期刊文献+
共找到9,150篇文章
< 1 2 250 >
每页显示 20 50 100
Learning-Based Delay Sensitive and Reliable Traffic Adaptation for DC-PLC and 5G Integrated Multi-Mode Heterogeneous Networks
1
作者 Tian Gexing Wang Ruiqiuyu +6 位作者 Pan Chao Zhou Zhenyu Yang Junzhong Zhao Chenkai Chen Bei Yang Sen Shahid Mumtaz 《China Communications》 2025年第4期65-80,共16页
Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power li... Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power line communication(DC-PLC)enables real-time data transmission on DC power lines.With traffic adaptation,DC-PLC can be integrated with other complementary media such as 5G to reduce transmission delay and improve reliability.However,traffic adaptation for DC-PLC and 5G integration still faces the challenges such as coupling between traffic admission control and traffic partition,dimensionality curse,and the ignorance of extreme event occurrence.To address these challenges,we propose a deep reinforcement learning(DRL)-based delay sensitive and reliable traffic adaptation algorithm(DSRTA)to minimize the total queuing delay under the constraints of traffic admission control,queuing delay,and extreme events occurrence probability.DSRTA jointly optimizes traffic admission control and traffic partition,and enables learning-based intelligent traffic adaptation.The long-term constraints are incorporated into both state and bound of drift-pluspenalty to achieve delay awareness and enforce reliability guarantee.Simulation results show that DSRTA has lower queuing delay and more reliable quality of service(QoS)guarantee than other state-of-the-art algorithms. 展开更多
关键词 DC-PLC and 5G integration multi-mode heterogeneous networks traffic adaptation traffic admission control traffic partition
在线阅读 下载PDF
Recurrent MAPPO for Joint UAV Trajectory and Traffic Offloading in Space-Air-Ground Integrated Networks
2
作者 Zheyuan Jia Fenglin Jin +1 位作者 Jun Xie Yuan He 《Computers, Materials & Continua》 2026年第1期447-461,共15页
This paper investigates the traffic offloading optimization challenge in Space-Air-Ground Integrated Networks(SAGIN)through a novel Recursive Multi-Agent Proximal Policy Optimization(RMAPPO)algorithm.The exponential g... This paper investigates the traffic offloading optimization challenge in Space-Air-Ground Integrated Networks(SAGIN)through a novel Recursive Multi-Agent Proximal Policy Optimization(RMAPPO)algorithm.The exponential growth of mobile devices and data traffic has substantially increased network congestion,particularly in urban areas and regions with limited terrestrial infrastructure.Our approach jointly optimizes unmanned aerial vehicle(UAV)trajectories and satellite-assisted offloading strategies to simultaneously maximize data throughput,minimize energy consumption,and maintain equitable resource distribution.The proposed RMAPPO framework incorporates recurrent neural networks(RNNs)to model temporal dependencies in UAV mobility patterns and utilizes a decentralized multi-agent reinforcement learning architecture to reduce communication overhead while improving system robustness.The proposed RMAPPO algorithm was evaluated through simulation experiments,with the results indicating that it significantly enhances the cumulative traffic offloading rate of nodes and reduces the energy consumption of UAVs. 展开更多
关键词 Space-air-ground integrated networks UAV traffic offloading reinforcement learning
在线阅读 下载PDF
TCM network pharmacology:new perspective integrating network target with artificial intelligence and multi-modal multi-omics technologies 被引量:1
3
作者 Ziyi Wang Tingyu Zhang +1 位作者 Boyang Wang Shao Li 《Chinese Journal of Natural Medicines》 2025年第11期1425-1434,共10页
Traditional Chinese medicine(TCM)demonstrates distinctive advantages in disease prevention and treatment.However,analyzing its biological mechanisms through the modern medical research paradigm of“single drug,single ... Traditional Chinese medicine(TCM)demonstrates distinctive advantages in disease prevention and treatment.However,analyzing its biological mechanisms through the modern medical research paradigm of“single drug,single target”presents significant challenges due to its holistic approach.Network pharmacology and its core theory of network targets connect drugs and diseases from a holistic and systematic perspective based on biological networks,overcoming the limitations of reductionist research models and showing considerable value in TCM research.Recent integration of network target computational and experimental methods with artificial intelligence(AI)and multi-modal multi-omics technologies has substantially enhanced network pharmacology methodology.The advancement in computational and experimental techniques provides complementary support for network target theory in decoding TCM principles.This review,centered on network targets,examines the progress of network target methods combined with AI in predicting disease molecular mechanisms and drug-target relationships,alongside the application of multi-modal multi-omics technologies in analyzing TCM formulae,syndromes,and toxicity.Looking forward,network target theory is expected to incorporate emerging technologies while developing novel approaches aligned with its unique characteristics,potentially leading to significant breakthroughs in TCM research and advancing scientific understanding and innovation in TCM. 展开更多
关键词 network pharmacology Traditional Chinese medicine network target Artificial intelligence multi-modAL Multi-omics
原文传递
TMC-GCN: Encrypted Traffic Mapping Classification Method Based on Graph Convolutional Networks 被引量:1
4
作者 Baoquan Liu Xi Chen +2 位作者 Qingjun Yuan Degang Li Chunxiang Gu 《Computers, Materials & Continua》 2025年第2期3179-3201,共23页
With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based... With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based on GNN can deal with encrypted traffic well. However, existing GNN-based approaches ignore the relationship between client or server packets. In this paper, we design a network traffic topology based on GCN, called Flow Mapping Graph (FMG). FMG establishes sequential edges between vertexes by the arrival order of packets and establishes jump-order edges between vertexes by connecting packets in different bursts with the same direction. It not only reflects the time characteristics of the packet but also strengthens the relationship between the client or server packets. According to FMG, a Traffic Mapping Classification model (TMC-GCN) is designed, which can automatically capture and learn the characteristics and structure information of the top vertex in FMG. The TMC-GCN model is used to classify the encrypted traffic. The encryption stream classification problem is transformed into a graph classification problem, which can effectively deal with data from different data sources and application scenarios. By comparing the performance of TMC-GCN with other classical models in four public datasets, including CICIOT2023, ISCXVPN2016, CICAAGM2017, and GraphDapp, the effectiveness of the FMG algorithm is verified. The experimental results show that the accuracy rate of the TMC-GCN model is 96.13%, the recall rate is 95.04%, and the F1 rate is 94.54%. 展开更多
关键词 Encrypted traffic classification deep learning graph neural networks multi-layer perceptron graph convolutional networks
在线阅读 下载PDF
NetST:Network Encrypted Traffic Classification Based on Swin Transformer
5
作者 Jianwei Zhang Hongying Zhao +2 位作者 Yuan Feng Zengyu Cai Liang Zhu 《Computers, Materials & Continua》 2025年第9期5279-5298,共20页
Network traffic classification is a crucial research area aimed at improving quality of service,simplifying network management,and enhancing network security.To address the growing complexity of cryptography,researche... Network traffic classification is a crucial research area aimed at improving quality of service,simplifying network management,and enhancing network security.To address the growing complexity of cryptography,researchers have proposed various machine learning and deep learning approaches to tackle this challenge.However,existing mainstream methods face several general issues.On one hand,the widely used Transformer architecture exhibits high computational complexity,which negatively impacts its efficiency.On the other hand,traditional methods are often unreliable in traffic representation,frequently losing important byte information while retaining unnecessary biases.To address these problems,this paper introduces the Swin Transformer architecture into the domain of network traffic classification and proposes the NetST(Network Swin Transformer)model.This model improves the Swin Transformer to better accommodate the characteristics of network traffic,effectively addressing efficiency issues.Furthermore,this paper presents a traffic representation scheme designed to extract meaningful information from large volumes of traffic while minimizing bias.We integrate four datasets relevant to network traffic classification for our experiments,and the results demonstrate that NetST achieves a high accuracy rate while maintaining low memory usage. 展开更多
关键词 traffic classification encrypted network traffic Swin Transformer network management deep learning
在线阅读 下载PDF
The Stability of Multi-modal Traffic Network
6
作者 HAN Ling-Hui Sun Hui-Jun +2 位作者 ZHU Cheng-Juan WU Jian-Jun JIA Bin 《Communications in Theoretical Physics》 SCIE CAS CSCD 2013年第7期48-54,共7页
There is an explicit and implicit assumption in multimodal traffic equilibrium models, that is, if the equilibrium exists, then it will also occur. The assumption is very idealized; in fact, it may be shown that the q... There is an explicit and implicit assumption in multimodal traffic equilibrium models, that is, if the equilibrium exists, then it will also occur. The assumption is very idealized; in fact, it may be shown that the quite contrary could happen, because in multimodal traffic network, especially in mixed traffic conditions the interaction among traffic modes is asymmetric and the asymmetric interaction may result in the instability of traffic system. In this paper, to study the stability of multimodal traffic system, we respectively present the travel cost function in mixed traffic conditions and in traffic network with dedicated bus lanes. Based on a day-to-day dynamical model, we study the evolution of daily route choice of travelers in multimodal traffic network using 10000 random initial values for different cases. From the results of simulation, it can be concluded that the asymmetric interaction between the cars and buses in mixed traffic conditions can lead the traffic system to instability when traffic demand is larger. We also study the effect of travelers' perception error on the stability of multimodal traffic network. Although the larger perception error can alleviate the effect of interaction between cars and buses and improve the stability of traffic system in mixed traffic conditions, the traffic system also become instable when the traffic demand is larger than a number. For all cases simulated in this study, with the same parameters, traffic system with dedicated bus lane has better stability for traffic demand than that in mixed traffic conditions. We also find that the network with dedicated bus lane has higher portion of travelers by bus than it of mixed traffic network. So it can be concluded that building dedicated bus lane can improve the stability of traffic system and attract more travelers to choose bus reducing the traffic congestion. 展开更多
关键词 multi-modal traffic network day-to-day dynamical model STABILITY
原文传递
Soft Resource Slicing for Industrial Mixed Traffic in 5G Networks
7
作者 Jingfang Ding Meng Zheng Haibin Yu 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期463-465,共3页
Dear Editor,This letter proposes a dynamic switching soft slicing strategy for industrial mixed traffic in 5G networks. Considering two types of traffic, periodic delay-sensitive (PDS) traffic and sporadic delay-toler... Dear Editor,This letter proposes a dynamic switching soft slicing strategy for industrial mixed traffic in 5G networks. Considering two types of traffic, periodic delay-sensitive (PDS) traffic and sporadic delay-tolerant (SDT) traffic, we design a dynamic switching strategy based on a traffic-Qo S-aware soft slicing (TQASS) scheme and a resource-efficiency-aware soft slicing (REASS) scheme. 展开更多
关键词 G networks industrial mixed traffic dynamic switching soft slicing strategy periodic delay sensitive traffic soft slicing dynamic switching g networks dynamic switching strategy
在线阅读 下载PDF
MSSTGCN: Multi-Head Self-Attention and Spatial-Temporal Graph Convolutional Network for Multi-Scale Traffic Flow Prediction
8
作者 Xinlu Zong Fan Yu +1 位作者 Zhen Chen Xue Xia 《Computers, Materials & Continua》 2025年第2期3517-3537,共21页
Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address ... Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address this problem, a Multi-head Self-attention and Spatial-Temporal Graph Convolutional Network (MSSTGCN) for multiscale traffic flow prediction is proposed. Firstly, to capture the hidden traffic periodicity of traffic flow, traffic flow is divided into three kinds of periods, including hourly, daily, and weekly data. Secondly, a graph attention residual layer is constructed to learn the global spatial features across regions. Local spatial-temporal dependence is captured by using a T-GCN module. Thirdly, a transformer layer is introduced to learn the long-term dependence in time. A position embedding mechanism is introduced to label position information for all traffic sequences. Thus, this multi-head self-attention mechanism can recognize the sequence order and allocate weights for different time nodes. Experimental results on four real-world datasets show that the MSSTGCN performs better than the baseline methods and can be successfully adapted to traffic prediction tasks. 展开更多
关键词 Graph convolutional network traffic flow prediction multi-scale traffic flow spatial-temporal model
在线阅读 下载PDF
Graph Neural Network-Assisted Lion Swarm Optimization for Traffic Congestion Prediction in Intelligent Urban Mobility Systems
9
作者 Meshari D.Alanazi Gehan Elsayed +2 位作者 Turki M.Alanazi Anis Sahbani Amr Yousef 《Computer Modeling in Engineering & Sciences》 2025年第11期2277-2309,共33页
Traffic congestion plays a significant role in intelligent transportation systems(ITS)due to rapid urbanization and increased vehicle concentration.The congestion is dependent on multiple factors,such as limited road ... Traffic congestion plays a significant role in intelligent transportation systems(ITS)due to rapid urbanization and increased vehicle concentration.The congestion is dependent on multiple factors,such as limited road occupancy and vehicle density.Therefore,the transportation system requires an effective prediction model to reduce congestion issues in a dynamic environment.Conventional prediction systems face difficulties in identifying highly congested areas,which leads to reduced prediction accuracy.The problem is addressed by integrating Graph Neural Networks(GNN)with the Lion Swarm Optimization(LSO)framework to tackle the congestion prediction problem.Initially,the traffic information is collected and processed through a normalization process to scale the data and mitigate issues of overfitting and high dimensionality.Then,the traffic flow and temporal characteristic features are extracted to identify the connectivity of the road segment.From the connectivity and node relationship graph,modeling improves the overall prediction accuracy.During the analysis,the lion swarm optimization process utilizes the concepts of exploration and exploitation to understand the complex traffic dependencies,which helps predict high congestion on roads with minimal deviation errors.There are three core optimization phases:roaming,hunting,and migration,which enable the framework to make dynamic adjustments to enhance the predictions.The framework’s efficacy is evaluated using benchmark datasets,where the proposed work achieves 99.2%accuracy and minimizes the prediction deviation value by up to 2.5%compared to other methods.With the new framework,there was a more accurate prediction of realtime congestion,lower computational cost,and improved regulation of traffic flow.This system is easily implemented in intelligent transportation systems,smart cities,and self-driving cars,providing a robust and scalable solution for future traffic management. 展开更多
关键词 Intelligent transportation systems traffic congestion graph neural networks lion swarm optimization traffic dependencies smart cities
在线阅读 下载PDF
Graph Neural Networks Empowered Origin-Destination Learning for Urban Traffic Prediction
10
作者 Chuanting Zhang Guoqing Ma +1 位作者 Liang Zhang Basem Shihada 《CAAI Transactions on Intelligence Technology》 2025年第4期1062-1076,共15页
Urban traffic prediction with high precision is always the unremitting pursuit of intelligent transportation systems and is instrumental in bringing smart cities into reality.The fundamental challenges for traffic pre... Urban traffic prediction with high precision is always the unremitting pursuit of intelligent transportation systems and is instrumental in bringing smart cities into reality.The fundamental challenges for traffic prediction lie in the accurate modelling of spatial and temporal traffic dynamics.Existing approaches mainly focus on modelling the traffic data itself,but do not explore the traffic correlations implicit in origin-destination(OD)data.In this paper,we propose STOD-Net,a dynamic spatial-temporal OD feature-enhanced deep network,to simultaneously predict the in-traffic and out-traffic for each and every region of a city.We model the OD data as dynamic graphs and adopt graph neural networks in STOD-Net to learn a low-dimensional representation for each region.As per the region feature,we design a gating mechanism and operate it on the traffic feature learning to explicitly capture spatial correlations.To further capture the complicated spatial and temporal dependencies among different regions,we propose a novel joint feature,learning block in STOD-Net and transfer the hybrid OD features to each block to make the learning process spatiotemporal-aware.We evaluate the effectiveness of STOD-Net on two benchmark datasets,and experimental results demonstrate that it outperforms the state-of-the-art by approximately 5%in terms of prediction accuracy and considerably improves prediction stability up to 80%in terms of standard deviation. 展开更多
关键词 deep neural networks origin-destination learning spatial-temporal modeling traffic prediction
在线阅读 下载PDF
MLB-TR: Multi-Service Load Balancing Routing Algorithm for Traffic Return in Integrated Satellite-Terrestrial Networks
11
作者 Liu Chang Zhang Jiaxin +2 位作者 Chang Zhaoyang Zhang Xing Wang Wenbo 《China Communications》 2025年第10期60-71,共12页
In recent years,load balancing routing al-gorithms have been extensively studied in satellite net-works.Most existing studies focus on path selection and hop-count optimization for end-to-end transmis-sion,while overl... In recent years,load balancing routing al-gorithms have been extensively studied in satellite net-works.Most existing studies focus on path selection and hop-count optimization for end-to-end transmis-sion,while overlooking congestion issues on feeder links caused by the limited number and centralized distribution of ground stations.Hence,a multi-service routing algorithm called the Multi-service Load Bal-ancing Routing Algorithm for Traffic Return(MLB-TR)is proposed.Unlike traditional approaches,MLB-TR aims to achieve a broader and more comprehensive load balancing objective.Specifically,based on the service type,an appropriate landing satellite is first selected by considering factors such as shortest path hop count and satellite load.Then,a set of candidate paths from the source satellite to the selected landing satellite is computed.Finally,using the regional load balancing index as the optimization objective,the final transmission path is selected from the candidate path set.Simulation results show that the proposed algo-rithm outperforms the existing works. 展开更多
关键词 integrated satellite-terrestrial network landing satellites load balancing traffic return
在线阅读 下载PDF
Toward Intrusion Detection of Industrial Cyber-Physical System: A Hybrid Approach Based on System State and Network Traffic Abnormality Monitoring
12
作者 Junbin He Wuxia Zhang +2 位作者 Xianyi Liu Jinping Liu Guangyi Yang 《Computers, Materials & Continua》 2025年第7期1227-1252,共26页
The integration of cloud computing into traditional industrial control systems is accelerating the evolution of Industrial Cyber-Physical System(ICPS),enhancing intelligence and autonomy.However,this transition also e... The integration of cloud computing into traditional industrial control systems is accelerating the evolution of Industrial Cyber-Physical System(ICPS),enhancing intelligence and autonomy.However,this transition also expands the attack surface,introducing critical security vulnerabilities.To address these challenges,this article proposes a hybrid intrusion detection scheme for securing ICPSs that combines system state anomaly and network traffic anomaly detection.Specifically,an improved variation-Bayesian-based noise covariance-adaptive nonlinear Kalman filtering(IVB-NCA-NLKF)method is developed to model nonlinear system dynamics,enabling optimal state estimation in multi-sensor ICPS environments.Intrusions within the physical sensing system are identified by analyzing residual discrepancies between predicted and observed system states.Simultaneously,an adaptive network traffic anomaly detection mechanism is introduced,leveraging learned traffic patterns to detect node-and network-level anomalies through pattern matching.Extensive experiments on a simulated network control system demonstrate that the proposed framework achieves higher detection accuracy(92.14%)with a reduced false alarm rate(0.81%).Moreover,it not only detects known attacks and vulnerabilities but also uncovers stealthy attacks that induce system state deviations,providing a robust and comprehensive security solution for the safety protection of ICPS. 展开更多
关键词 Industrial cyber-physical systems network intrusion detection adaptive Kalman filter abnormal state monitoring network traffic abnormality monitoring
在线阅读 下载PDF
DMF: A Deep Multimodal Fusion-Based Network Traffic Classification Model
13
作者 Xiangbin Wang Qingjun Yuan +3 位作者 Weina Niu Qianwei Meng Yongjuan Wang Chunxiang Gu 《Computers, Materials & Continua》 2025年第5期2267-2285,共19页
With the rise of encrypted traffic,traditional network analysis methods have become less effective,leading to a shift towards deep learning-based approaches.Among these,multimodal learning-based classification methods... With the rise of encrypted traffic,traditional network analysis methods have become less effective,leading to a shift towards deep learning-based approaches.Among these,multimodal learning-based classification methods have gained attention due to their ability to leverage diverse feature sets from encrypted traffic,improving classification accuracy.However,existing research predominantly relies on late fusion techniques,which hinder the full utilization of deep features within the data.To address this limitation,we propose a novel multimodal encrypted traffic classification model that synchronizes modality fusion with multiscale feature extraction.Specifically,our approach performs real-time fusion of modalities at each stage of feature extraction,enhancing feature representation at each level and preserving inter-level correlations for more effective learning.This continuous fusion strategy improves the model’s ability to detect subtle variations in encrypted traffic,while boosting its robustness and adaptability to evolving network conditions.Experimental results on two real-world encrypted traffic datasets demonstrate that our method achieves a classification accuracy of 98.23% and 97.63%,outperforming existing multimodal learning-based methods. 展开更多
关键词 Deep fusion intrusion detection multimodal learning network traffic classification
在线阅读 下载PDF
Multi-Head Attention Enhanced Parallel Dilated Convolution and Residual Learning for Network Traffic Anomaly Detection
14
作者 Guorong Qi Jian Mao +2 位作者 Kai Huang Zhengxian You Jinliang Lin 《Computers, Materials & Continua》 2025年第2期2159-2176,共18页
Abnormal network traffic, as a frequent security risk, requires a series of techniques to categorize and detect it. Existing network traffic anomaly detection still faces challenges: the inability to fully extract loc... Abnormal network traffic, as a frequent security risk, requires a series of techniques to categorize and detect it. Existing network traffic anomaly detection still faces challenges: the inability to fully extract local and global features, as well as the lack of effective mechanisms to capture complex interactions between features;Additionally, when increasing the receptive field to obtain deeper feature representations, the reliance on increasing network depth leads to a significant increase in computational resource consumption, affecting the efficiency and performance of detection. Based on these issues, firstly, this paper proposes a network traffic anomaly detection model based on parallel dilated convolution and residual learning (Res-PDC). To better explore the interactive relationships between features, the traffic samples are converted into two-dimensional matrix. A module combining parallel dilated convolutions and residual learning (res-pdc) was designed to extract local and global features of traffic at different scales. By utilizing res-pdc modules with different dilation rates, we can effectively capture spatial features at different scales and explore feature dependencies spanning wider regions without increasing computational resources. Secondly, to focus and integrate the information in different feature subspaces, further enhance and extract the interactions among the features, multi-head attention is added to Res-PDC, resulting in the final model: multi-head attention enhanced parallel dilated convolution and residual learning (MHA-Res-PDC) for network traffic anomaly detection. Finally, comparisons with other machine learning and deep learning algorithms are conducted on the NSL-KDD and CIC-IDS-2018 datasets. The experimental results demonstrate that the proposed method in this paper can effectively improve the detection performance. 展开更多
关键词 network traffic anomaly detection multi-head attention parallel dilated convolution residual learning
在线阅读 下载PDF
Ensemble Encoder-Based Attack Traffic Classification for Secure 5G Slicing Networks
15
作者 Min-Gyu Kim Hwankuk Kim 《Computer Modeling in Engineering & Sciences》 2025年第5期2391-2415,共25页
This study proposes an efficient traffic classification model to address the growing threat of distributed denial-of-service(DDoS)attacks in 5th generation technology standard(5G)slicing networks.The proposed method u... This study proposes an efficient traffic classification model to address the growing threat of distributed denial-of-service(DDoS)attacks in 5th generation technology standard(5G)slicing networks.The proposed method utilizes an ensemble of encoder components from multiple autoencoders to compress and extract latent representations from high-dimensional traffic data.These representations are then used as input for a support vector machine(SVM)-based metadata classifier,enabling precise detection of attack traffic.This architecture is designed to achieve both high detection accuracy and training efficiency,while adapting flexibly to the diverse service requirements and complexity of 5G network slicing.The model was evaluated using the DDoS Datasets 2022,collected in a simulated 5G slicing environment.Experiments were conducted under both class-balanced and class-imbalanced conditions.In the balanced setting,the model achieved an accuracy of 89.33%,an F1-score of 88.23%,and an Area Under the Curve(AUC)of 89.45%.In the imbalanced setting(attack:normal 7:3),the model maintained strong robustness,=achieving a recall of 100%and an F1-score of 90.91%,demonstrating its effectiveness in diverse real-world scenarios.Compared to existing AI-based detection methods,the proposed model showed higher precision,better handling of class imbalance,and strong generalization performance.Moreover,its modular structure is well-suited for deployment in containerized network function(NF)environments,making it a practical solution for real-world 5G infrastructure.These results highlight the potential of the proposed approach to enhance both the security and operational resilience of 5G slicing networks. 展开更多
关键词 5G slicing networks attack traffic classification ensemble encoders autoencoder AI-based security
在线阅读 下载PDF
Meteorological and traffic effects on air pollutants using Bayesian networks and deep learning
16
作者 Yuan-Chien Lin Yu-Ting Lin +1 位作者 Cai-Rou Chen Chun-Yeh Lai 《Journal of Environmental Sciences》 2025年第6期54-70,共17页
Traffic emissions have become the major air pollution source in urban areas.Therefore,understanding the highly non-stational and complex impact of traffic factors on air quality is very important for building air qual... Traffic emissions have become the major air pollution source in urban areas.Therefore,understanding the highly non-stational and complex impact of traffic factors on air quality is very important for building air quality prediction models.Using real-world air pollutant data from Taipei City,this study integrates diverse factors,including traffic flow,speed,rainfall patterns,andmeteorological factors.We constructed a Bayesian network probabilitymodel based on rainfall events as a big data analysis framework to investigate understand traffic factor causality relationships and condition probabilities for meteorological factors and air pollutant concentrations.Generalized Additive Model(GAM)verified non-linear relationships between traffic factors and air pollutants.Consequently,we propose a long short term memory(LSTM)model to predict airborne pollutant concentrations.This study propose a new approach of air pollutants and meteorological variable analysis procedure by considering both rainfall amount and patterns.Results indicate improved air quality when controlling vehicle speed above 40 km/h and maintaining an average vehicle flow<1200 vehicles per hour.This study also classified rainfall events into four types depending on its characteristic.Wet deposition from varied rainfall types significantly affects air quality,with TypeⅠrainfall events(long-duration heavy rain)having the most pronounced impact.An LSTM model incorporating GAM and Bayesian network outcomes yields excellent performance,achieving correlation R^(2)>0.9 and 0.8 for first and second order air pollutants,i.e.,CO,NO,NO_(2),and NO_(x);and O_(3),PM_(10),and PM_(2.5),respectively. 展开更多
关键词 Air quality Rainfall pattern traffic emissions Generalized additive model Bayesian networks LSTM model
原文传递
Research on traffic flow prediction with multiscale temporal awareness and graph diffusion attention networks
17
作者 CAO Jie ZHANG Pengcheng +2 位作者 ZHANG Hong HOU Liang CHEN Zuohan 《High Technology Letters》 2025年第4期383-396,共14页
Precise traffic flow forecasting is essential for mitigating urban traffic congestion.However,it is difficult for existing methods to adequately capture the dynamic spatio-temporal characteristics and multiscale tempo... Precise traffic flow forecasting is essential for mitigating urban traffic congestion.However,it is difficult for existing methods to adequately capture the dynamic spatio-temporal characteristics and multiscale temporal dependencies of traffic flow.A traffic flow prediction model with multiscale temporal awareness and graph diffusion attention networks(MT-GDAN)is proposed to address these issues.Specifically,a graph diffusion attention module is constructed,which dynamically adjusts and calculates the weights of neighboring nodes in the graph structure using a random graph attention network(GAT)and captures the spatial characteristics of hidden nodes through an adaptive adjacency matrix,thus better exploiting the dynamic spatio-temporal properties of traffic flow.Secondly,a multiscale isometric convolutional network and bi-level routing attention are used to construct a multiscale temporal awareness module.The former extracts local information of traffic flow segments by convolution with different sizes of convolution kernels and then introduces isometric convolution to obtain the global temporal relationship between local features of traffic flow segments;the latter filters irrelevant spatio-temporal features at a coarse regional level and focuses locally on key points to more accurately capture the multiscale temporal dependencies of traffic flows.Experimental results reveal that the MT-GDAN model surpasses the mainstream baseline model in terms of forecasting accuracy and exhibits good prediction performance. 展开更多
关键词 intelligent transportation traffic flow prediction graph attention network multiscale isometric convolution bi-level routing attention
在线阅读 下载PDF
Multi⁃Step Short⁃Term Traffic Flow Prediction of Urban Road Network Based on ISTA⁃Transformer Model
18
作者 Leyao Xiao Qian Chen 《Journal of Harbin Institute of Technology(New Series)》 2025年第6期1-14,共14页
Short⁃term traffic flow prediction plays a crucial role in the planning of intelligent transportation systems.Nowadays,there is a large amount of traffic flow data generated from the monitoring devices of urban road n... Short⁃term traffic flow prediction plays a crucial role in the planning of intelligent transportation systems.Nowadays,there is a large amount of traffic flow data generated from the monitoring devices of urban road networks,which contains road network traffic information with high application value.In this study,an improved spatio⁃temporal attention transformer model(ISTA⁃transformer model)is proposed to provide a more accurate method for predicting multi⁃step short⁃term traffic flow based on monitoring data.By embedding a temporal attention layer and a spatial attention layer in the model,the model learns the relationship between traffic flows at different time intervals and different geographic locations,and realizes more accurate multi⁃step short⁃time flow prediction.Finally,we validate the superiority of the model with monitoring data spanning 15 days from 620 monitoring points in Qingdao,China.In the four time steps of prediction,the MAPE(Mean Absolute Percentage Error)values of ISTA⁃transformers prediction results are 0.22,0.29,0.37,and 0.38,respectively,and its prediction accuracy is usually better than that of six baseline models(Transformer,GRU,CNN,LSTM,Seq2Seq and LightGBM),which indicates that the proposed model in this paper always has a better ability to explain the prediction results with the time steps in the multi⁃step prediction. 展开更多
关键词 urban road network traffic flow prediction spatio⁃temporal feature ISTA⁃transformer model
在线阅读 下载PDF
Proactive traffic responsive control based on state-space neural network and extended Kalman filter 被引量:4
19
作者 过秀成 李岩 杨洁 《Journal of Southeast University(English Edition)》 EI CAS 2010年第3期466-470,共5页
The state-space neural network and extended Kalman filter model is used to directly predict the optimal timing plan that corresponds to futuristic traffic conditions in real time with the purposes of avoiding the lagg... The state-space neural network and extended Kalman filter model is used to directly predict the optimal timing plan that corresponds to futuristic traffic conditions in real time with the purposes of avoiding the lagging of the signal timing plans to traffic conditions. Utilizing the traffic conditions in current and former intervals, the network topology of the state-space neural network (SSNN), which is derived from the geometry of urban arterial routes, is used to predict the optimal timing plan corresponding to the traffic conditions in the next time interval. In order to improve the effectiveness of the SSNN, the extended Kalman filter (EKF) is proposed to train the SSNN instead of conventional approaches. Raw traffic data of the Guangzhou Road, Nanjing and the optimal signal timing plan generated by a multi-objective optimization genetic algorithm are applied to test the performance of the proposed model. The results indicate that compared with the SSNN and the BP neural network, the proposed model can closely match the optimal timing plans in futuristic states with higher efficiency. 展开更多
关键词 state-space neural network extended Kalman filter traffic responsive control timing plan traffic state prediction
在线阅读 下载PDF
MULTI-CLASS TRAFFIC QOS ROUTING FOR LEO SATELLITE NETWORKS 被引量:3
20
作者 蒋文娟 宗鹏 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第3期254-262,共9页
Due to the diversified demands of quality of service(QoS) in volume multimedia application, QoS routings for multiservice are becoming a research hotspot in low earth orbit(LEO) satellite networks. A novel QoS sat... Due to the diversified demands of quality of service(QoS) in volume multimedia application, QoS routings for multiservice are becoming a research hotspot in low earth orbit(LEO) satellite networks. A novel QoS satellite routing algorithm for multi-class traffic is proposed. The goal of the routing algorithm is to provide the distinct QoS for different traffic classes and improve the utilization of network resources. Traffic is classified into three classes and allocated priorities based on their QoS requirements, respectively. A priority queuing mechanism guarantees the algorithm to work better for high-priority classes. In order to control the congestion, a blocking probability analysis model is built up based on the Markov process theory. Finally, according to the classification link-cost metrics, routings for different classes are calculated with the distinct QoS requirments and the status of network resource. Simulations verify the performance of the routing algorithm at different time and in different regions, and results demonstrate that the algorithm has great advantages in terms of the average delay and the blocking probability. Meanwhile, the robustness issue is also discussed. 展开更多
关键词 low earth orbit satellite networks traffic classification routing algorithm quality of service traffic and topology model
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部