期刊文献+
共找到9,286篇文章
< 1 2 250 >
每页显示 20 50 100
Construction of multi-model ensemble prediction for ENSO based on neural network
1
作者 Yuan Ou Ting Liu Tao Lian 《Acta Oceanologica Sinica》 2025年第8期10-19,共10页
In this study,we conducted an experiment to construct multi-model ensemble(MME)predictions for the El Niño-Southern Oscillation(ENSO)using a neural network,based on hindcast data released from five coupled oceana... In this study,we conducted an experiment to construct multi-model ensemble(MME)predictions for the El Niño-Southern Oscillation(ENSO)using a neural network,based on hindcast data released from five coupled oceanatmosphere models,which exhibit varying levels of complexity.This nonlinear approach demonstrated extraordinary superiority and effectiveness in constructing ENSO MME.Subsequently,we employed the leave-one-out crossvalidation and the moving base methods to further validate the robustness of the neural network model in the formulation of ENSO MME.In conclusion,the neural network algorithm outperforms the conventional approach of assigning a uniform weight to all models.This is evidenced by an enhancement in correlation coefficients and reduction in prediction errors,which have the potential to provide a more accurate ENSO forecast. 展开更多
关键词 El Niño-Southern Oscillation(ENSO) multi-model ensemble mean neural network
在线阅读 下载PDF
Multi-model ensemble learning for battery state-of-health estimation:Recent advances and perspectives 被引量:2
2
作者 Chuanping Lin Jun Xu +4 位作者 Delong Jiang Jiayang Hou Ying Liang Zhongyue Zou Xuesong Mei 《Journal of Energy Chemistry》 2025年第1期739-759,共21页
The burgeoning market for lithium-ion batteries has stimulated a growing need for more reliable battery performance monitoring. Accurate state-of-health(SOH) estimation is critical for ensuring battery operational per... The burgeoning market for lithium-ion batteries has stimulated a growing need for more reliable battery performance monitoring. Accurate state-of-health(SOH) estimation is critical for ensuring battery operational performance. Despite numerous data-driven methods reported in existing research for battery SOH estimation, these methods often exhibit inconsistent performance across different application scenarios. To address this issue and overcome the performance limitations of individual data-driven models,integrating multiple models for SOH estimation has received considerable attention. Ensemble learning(EL) typically leverages the strengths of multiple base models to achieve more robust and accurate outputs. However, the lack of a clear review of current research hinders the further development of ensemble methods in SOH estimation. Therefore, this paper comprehensively reviews multi-model ensemble learning methods for battery SOH estimation. First, existing ensemble methods are systematically categorized into 6 classes based on their combination strategies. Different realizations and underlying connections are meticulously analyzed for each category of EL methods, highlighting distinctions, innovations, and typical applications. Subsequently, these ensemble methods are comprehensively compared in terms of base models, combination strategies, and publication trends. Evaluations across 6 dimensions underscore the outstanding performance of stacking-based ensemble methods. Following this, these ensemble methods are further inspected from the perspectives of weighted ensemble and diversity, aiming to inspire potential approaches for enhancing ensemble performance. Moreover, addressing challenges such as base model selection, measuring model robustness and uncertainty, and interpretability of ensemble models in practical applications is emphasized. Finally, future research prospects are outlined, specifically noting that deep learning ensemble is poised to advance ensemble methods for battery SOH estimation. The convergence of advanced machine learning with ensemble learning is anticipated to yield valuable avenues for research. Accelerated research in ensemble learning holds promising prospects for achieving more accurate and reliable battery SOH estimation under real-world conditions. 展开更多
关键词 Lithium-ion battery State-of-health estimation DATA-DRIVEN Machine learning ensemble learning ensemble diversity
在线阅读 下载PDF
PM_(2.5) concentration prediction system combining fuzzy information granulation and multi-model ensemble learning
3
作者 Yamei Chen Jianzhou Wang +1 位作者 Runze Li Jialu Gao 《Journal of Environmental Sciences》 2025年第10期332-345,共14页
With the rapid development of economy,air pollution caused by industrial expansion has caused serious harm to human health and social development.Therefore,establishing an effective air pollution concentration predict... With the rapid development of economy,air pollution caused by industrial expansion has caused serious harm to human health and social development.Therefore,establishing an effective air pollution concentration prediction system is of great scientific and practical significance for accurate and reliable predictions.This paper proposes a combination of pointinterval prediction system for pollutant concentration prediction by leveraging neural network,meta-heuristic optimization algorithm,and fuzzy theory.Fuzzy information granulation technology is used in data preprocessing to transform numerical sequences into fuzzy particles for comprehensive feature extraction.The golden Jackal optimization algorithm is employed in the optimization stage to fine-tune model hyperparameters.In the prediction stage,an ensemble learning method combines training results frommultiplemodels to obtain final point predictions while also utilizing quantile regression and kernel density estimation methods for interval predictions on the test set.Experimental results demonstrate that the combined model achieves a high goodness of fit coefficient of determination(R^(2))at 99.3% and a maximum difference between prediction accuracy mean absolute percentage error(MAPE)and benchmark model at 12.6%.This suggests that the integrated learning system proposed in this paper can provide more accurate deterministic predictions as well as reliable uncertainty analysis compared to traditionalmodels,offering practical reference for air quality early warning. 展开更多
关键词 Air pollution prediction Fuzzy information granulation Meta-heuristic optimization algorithm ensemble learning model Point interval prediction
原文传递
Validation of the effects of temperature simulated by multi-model ensemble and prediction of mean temperature changes for the next three decades in China
4
作者 Ke Liu Jie Pan +1 位作者 ShengCai Tao YinLong Xu 《Research in Cold and Arid Regions》 2012年第1期56-64,共9页
Using series of daily average temperature observations over the period of 1961-1999 of 701 meteorological stations in China, and simulated results of 20 global climate models (such as BCCR_BCM2.0, CGCM3T47) during t... Using series of daily average temperature observations over the period of 1961-1999 of 701 meteorological stations in China, and simulated results of 20 global climate models (such as BCCR_BCM2.0, CGCM3T47) during the same period as the observation, we validate and analyze the simulated results of the models by using three factor statistical method, achieve the results of mul- ti-model ensemble, test and verify the results of multi-model ensemble by using the observation data during the period of 1991-1999. Finally, we analyze changes of the annual mean temperature result of multi-mode ensemble prediction for the period of 2011-2040 under the emission scenarios A2, A1B and B 1. Analyzed results show that: (1) Global climate models can repro- duce Chinese regional spatial distribution of annual mean temperature, especially in low latitudes and eastern China. (2) With the factor of the trend of annual mean temperature changes in reference period, there is an obvious bias between the model and the observation. (3) Testing the result of multi-model ensemble during the period of 1991-1999, we can simulate the trend of temper- ature increase. Compared to observation, the result of different weighing multi-model ensemble prediction is better than the same weighing ensemble. (4) For the period of 20ll-2040, the growth of the annual mean temperature in China, which results from multi-mode ensemble prediction, is above 1℃. In the spatial distribution of annual mean temperature, under the emission scenarios of A2, A1B and B 1, the trend of growth in South China region is the smallest, the increment is less than or equals to 0.8℃; the trends in the northwestern region and south of the Qinghai-Tibet Plateau are the largest, the increment is more than 1℃. 展开更多
关键词 global climate model different weighing multi-model ensemble same weighing multi-model ensemble wanning
在线阅读 下载PDF
Statistical Downscaling for Multi-Model Ensemble Prediction of Summer Monsoon Rainfall in the Asia-Pacific Region Using Geopotential Height Field 被引量:42
5
作者 祝从文 Chung-Kyu PARK +1 位作者 Woo-Sung LEE Won-Tae YUN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第5期867-884,共18页
The 21-yr ensemble predictions of model precipitation and circulation in the East Asian and western North Pacific (Asia-Pacific) summer monsoon region (0°-50°N, 100° 150°E) were evaluated in ni... The 21-yr ensemble predictions of model precipitation and circulation in the East Asian and western North Pacific (Asia-Pacific) summer monsoon region (0°-50°N, 100° 150°E) were evaluated in nine different AGCM, used in the Asia-Pacific Economic Cooperation Climate Center (APCC) multi-model ensemble seasonal prediction system. The analysis indicates that the precipitation anomaly patterns of model ensemble predictions are substantially different from the observed counterparts in this region, but the summer monsoon circulations are reasonably predicted. For example, all models can well produce the interannual variability of the western North Pacific monsoon index (WNPMI) defined by 850 hPa winds, but they failed to predict the relationship between WNPMI and precipitation anomalies. The interannual variability of the 500 hPa geopotential height (GPH) can be well predicted by the models in contrast to precipitation anomalies. On the basis of such model performances and the relationship between the interannual variations of 500 hPa GPH and precipitation anomalies, we developed a statistical scheme used to downscale the summer monsoon precipitation anomaly on the basis of EOF and singular value decomposition (SVD). In this scheme, the three leading EOF modes of 500 hPa GPH anomaly fields predicted by the models are firstly corrected by the linear regression between the principal components in each model and observation, respectively. Then, the corrected model GPH is chosen as the predictor to downscale the precipitation anomaly field, which is assembled by the forecasted expansion coefficients of model 500 hPa GPH and the three leading SVD modes of observed precipitation anomaly corresponding to the prediction of model 500 hPa GPH during a 19-year training period. The cross-validated forecasts suggest that this downscaling scheme may have a potential to improve the forecast skill of the precipitation anomaly in the South China Sea, western North Pacific and the East Asia Pacific regions, where the anomaly correlation coefficient (ACC) has been improved by 0.14, corresponding to the reduced RMSE of 10.4% in the conventional multi-model ensemble (MME) forecast. 展开更多
关键词 summer monsoon precipitation multi-model ensemble prediction statistical downscaling forecast
在线阅读 下载PDF
STUDY OF THE MODIFICATION OF MULTI-MODEL ENSEMBLE SCHEMES FOR TROPICAL CYCLONE FORECASTS 被引量:10
6
作者 张涵斌 智协飞 +2 位作者 陈静 王亚男 王轶 《Journal of Tropical Meteorology》 SCIE 2015年第4期389-399,共11页
This study investigates multi-model ensemble forecasts of track and intensity of tropical cyclones over the western Pacific, based on forecast outputs from the China Meteorological Administration, European Centre for ... This study investigates multi-model ensemble forecasts of track and intensity of tropical cyclones over the western Pacific, based on forecast outputs from the China Meteorological Administration, European Centre for Medium-Range Weather Forecasts, Japan Meteorological Agency and National Centers for Environmental Prediction in the THORPEX Interactive Grand Global Ensemble(TIGGE) datasets. The multi-model ensemble schemes, namely the bias-removed ensemble mean(BREM) and superensemble(SUP), are compared with the ensemble mean(EMN) and single-model forecasts. Moreover, a new model bias estimation scheme is investigated and applied to the BREM and SUP schemes. The results showed that, compared with single-model forecasts and EMN, the multi-model ensembles of the BREM and SUP schemes can have smaller errors in most cases. However, there were also circumstances where BREM was less skillful than EMN, indicating that using a time-averaged error as model bias is not optimal. A new model bias estimation scheme of the biweight mean is introduced. Through minimizing the negative influence of singular errors, this scheme can obtain a more accurate model bias estimation and improve the BREM forecast skill. The application of the biweight mean in the bias calculation of SUP also resulted in improved skill. The results indicate that the modification of multi-model ensemble schemes through this bias estimation method is feasible. 展开更多
关键词 TIGGE data multi-model ensemble tropical cyclone biweight mean
在线阅读 下载PDF
Improving Multi-model Ensemble Probabilistic Prediction of Yangtze River Valley Summer Rainfall 被引量:5
7
作者 LI Fang LIN Zhongda 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第4期497-504,共8页
Seasonal prediction of summer rainfall over the Yangtze River valley(YRV) is valuable for agricultural and industrial production and freshwater resource management in China, but remains a major challenge. Earlier mu... Seasonal prediction of summer rainfall over the Yangtze River valley(YRV) is valuable for agricultural and industrial production and freshwater resource management in China, but remains a major challenge. Earlier multi-model ensemble(MME) prediction schemes for summer rainfall over China focus on single-value prediction, which cannot provide the necessary uncertainty information, while commonly-used ensemble schemes for probability density function(PDF) prediction are not adapted to YRV summer rainfall prediction. In the present study, an MME PDF prediction scheme is proposed based on the ENSEMBLES hindcasts. It is similar to the earlier Bayesian ensemble prediction scheme, but with optimization of ensemble members and a revision of the variance modeling of the likelihood function. The optimized ensemble members are regressed YRV summer rainfall with factors selected from model outputs of synchronous 500-h Pa geopotential height as predictors. The revised variance modeling of the likelihood function is a simple linear regression with ensemble spread as the predictor. The cross-validation skill of 1960–2002 YRV summer rainfall prediction shows that the new scheme produces a skillful PDF prediction, and is much better-calibrated, sharper, and more accurate than the earlier Bayesian ensemble and raw ensemble. 展开更多
关键词 probability density function seasonal prediction multi-model ensemble Yangtze River valley summer rainfall Bayesian scheme
在线阅读 下载PDF
A Bayesian Scheme for Probabilistic Multi-Model Ensemble Prediction of Summer Rainfall over the Yangtze River Valley 被引量:6
8
作者 Li Fang Zeng Qing-Cun Li Chao-Fan 《Atmospheric and Oceanic Science Letters》 2009年第5期314-319,共6页
A Bayesian probabilistic prediction scheme of the Yangtze River Valley (YRV) summer rainfall is proposed to combine forecast information from multi-model ensemble dataset provided by ENSEMBLES project.Due to the low f... A Bayesian probabilistic prediction scheme of the Yangtze River Valley (YRV) summer rainfall is proposed to combine forecast information from multi-model ensemble dataset provided by ENSEMBLES project.Due to the low forecast skill of rainfall in dynamic models,the time series of regressed YRV summer rainfall are selected as ensemble members in the new scheme,instead of commonly-used YRV summer rainfall simulated by models.Each time series of regressed YRV summer rainfall is derived from a simple linear regression.The predictor in each simple linear regression is the skillfully simulated circulation or surface temperature factor which is highly linear with the observed YRV summer rainfall in the training set.The high correlation between the ensemble mean of these regressed YRV summer rainfall and observation benefit extracting more sample information from the ensemble system.The results show that the cross-validated skill of the new scheme over the period of 1960 to 2002 is much higher than equally-weighted ensemble,multiple linear regression,and Bayesian ensemble with simulated YRV summer rainfall as ensemble members.In addition,the new scheme is also more skillful than reference forecasts (random forecast at a 0.01 significance level for ensemble mean and climatology forecast for probability density function). 展开更多
关键词 multi-model ensemble BAYESIAN PROBABILISTIC seasonal prediction
在线阅读 下载PDF
A Hybrid Neural Network Model for Marine Dissolved Oxygen Concentrations Time-Series Forecasting Based on Multi-Factor Analysis and a Multi-Model Ensemble 被引量:4
9
作者 Hui Liu Rui Yang +1 位作者 Zhu Duan Haiping Wu 《Engineering》 SCIE EI 2021年第12期1751-1765,共15页
Dissolved oxygen(DO)is an important indicator of aquaculture,and its accurate forecasting can effectively improve the quality of aquatic products.In this paper,a new DO hybrid forecasting model is proposed that includ... Dissolved oxygen(DO)is an important indicator of aquaculture,and its accurate forecasting can effectively improve the quality of aquatic products.In this paper,a new DO hybrid forecasting model is proposed that includes three stages:multi-factor analysis,adaptive decomposition,and an optimizationbased ensemble.First,considering the complex factors affecting DO,the grey relational(GR)degree method is used to screen out the environmental factors most closely related to DO.The consideration of multiple factors makes model fusion more effective.Second,the series of DO,water temperature,salinity,and oxygen saturation are decomposed adaptively into sub-series by means of the empirical wavelet transform(EWT)method.Then,five benchmark models are utilized to forecast the sub-series of EWT decomposition.The ensemble weights of these five sub-forecasting models are calculated by particle swarm optimization and gravitational search algorithm(PSOGSA).Finally,a multi-factor ensemble model for DO is obtained by weighted allocation.The performance of the proposed model is verified by timeseries data collected by the pacific islands ocean observing system(PacIOOS)from the WQB04 station at Hilo.The evaluation indicators involved in the experiment include the Nash–Sutcliffe efficiency(NSE),Kling–Gupta efficiency(KGE),mean absolute percent error(MAPE),standard deviation of error(SDE),and coefficient of determination(R^(2)).Example analysis demonstrates that:①The proposed model can obtain excellent DO forecasting results;②the proposed model is superior to other comparison models;and③the forecasting model can be used to analyze the trend of DO and enable managers to make better management decisions. 展开更多
关键词 Dissolved oxygen concentrations forecasting Time-series multi-step forecasting Multi-factor analysis Empirical wavelet transform decomposition multi-model optimization ensemble
在线阅读 下载PDF
Multi-Model Ensemble Deep Learning Method to Diagnose COVID-19 Using Chest Computed Tomography Images 被引量:1
10
作者 WANG Zhiming DONG Jingjing ZHANG Junpeng 《Journal of Shanghai Jiaotong university(Science)》 EI 2022年第1期70-80,共11页
Deep learning based analyses of computed tomography(CT)images contribute to automated diagnosis of COVID-19,and ensemble learning may commonly provide a better solution.Here,we proposed an ensemble learning method tha... Deep learning based analyses of computed tomography(CT)images contribute to automated diagnosis of COVID-19,and ensemble learning may commonly provide a better solution.Here,we proposed an ensemble learning method that integrates several component neural networks to jointly diagnose COVID-19.Two ensemble strategies are considered:the output scores of all component models that are combined with the weights adjusted adaptively by cost function back propagation;voting strategy.A database containing 8347 CT slices of COVID-19,common pneumonia and normal subjects was used as training and testing sets.Results show that the novel method can reach a high accuracy of 99.37%(recall:0.9981;precision:0.9893),with an increase of about 7% in comparison to single-component models.And the average test accuracy is 95.62%(recall:0.9587;precision:0.9559),with a corresponding increase of 5.2%.Compared with several latest deep learning models on the identical test set,our method made an accuracy improvement up to 10.88%.The proposed method may be a promising solution for the diagnosis of COVID-19. 展开更多
关键词 COVID-19 deep learning computed tomography(CT)images ensemble model convolutional neural network
原文传递
Multi-model ensemble forecasting of 10-m wind speed over eastern China based on machine learning optimization 被引量:1
11
作者 Ting Lei Jingjing Min +3 位作者 Chao Han Chen Qi Chenxi Jin Shuanglin Li 《Atmospheric and Oceanic Science Letters》 CSCD 2023年第5期95-101,共7页
风对人类活动和电力运行有重大影响,准确预报短期风速具有深远的社会和经济意义.基于中国东部100个站点,本研究首先评估了5个业务模式对10米风速的预报能力,日本气象厅JMA模式在减少预报误差方面表现最好.进一步,利用5种数值模式和多种... 风对人类活动和电力运行有重大影响,准确预报短期风速具有深远的社会和经济意义.基于中国东部100个站点,本研究首先评估了5个业务模式对10米风速的预报能力,日本气象厅JMA模式在减少预报误差方面表现最好.进一步,利用5种数值模式和多种机器学习方法,将动力和统计相结合,对每个站点分别进行了特征工程和机器学习算法优选,建立了10米风速多模式集成预报模型。针对24至96小时预报时长,将该方法的预报性能与基于岭回归的多模式集成和JMA单模式进行比较.结果表明,基于机器学习优选的多模型集成方法可以将JMA模式的预报误差降低39%以上,预报效果的提升在11月最明显.此外,该方法优于基于岭回归的多模式集成方法. 展开更多
关键词 风速 机器学习优选 集成预报 岭回归
在线阅读 下载PDF
Application of Satellite Rainfall Estimates in Quantitative Forecasting of Monthly Rainfall Using a Multi-Model Ensemble Approach,Kafue River Basin
12
作者 Miyanda M.Syabwengo Progress Nyanga Moses Chisola 《Atmospheric and Climate Sciences》 2025年第2期495-531,共37页
This study evaluates the reliability of North American Multi-Model Ensemble(NMME)models in forecasting monthly rainfall over the Kafue River Basin using a well-selected multi-model ensemble approach.Gridded monthly ra... This study evaluates the reliability of North American Multi-Model Ensemble(NMME)models in forecasting monthly rainfall over the Kafue River Basin using a well-selected multi-model ensemble approach.Gridded monthly rain-fall forecasts were derived from global NMME models and validated against satellite-based rainfall products(SRPs)over the basin.To establish a reliable gridded rainfall dataset,three SRPs—TAMSAT,CHIRPS,and ARC2—were assessed against observed station data.Historical data were divided into a calibration period(1983-2003)at the station level and a validation period(2004-2022)using gridded datasets.The NMME models—CMC2 CANSIPSv2,NASA-GEOSS2S,CANCM4i,GFDL-CM2p1,GFDL-CM2p5-FLOR-B01,GFDL-CM2p5,NCEP-CFSv2,and COLA-RSMAS-CCSM—were downscaled using the Canonical Correlation Analysis(CCA)algorithm and evaluated using Spearman’s correlation coefficient,mean bias,and root mean square error(RMSE).The Anomaly Correlation Coefficient(ACC)was used to assess fore-cast reliability.Results show that CHIRPS outperformed TAMSAT and ARC2 in representing observed rainfall and was used to generate a gridded time-se-ries dataset.NMME model performance improved when validated against gridded datasets rather than station-based point data.The ensemble forecast-ing approach demonstrated reliable monthly rainfall predictions for Decem-ber,January,and March(2004-2022).However,caution is advised when using NMME models for October and February,as these months exhibited negative ACC values(-1)over much of the basin.The study highlights spatial and tem-poral variability in the reliability of individual NMME models,emphasizing the importance of understanding model strengths and limitations for effective climate adaptation and water resource management. 展开更多
关键词 Satellite Rainfall Estimates Quantitative Forecasting Monthly Rainfall multi-model ensemble Kafue River Basin
在线阅读 下载PDF
RankXLAN:An explainable ensemble-based machine learning framework for biomarker detection,therapeutic target identification,and classification using transcriptomic and epigenomic stomach cancer data
13
作者 Kasmika Borah Himanish Shekhar Das +1 位作者 Mudassir Khan Saurav Mallik 《Medical Data Mining》 2026年第1期13-31,共19页
Background:Stomach cancer(SC)is one of the most lethal malignancies worldwide due to late-stage diagnosis and limited treatment.The transcriptomic,epigenomic,and proteomic,etc.,omics datasets generated by high-through... Background:Stomach cancer(SC)is one of the most lethal malignancies worldwide due to late-stage diagnosis and limited treatment.The transcriptomic,epigenomic,and proteomic,etc.,omics datasets generated by high-throughput sequencing technology have become prominent in biomedical research,and they reveal molecular aspects of cancer diagnosis and therapy.Despite the development of advanced sequencing technology,the presence of high-dimensionality in multi-omics data makes it challenging to interpret the data.Methods:In this study,we introduce RankXLAN,an explainable ensemble-based multi-omics framework that integrates feature selection(FS),ensemble learning,bioinformatics,and in-silico validation for robust biomarker detection,potential therapeutic drug-repurposing candidates’identification,and classification of SC.To enhance the interpretability of the model,we incorporated explainable artificial intelligence(SHapley Additive exPlanations analysis),as well as accuracy,precision,F1-score,recall,cross-validation,specificity,likelihood ratio(LR)+,LR−,and Youden index results.Results:The experimental results showed that the top four FS algorithms achieved improved results when applied to the ensemble learning classification model.The proposed ensemble model produced an area under the curve(AUC)score of 0.994 for gene expression,0.97 for methylation,and 0.96 for miRNA expression data.Through the integration of bioinformatics and ML approach of the transcriptomic and epigenomic multi-omics dataset,we identified potential marker genes,namely,UBE2D2,HPCAL4,IGHA1,DPT,and FN3K.In-silico molecular docking revealed a strong binding affinity between ANKRD13C and the FDA-approved drug Everolimus(binding affinity−10.1 kcal/mol),identifying ANKRD13C as a potential therapeutic drug-repurposing target for SC.Conclusion:The proposed framework RankXLAN outperforms other existing frameworks for serum biomarker identification,therapeutic target identification,and SC classification with multi-omics datasets. 展开更多
关键词 stomach cancer BIOINFORMATICS ensemble learning classifier BIOMARKER targets
在线阅读 下载PDF
Multi-Model Ensemble Projection of Precipitation Changes over China under Global Warming of 1.5 and 2℃ with Consideration of Model Performance and Independence 被引量:7
14
作者 Tong LI Zhihong JIANG +1 位作者 Lilong ZHAO Laurent LI 《Journal of Meteorological Research》 SCIE CSCD 2021年第1期184-197,共14页
A weighting scheme jointly considering model performance and independence(PI-based weighting scheme) is employed to deal with multi-model ensemble prediction of precipitation over China from 17 global climate models. ... A weighting scheme jointly considering model performance and independence(PI-based weighting scheme) is employed to deal with multi-model ensemble prediction of precipitation over China from 17 global climate models. Four precipitation metrics on mean and extremes are used to evaluate the model performance and independence. The PIbased scheme is also compared with a rank-based weighting scheme and the simple arithmetic mean(AM) scheme. It is shown that the PI-based scheme achieves notable improvements in western China, with biases decreasing for all parameters. However, improvements are small and almost insignificant in eastern China. After calibration and validation, the scheme is used for future precipitation projection under the 1.5 and 2℃ global warming targets(above preindustrial level). There is a general tendency to wetness for most regions in China, especially in terms of extreme precipitation. The PI scheme shows larger inhomogeneity in spatial distribution. For the total precipitation PRCPTOT(95 th percentile extreme precipitation R95 P), the land fraction for a change larger than 10%(20%) is 22.8%(53.4%)in PI, while 13.3%(36.8%) in AM, under 2℃ global warming. Most noticeable increase exists in central and east parts of western China. 展开更多
关键词 model performance and independence multi-model ensemble mean and extreme precipitation future projection 1.5 and 2℃global warming
原文传递
Intercomparison of multi-model ensemble-processing strategies within a consistent framework for climate projection in China 被引量:4
15
作者 Huanhuan ZHU Zhihong JIANG +5 位作者 Laurent LI Wei LI Sheng JIANG Panyu ZHOU Weihao ZHAO Tong LI 《Science China Earth Sciences》 SCIE EI CAS CSCD 2023年第9期2125-2141,共17页
Climate change adaptation and relevant policy-making need reliable projections of future climate.Methods based on multi-model ensemble are generally considered as the most efficient way to achieve the goal.However,the... Climate change adaptation and relevant policy-making need reliable projections of future climate.Methods based on multi-model ensemble are generally considered as the most efficient way to achieve the goal.However,their efficiency varies and inter-comparison is a challenging task,as they use a variety of target variables,geographic regions,time periods,or model pools.Here,we construct and use a consistent framework to evaluate the performance of five ensemble-processing methods,i.e.,multimodel ensemble mean(MME),rank-based weighting(RANK),reliability ensemble averaging(REA),climate model weighting by independence and performance(ClimWIP),and Bayesian model averaging(BMA).We investigate the annual mean temperature(Tav)and total precipitation(Prcptot)changes(relative to 1995–2014)over China and its seven subregions at 1.5 and 2℃warming levels(relative to pre-industrial).All ensemble-processing methods perform better than MME,and achieve generally consistent results in terms of median values.But they show different results in terms of inter-model spread,served as a measure of uncertainty,and signal-to-noise ratio(SNR).ClimWIP is the most optimal method with its good performance in simulating current climate and in providing credible future projections.The uncertainty,measured by the range of 10th–90th percentiles,is reduced by about 30%for Tav,and 15%for Prcptot in China,with a certain variation among subregions.Based on ClimWIP,and averaged over whole China under 1.5/2℃global warming levels,Tav increases by about 1.1/1.8℃(relative to 1995–2014),while Prcptot increases by about 5.4%/11.2%,respectively.Reliability of projections is found dependent on investigated regions and indices.The projection for Tav is credible across all regions,as its SNR is generally larger than 2,while the SNR is lower than 1 for Prcptot over most regions under 1.5℃warming.The largest warming is found in northeastern China,with increase of 1.3(0.6–1.7)/2.0(1.4–2.6)℃(ensemble’s median and range of the 10th–90th percentiles)under 1.5/2℃warming,followed by northern and northwestern China.The smallest but the most robust warming is in southwestern China,with values exceeding 0.9(0.6–1.1)/1.5(1.1–1.7)℃.The most robust projection and largest increase is achieved in northwestern China for Prcptot,with increase of 9.1%(–1.6–24.7%)/17.9%(0.5–36.4%)under 1.5/2℃warming.Followed by northern China,where the increase is 6.0%(–2.6–17.8%)/11.8%(2.4–25.1%),respectively.The precipitation projection is of large uncertainty in southwestern China,even with uncertain sign of variation.For the additional half-degree warming,Tav increases more than 0.5℃throughout China.Almost all regions witness an increase of Prcptot,with the largest increase in northwestern China. 展开更多
关键词 multi-model ensemble simulation ensemble-processing strategy Global warming targets Climate projection uncertainty assessment Regional climate change in China
原文传递
Probabilistic Seasonal Prediction of Summer Rainfall over East China Based on Multi-Model Ensemble Schemes 被引量:2
16
作者 李芳 《Acta meteorologica Sinica》 SCIE 2011年第3期283-292,共10页
The skill of probability density function (PDF) prediction of summer rainfall over East China using optimal ensemble schemes is evaluated based on the precipitation data from five coupled atmosphere-ocean general ci... The skill of probability density function (PDF) prediction of summer rainfall over East China using optimal ensemble schemes is evaluated based on the precipitation data from five coupled atmosphere-ocean general circulation models that participate in the ENSEMBLES project. The optimal ensemble scheme in each region is the scheme with the highest skill among the four commonly-used ones: the equally-weighted ensemble (EE), EE for calibrated model-simulations (Cali-EE), the ensemble scheme based on multiple linear regression analysis (MLR), and the Bayesian ensemble scheme (Bayes). The results show that the optimal ensemble scheme is the Bayes in the southern part of East China; the Cali-EE in the Yangtze River valley, the Yangtze-Huaihe River basin, and the central part of northern China; and the MLR in the eastern part of northern China. Their PDF predictions are well calibrated, and are sharper than or have approximately equal interval-width to the climatology prediction. In all regions, these optimal ensemble schemes outperform the climatology prediction, indicating that current commonly-used multi-model ensemble schemes are able to produce skillful PDF prediction of summer rainfall over East China, even though more information for other model variables is not derived. 展开更多
关键词 multi-model ensemble UNCERTAINTY probability density function seasonal prediction RAINFALL
在线阅读 下载PDF
Verification of Seasonal Prediction by the Upgraded China Multi-Model Ensemble Prediction System (CMMEv2.0) 被引量:2
17
作者 Jie WU Hong-Li REN +15 位作者 Jianghua WAN Jingpeng LIU Jinqing ZUO Changzheng LIU Ying LIU Yu NIE Chongbo ZHAO Li GUO Bo LU Lijuan CHEN Qing BAO Jingzhi SU Lin WANG Jing-Jia LUO Xiaolong JIA Qingchen CHAO 《Journal of Meteorological Research》 SCIE CSCD 2024年第5期880-900,共21页
Based on a combination of six Chinese climate models and three international operational models,the China multimodel ensemble(CMME)prediction system has been upgraded into its version 2(CMMEv2.0)at the National Climat... Based on a combination of six Chinese climate models and three international operational models,the China multimodel ensemble(CMME)prediction system has been upgraded into its version 2(CMMEv2.0)at the National Climate Centre(NCC)of the China Meteorological Administration(CMA)by including new model members and expanding prediction products.A comprehensive assessment of the performance of the upgraded CMME during its hindcast(1993–2016)and real-time prediction(2021–present)periods is conducted in this study.The results demonstrate that CMMEv2.0 outperforms all the individual models by capturing more realistic equatorial sea surface temperature(SST)variability.It exhibits better prediction skills for precipitation and 2-m temperature anomalies,and the improvements in prediction skill of CMMEv2.0 are significant over East Asia.The superiority of CMMEv2.0 can be attributed to its better projection of El Niño–Southern Oscillation(ENSO;with the temporal correlation coefficient score for Niño3.4 index reaching 0.87 at 6-month lead)and ENSO-related teleconnections.As for the real-time prediction in recent three years,CMMEv2.0 has also yielded relatively stable skills;it successfully predicted the primary rainbelt over northern China in summers of 2021–2023 and the warm conditions in winters of 2022/2023.Beyond that,ensemble sampling experiments indicate that the CMMEv2.0 skills become saturated after the ensemble model number increased to 5–6,indicating that selection of only an optimal subgroup of ensemble models could benefit the prediction performance,especially over the extratropics,yet the underlying reasons await future investigation. 展开更多
关键词 China multi-model ensemble(CMME)prediction system predictability source El Niño-Southern Oscillation(ENSO) real-time forecast VERIFICATION
原文传递
The China Multi-Model Ensemble Prediction System and Its Application to Flood-Season Prediction in 2018 被引量:24
18
作者 Hong-Li REN Yujie WU +9 位作者 Qing BAO Jiehua MA Changzheng LIU Jianghua WAN Qiaoping LI Xiaofei WU Ying LIU Ben TIAN Joshua-Xiouhua FU Jianqi SUN 《Journal of Meteorological Research》 SCIE CSCD 2019年第3期540-552,共13页
Multi-model ensemble prediction is an effective approach for improving the prediction skill short-term climate prediction and evaluating related uncertainties. Based on a combination of localized operation outputs of ... Multi-model ensemble prediction is an effective approach for improving the prediction skill short-term climate prediction and evaluating related uncertainties. Based on a combination of localized operation outputs of Chinese climate models and imported forecast data of some international operational models, the National Climate Center of the China Meteorological Administration has established the China multi-model ensemble prediction system version 1.0 (CMMEv1.0) for monthly-seasonal prediction of primary climate variability modes and climate elements. We verified the real-time forecasts of CMMEv1.0 for the 2018 flood season (June-August) starting from March 2018 and evaluated the 1991-2016 hindcasts of CMMEv1.0. The results show that CMMEv1.0 has a significantly high prediction skill for global sea surface temperature (SST) anomalies, especially for the El Nino-Southern Oscillation (ENSO) in the tropical central-eastern Pacific. Additionally, its prediction skill for the North Atlantic SST triple (NAST) mode is high, but is relatively low for the Indian Ocean Dipole (IOD) mode. Moreover, CMMEv1.0 has high skills in predicting the western Pacific subtropical high (WPSH) and East Asian summer monsoon (EASM) in the June-July-August (JJA) season. The JJA air temperature in the CMMEv1.0 is predicted with a fairly high skill in most regions of China, while the JJA precipitation exhibits some skills only in northwestern and eastern China. For real-time forecasts in March-August 2018, CMMEv1.0 has accurately predicted the ENSO phase transition from cold to neutral in the tropical central-eastern Pacific and captures evolutions of the NAST and IOD indices in general. The system has also captured the main features of the summer WPSH and EASM indices in 2018, except that the predicted EASM is slightly weaker than the observed. Furthermore, CMMEv1.0 has also successfully predicted warmer air temperatures in northern China and captured the primary rainbelt over northern China, except that it predicted much more precipitation in the middle and lower reaches of the Yangtze River than observation. 展开更多
关键词 multi-model ensemble China multi-model ensemble PREDICTION system (CMME) real-time FORECAST SKILL assessment
原文传递
Landslide Susceptibility Mapping Using RBFN-Based Ensemble Machine Learning Models 被引量:1
19
作者 Duc-Dam Nguyen Nguyen Viet Tiep +5 位作者 Quynh-Anh Thi Bui Hiep Van Le Indra Prakash Romulus Costache Manish Pandey Binh Thai Pham 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期467-500,共34页
This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble lear... This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making. 展开更多
关键词 Landslide susceptibility map spatial analysis ensemble modelling information values(IV)
在线阅读 下载PDF
Ensemble Simulation of Land Evapotranspiration in China Based on a Multi-Forcing and Multi-Model Approach 被引量:6
20
作者 Jianguo LIU Binghao JIA +1 位作者 Zhenghui XIE Chunxiang SHI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第6期673-684,共12页
In order to reduce the uncertainty of offline land surface model (LSM) simulations of land evapotranspiration (ET), we used ensemble simulations based on three meteorological forcing datasets [Princeton, ITPCAS (... In order to reduce the uncertainty of offline land surface model (LSM) simulations of land evapotranspiration (ET), we used ensemble simulations based on three meteorological forcing datasets [Princeton, ITPCAS (Institute of Tibetan Plateau Research, Chinese Academy of Sciences), Qian] and four LSMs (BATS, VIC, CLM3.0 and CLM3.5), to explore the trends and spatiotemporal characteristics of ET, as well as the spatiotemporal pattern of ET in response to climate factors over China's Mainland during 1982-2007. The results showed that various simulations of each member and their arithmetic mean (EnsAVlean) could capture the spatial distribution and seasonal pattern of ET sufficiently well, where they exhibited more significant spatial and seasonal variation in the ET compared with observation-based ET estimates (Obs_MTE). For the mean annual ET, we found that the BATS forced by Princeton forcing overestimated the annual mean ET compared with Obs_MTE for most of the basins in China, whereas the VIC forced by Princeton forcing showed underestimations. By contrast, the Ens_Mean was closer to Obs_MTE, although the results were underestimated over Southeast China. Furthermore, both the Obs_MTE and Ens_Mean exhibited a significant increasing trend during 1982-98; whereas after 1998, when the last big EI Nifio event occurred, the Ens_Mean tended to decrease significantly between 1999 and 2007, although the change was not significant for Obs_MTE. Changes in air temperature and shortwave radiation played key roles in the long-term variation in ET over the humid area of China, but precipitation mainly controlled the long-term variation in ET in arid and semi-arid areas of China. 展开更多
关键词 land evapotranspiration ensemble simulations multi-forcing and multi-model approach spatiotemporal varia-tion uncertainty
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部