias estimation scheme is investigated and applied to the BREM and SUP schemes. The results showed that, compared with single-model forecasts and EMN, the multi-model ensembles of the BREM and SUP schemes can have smaller errors in most cases. However, there were also circumstances where BREM was less skillful than EMN, indicating that using a time-averaged error as model bias is not optimal. A new model bias estimation scheme of the biweight mean is introduced. Through minimizing the negative influence of singular errors, this scheme can obtain a more accurate model bias estimation and improve the BREM forecast skill. The application of the biweight mean in the bias calculation of SUP also resulted in improved skill. The results indicate that the modification of multi-model ensemble schemes through this bias estimation method is feasible.
基金supported by the National Natural Science Foundation of China(Grant Nos.4140508391437220 and 41305066)+1 种基金the Natural Science Foundation of Hunan Province(Grant No.2015JJ3098)the Fund Project for The Education Department of Hunan Province(Grant No.14C0897)
文摘In order to reduce the uncertainty of offline land surface model (LSM) simulations of land evapotranspiration (ET), we used ensemble simulations based on three meteorological forcing datasets [Princeton, ITPCAS (Institute of Tibetan Plateau Research, Chinese Academy of Sciences), Qian] and four LSMs (BATS, VIC, CLM3.0 and CLM3.5), to explore the trends and spatiotemporal characteristics of ET, as well as the spatiotemporal pattern of ET in response to climate factors over China's Mainland during 1982-2007. The results showed that various simulations of each member and their arithmetic mean (EnsAVlean) could capture the spatial distribution and seasonal pattern of ET sufficiently well, where they exhibited more significant spatial and seasonal variation in the ET compared with observation-based ET estimates (Obs_MTE). For the mean annual ET, we found that the BATS forced by Princeton forcing overestimated the annual mean ET compared with Obs_MTE for most of the basins in China, whereas the VIC forced by Princeton forcing showed underestimations. By contrast, the Ens_Mean was closer to Obs_MTE, although the results were underestimated over Southeast China. Furthermore, both the Obs_MTE and Ens_Mean exhibited a significant increasing trend during 1982-98; whereas after 1998, when the last big EI Nifio event occurred, the Ens_Mean tended to decrease significantly between 1999 and 2007, although the change was not significant for Obs_MTE. Changes in air temperature and shortwave radiation played key roles in the long-term variation in ET over the humid area of China, but precipitation mainly controlled the long-term variation in ET in arid and semi-arid areas of China.
基金Supported by the National Natural Science Foundation of China(60974119)
文摘The control of ultra-supercritical(USC) power unit is a difficult issue for its characteristic of the nonlinearity, large dead time and coupling of the unit. In this paper, model predictive control(MPC) based on multi-model and double layered optimization is introduced for coordinated control of USC unit. The linear programming(LP) combined with quadratic programming(QP) is used in steady optimization for computation of the ideal value of dynamic optimization. Three inputs(i.e. valve opening, coal flow and feedwater flow) are employed to control three outputs(i.e. load, main steam temperature and main steam pressure). The step response models for the dynamic matrix control(DMC) are constructed using the three inputs and the three outputs. Piecewise models are built at selected operation points. Double-layered multi-model predictive controller is implemented in simulation with satisfactory performance.
基金co-supported by the National Natural Science Foundation (Grant Nos. 41005052 and 41375086)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05110201)the National Basic Research Program of China (Grant No. 2010CB950403)
文摘Seasonal prediction of summer rainfall over the Yangtze River valley(YRV) is valuable for agricultural and industrial production and freshwater resource management in China, but remains a major challenge. Earlier multi-model ensemble(MME) prediction schemes for summer rainfall over China focus on single-value prediction, which cannot provide the necessary uncertainty information, while commonly-used ensemble schemes for probability density function(PDF) prediction are not adapted to YRV summer rainfall prediction. In the present study, an MME PDF prediction scheme is proposed based on the ENSEMBLES hindcasts. It is similar to the earlier Bayesian ensemble prediction scheme, but with optimization of ensemble members and a revision of the variance modeling of the likelihood function. The optimized ensemble members are regressed YRV summer rainfall with factors selected from model outputs of synchronous 500-h Pa geopotential height as predictors. The revised variance modeling of the likelihood function is a simple linear regression with ensemble spread as the predictor. The cross-validation skill of 1960–2002 YRV summer rainfall prediction shows that the new scheme produces a skillful PDF prediction, and is much better-calibrated, sharper, and more accurate than the earlier Bayesian ensemble and raw ensemble.
基金the National Natural Science Foundation of China(61873283)the Changsha Science&Technology Project(KQ1707017)the innovation-driven project of the Central South University(2019CX005).
文摘Dissolved oxygen(DO)is an important indicator of aquaculture,and its accurate forecasting can effectively improve the quality of aquatic products.In this paper,a new DO hybrid forecasting model is proposed that includes three stages:multi-factor analysis,adaptive decomposition,and an optimizationbased ensemble.First,considering the complex factors affecting DO,the grey relational(GR)degree method is used to screen out the environmental factors most closely related to DO.The consideration of multiple factors makes model fusion more effective.Second,the series of DO,water temperature,salinity,and oxygen saturation are decomposed adaptively into sub-series by means of the empirical wavelet transform(EWT)method.Then,five benchmark models are utilized to forecast the sub-series of EWT decomposition.The ensemble weights of these five sub-forecasting models are calculated by particle swarm optimization and gravitational search algorithm(PSOGSA).Finally,a multi-factor ensemble model for DO is obtained by weighted allocation.The performance of the proposed model is verified by timeseries data collected by the pacific islands ocean observing system(PacIOOS)from the WQB04 station at Hilo.The evaluation indicators involved in the experiment include the Nash–Sutcliffe efficiency(NSE),Kling–Gupta efficiency(KGE),mean absolute percent error(MAPE),standard deviation of error(SDE),and coefficient of determination(R^(2)).Example analysis demonstrates that:①The proposed model can obtain excellent DO forecasting results;②the proposed model is superior to other comparison models;and③the forecasting model can be used to analyze the trend of DO and enable managers to make better management decisions.
基金the 973 Program of China (No.2002CB312200)the National Science Foundation of China (No.60574019)
文摘In this paper, a support vector machine-based multi-model predictive control is proposed, in which SVM classification combines well with SVM regression. At first, each working environment is modeled by SVM regression and the support vector machine network-based model predictive control (SVMN-MPC) algorithm corresponding to each environment is developed, and then a multi-class SVM model is established to recognize multiple operating conditions. As for control, the current environment is identified by the multi-class SVM model and then the corresponding SVMN-MPC controller is activated at each sampling instant. The proposed modeling, switching and controller design is demonstrated in simulation results.
文摘Because model switching system is a typical form of Takagi-Sugeno(T-S) model which is an universal approximator of continuous nonlinear systems, we describe the model switching system as mixed logical dynamical (MLD) system and use it in model predictive control (MPC) in this paper. Considering that each local model is only valid in each local region,we add local constraints to local models. The stability of proposed multi-model predictive control (MMPC) algorithm is analyzed, and the performance of MMPC is also demonstrated on an inulti-multi-output(MIMO) simulated pH neutralization process.
基金the National Nature Science Foundation of China(No.60974119)the Subject Construction of Shanghai University of Engineering Science(No.2018xk-B-09)the Young Teacher Training Scheme of Shanghai Universities(No.ZZGCD15007)
文摘Ultra-supercritical(USC) coal-fired unit is more and more popular in these years for its advantages.But the control of USC unit is a difficult issue for its characteristic of nonlinearity, large dead time and coupling among inputs and outputs. In this paper, model predictive control(MPC) method based on multi-model and double layered optimization is introduced for coordinated control of USC unit running in sliding pressure mode and fixed pressure mode. Three inputs(i.e. valve opening, coal flow and feedwater flow) are employed to control three outputs(i.e. output power, main steam temperature and main steam pressure). The step responses for the dynamic matrix control(DMC) are constructed using the three inputs by the three outputs under both pressure control mode. Piecewise models are built at selected operation points. In simulation, the output power follows load demand quickly and main steam temperature can be controlled around the setpoint closely in load tracking control. The simulation results show the effectiveness of the proposed methods.
基金supported by the National Natural Science Foundation of China(61863034)。
文摘Based on the multi-model principle, the fuzzy identification for nonlinear systems with multirate sampled data is studied.Firstly, the nonlinear system with multirate sampled data can be shown as the nonlinear weighted combination of some linear models at multiple local working points. On this basis, the fuzzy model of the multirate sampled nonlinear system is built. The premise structure of the fuzzy model is confirmed by using fuzzy competitive learning, and the conclusion parameters of the fuzzy model are estimated by the random gradient descent algorithm. The convergence of the proposed identification algorithm is given by using the martingale theorem and lemmas. The fuzzy model of the PH neutralization process of acid-base titration for hair quality detection is constructed to demonstrate the effectiveness of the proposed method.
基金the National Natural Science Foundation of China(NSFC)under Grants 61773053,61873024Fundamental Research Funds for the China Central Universities of USTB(FRF-TP-19-049A1Z)the National Key R&D Program of China(No.2017YFB0306403).
文摘The mechanical properties of hot rolled strip are the key index of product quality,and the soft sensing of them is an important decision basis for the control and optimization of hot rolling process.To solve the problem that it is difficult to measure the mechanical properties of hot rolled strip in time and accurately,a soft sensor based on ensemble local modeling was proposed.Firstly,outliers of process data are removed by local outlier factor.After standardization and transformation,normal data that can be used in the model are obtained.Next,in order to avoid redundant variables participating in modeling and reducing performance of models,feature selection was applied combing the mechanism of hot rolling process and mutual information among variables.Then,features of samples were extracted by supervised local preserving projection,and a prediction model was constructed by Gaussian process regression based on just-in-time learning(JITL).Other JITL-based models,such as support vector regression and gradient boosting regression tree models,keep all variables and make up for the lost information during dimension reduction.Finally,the soft sensor was developed by integrating individual models through stacking method.Superiority and reliability of proposed soft sensors were verified by actual process data from a real hot rolling process.
基金The National Natural Science Foundation of China (61261130587,61571332).
文摘This paper deals with the massive point cloud segmentation processing technology on the basis of machine vision, which is the second essential factor for the intelligent data processing of three dimensional conformation in digital photogrammetry. In this paper, multi-model fitting method is used to segment the point cloud according to the spatial distribution and spatial geometric structure of point clouds by fitting the point cloud into different geometric primitives models. Because point cloud usually possesses large amount of 3D points, which are uneven distributed over various complex structures, this paper proposes a point cloud segmentation method based on multi-model fitting. Firstly, the pre-segmentation of point cloud is conducted by using the clustering method based on density distribution. And then the follow fitting and segmentation are carried out by using the multi-model fitting method based on split and merging. For the plane and the arc surface, this paper uses different fitting methods, and finally realizing the indoor dense point cloud segmentation. The experimental results show that this method can achieve the automatic segmentation of the point cloud without setting the number of models in advance. Compared with the existing point cloud segmentation methods, this method has obvious advantages in segmentation effect and time cost, and can achieve higher segmentation accuracy. After processed by method proposed in this paper, the point cloud even with large-scale and complex structures can often be segmented into 3D geometric elements with finer and accurate model parameters, which can give rise to an accurate 3D conformation.