In this paper,we establish and study a single-species logistic model with impulsive age-selective harvesting.First,we prove the ultimate boundedness of the solutions of the system.Then,we obtain conditions for the asy...In this paper,we establish and study a single-species logistic model with impulsive age-selective harvesting.First,we prove the ultimate boundedness of the solutions of the system.Then,we obtain conditions for the asymptotic stability of the trivial solution and the positive periodic solution.Finally,numerical simulations are presented to validate our results.Our results show that age-selective harvesting is more conducive to sustainable population survival than non-age-selective harvesting.展开更多
To explore the formation mechanism of anisotropy in Ti-6Al-4V alloy fabricated by selective laser melting(SLM),the compressive mechanical properties,microhardness,microstructure,and crystallographic orientation of the...To explore the formation mechanism of anisotropy in Ti-6Al-4V alloy fabricated by selective laser melting(SLM),the compressive mechanical properties,microhardness,microstructure,and crystallographic orientation of the alloy across different planes were investigated.The anisotropy of SLM-fabricated Ti-6Al-4V alloys was analyzed,and the electron backscatter diffraction technique was used to investigate the influence of different grain types and orientations on the stress-strain distribution at various scales.Results reveal that in room-temperature compression tests at a strain rate of 10^(-3) s^(-1),both the compressive yield strength and microhardness vary along the deposition direction,indicating a certain degree of mechanical property anisotropy.The alloy exhibits a columnar microstructure;along the deposition direction,the grains appear equiaxed,and they have internal hexagonal close-packed(hcp)α/α'martensitic structure.α'phase has a preferential orientation approximately along the<0001>direction.Anisotropy arises from the high aspect ratio of columnar grains,along with the weak texture of the microstructure and low symmetry of the hcp crystal structure.展开更多
BACKGROUND Post-stroke depression(PSD)is associated with hypothalamic-pituitary-adrenal(HPA)axis dysfunction and neurotransmitter deficits.Selective serotonin reuptake inhibitors(SSRIs)are commonly used,but their effi...BACKGROUND Post-stroke depression(PSD)is associated with hypothalamic-pituitary-adrenal(HPA)axis dysfunction and neurotransmitter deficits.Selective serotonin reuptake inhibitors(SSRIs)are commonly used,but their efficacy is limited.This study investigated whether combining SSRIs with traditional Chinese medicine(TCM)Free San could enhance their therapeutic effects.AIM To evaluate the clinical efficacy and safety of combining SSRIs with Free San in treating PSD,and to assess its impact on HPA axis function.METHODS Ninety-two patients with PSD were enrolled and randomly divided into control groups(n=46)and study groups(n=46).The control group received the SSRI paroxetine alone,whereas the study group received paroxetine combined with Free San for 4 weeks.Hamilton Depression Scale and TCM syndrome scores were assessed before and after treatment.Serum serotonin,norepinephrine,cortisol,cor-ticotropin-releasing hormone,and adrenocorticotropic hormone were measured.The treatment responses and adverse reactions were recorded.RESULTS After treatment,the Hamilton Depression Scale and TCM syndrome scores were significantly lower in the study group than in the control group(P<0.05).Serum serotonin and norepinephrine levels were significantly higher in the study group than in the control group,whereas cortisol,corticotropin-releasing hormone,and adrenocorticotropic hormone levels were significantly lower(P<0.05).The total efficacy rates were 84.78%and 65.22%in the study and control groups,respectively(P<0.05).No significant differences in adverse reactions were observed between the two groups(P>0.05).CONCLUSION Combining SSRIs with Free San can enhance therapeutic efficacy,improve depressive symptoms,and regulate HPA axis function in patients with PSD with good safety and clinical application value.展开更多
Developing biomass platform compounds into high value-added chemicals is a key step in renewable resource utilization.Herein,we report porous carbon-supported Ni-ZnO nanoparticles catalyst(Ni-ZnO/AC)synthesized via lo...Developing biomass platform compounds into high value-added chemicals is a key step in renewable resource utilization.Herein,we report porous carbon-supported Ni-ZnO nanoparticles catalyst(Ni-ZnO/AC)synthesized via low-temperature coprecipitation,exhibiting excellent performance for the selective hydrogenation of 5-hydroxymethylfurfural(HMF).A linear correlation is first observed between solvent polarity(E_(T)(30))and product selectivity within both polar aprotic and protic solvent classes,suggesting that solvent properties play a vital role in directing reaction pathways.Among these,1,4-dioxane(aprotic)favors the formation of 2,5-bis(hydroxymethyl)furan(BHMF)with 97.5%selectivity,while isopropanol(iPrOH,protic)promotes 2,5-dimethylfuran production with up to 99.5%selectivity.Mechanistic investigations further reveal that beyond polarity,proton-donating ability is critical in facilitating hydrodeoxygenation.iPrOH enables a hydrogen shuttle mechanism where protons assist in hydroxyl group removal,lowering the activation barrier.In contrast,1,4-dioxane,lacking hydrogen bond donors,stabilizes BHMF and hinders further conversion.Density functional theory calculations confirm a lower activation energy in iPrOH(0.60 eV)compared to 1,4-dioxane(1.07 eV).This work offers mechanistic insights and a practical strategy for solvent-mediated control of product selectivity in biomass hydrogenation,highlighting the decisive role of solvent-catalyst-substrate interactions.展开更多
This research aims to study the bio-adsorption process of two dyes,Cibacron Green H3G(CG-H3G)and Terasil Red(TR),in a single system and to bring them closer to the industrial textile discharge by a binary mixture of t...This research aims to study the bio-adsorption process of two dyes,Cibacron Green H3G(CG-H3G)and Terasil Red(TR),in a single system and to bring them closer to the industrial textile discharge by a binary mixture of two dyes(TR+CG-H3G).The Cockle Shell(CS)was used as a natural bio-adsorbent.The characterizations of CS were investigated by Fourier transform infrared(FTIR),X-ray diffraction(XRD),scanning electron microscopy(SEM),energy-dispersive X-ray spectroscopy(EDX)and Brunauer–Emmett–Teller(BET).The adsorption potential of Cockle Shells was tested in two cases(single and binary system)and determined by:contact time(0–60 min),bio-adsorption dose(3–15 g/L),initial concentration(10–300 mg/L),temperature(22–61°C)and pH solution(2–12).The study of bio-adsorption(equilibrium and kinetics)was conducted at 22°C.The kinetic studies demon-strated that a pseudo-second-order adsorption mechanism had a good correlation coefficient(R2≥0.999).The Langmuir isotherm modeling provided a well-defined description of TR and CG-H3G bio-adsorption on cockle shells,exhibiting maximum capacities of 29.41 and 3.69 mg/g respectively at 22°C.The thermodynamic study shows that the reaction between the TR,CG-H3G dyes molecules and the bio-adsorbent is exothermic,spontaneous in the range of 22–31°C with the aleatory character decrease at the solid-liquid interface.The study of selectivity in single and binary systems has been performed under optimal operating conditions using the industrial textile rejection pH(pH=6.04).CG-H3G dye is found to have a higher selectivity than TR in single(0–60 min)and binary systems with a range of 6–45 min,as shown by the selectivity measurement.It was discovered that CS has the capability to remove both CG-H3G and TR dyes in both simple and binary systems,making it a superior bio-adsorbent.展开更多
The potential of 2-amino-1-propanol(AP)as a novel depressant in selectively floating ilmenite from titanaugite under weakly acidic conditions was investigated.Micro-flotation results show that AP significantly reduces...The potential of 2-amino-1-propanol(AP)as a novel depressant in selectively floating ilmenite from titanaugite under weakly acidic conditions was investigated.Micro-flotation results show that AP significantly reduces the recovery of titanaugite while having no evident impact on ilmenite flotation.Subsequent bench-scale flotation tests further confirm a remarkable improvement in separation efficiency upon the introduction of AP.Contact angle and adsorption tests reveal a stronger affinity of AP towards the titanaugite surface in comparison to ilmenite.Zeta potential measurements and X-ray photoelectron spectroscopy(XPS)analyses exhibit favorable adsorption characteristics of AP on titanaugite,resulting from a synergy of electrostatic attraction and chemical interaction.In contrast,electrostatic repulsion hinders any significant interaction between AP and the ilmenite surface.These findings highlight the potential of AP as a highly efficient depressant for ilmenite flotation,paving the way for reduced reliance on sulfuric acid in the industry.展开更多
Radioactive microspheres have demonstrated excellent therapeutic effects and good tolerance in the treatment of unresectable primary and secondary liver malignancies.This is attributed to precise embolization and pote...Radioactive microspheres have demonstrated excellent therapeutic effects and good tolerance in the treatment of unresectable primary and secondary liver malignancies.This is attributed to precise embolization and potent anti-tumor effect.However,certain limitations such as unstable loading,perfusion stasis,heterogeneous distribution,ectopic distribution,and insufficient dosage,restrict their clinical application.Herein,a novel personalized Y-90 carbon microsphere with high uniformity,high specific activity and high availability(^(90)Y-HUACM)is presented.It is synthesized through planar molecular complex adsorption and chemical deposition solidification.^(90)Y-HUACM exhibited controllable size,excellent biocompatibility,outstanding in vitro and in vivo stability.The radiolabeling efficiency of Y-90 exceeded 99%and the leaching rate of Y-90 is far below 0.1%.Furthermore,the excellent anti-tumor effect,nuclide loading stability,anti-reflux characteristics,precise embolization,and biosafety of^(90)Y-HUACM were validated in a rabbit VX2liver tumor model.In summary,this new,high-performance,and customizable radioactive microsphere provides a superior choice for selective internal radiation treatment of advanced liver cancer is expected to be rapidly applied in clinical practice.展开更多
Increasing evidence showed that histone deacetylase 6(HDAC6)dysfunction is directly associated with the onset and progression of various diseases,especially cancers,making the development of HDAC6-targeted anti-tumor ...Increasing evidence showed that histone deacetylase 6(HDAC6)dysfunction is directly associated with the onset and progression of various diseases,especially cancers,making the development of HDAC6-targeted anti-tumor agents a research hotspot.In this study,artificial intelligence(AI)technology and molecular simulation strategies were fully integrated to construct an efficient and precise drug screening pipeline,which combined Voting strategy based on compound-protein interaction(CPI)prediction models,cascade molecular docking,and molecular dynamic(MD)simulations.The biological potential of the screened compounds was further evaluated through enzymatic and cellular activity assays.Among the identified compounds,Cmpd.18 exhibited more potent HDAC6 enzyme inhibitory activity(IC_(50)=5.41 nM)than that of tubastatin A(TubA)(IC_(50)=15.11 nM),along with a favorable subtype selectivity profile(selectivity index z 117.23 for HDAC1),which was further verified by the Western blot analysis.Additionally,Cmpd.18 induced G2/M phase arrest and promoted apoptosis in HCT-116 cells,exerting desirable antiproliferative activity(IC_(50)=2.59 mM).Furthermore,based on long-term MD simulation trajectory,the key residues facilitating Cmpd.18's binding were identified by decomposition free energy analysis,thereby elucidating its binding mechanism.Moreover,the representative conformation analysis also indicated that Cmpd.18 could stably bind to the active pocket in an effective conformation,thus demonstrating the potential for in-depth research of the 2-(2-phenoxyethyl)pyridazin-3(2H)-one scaffold.展开更多
Base-catalyzed nucleophilic substitution reactions ofβ-ketonitrile with azodicarboxylates have been developed.A series of disubstituted C—N coupling products were obtained in good to excellent yields under Et_(3)N c...Base-catalyzed nucleophilic substitution reactions ofβ-ketonitrile with azodicarboxylates have been developed.A series of disubstituted C—N coupling products were obtained in good to excellent yields under Et_(3)N catalysis.Monosubstitu-tion C—N bond formation reaction catalyzed by K_(2)CO_(3) also gave novel enol-based target products.This method is simple and mild,with good chemoselectivity,excellent substrate compatibility and tolerance for various functional groups,and achieves gram-scale synthesis.The reaction is a nucleophilic substitution process without the involvement of free radicals.展开更多
ZGH401 alloy was prepared under varying laser power levels and scanning speeds by the orthogonal test method using selective laser melting(SLM).The effect of different energy densities on microstructure and mechanical...ZGH401 alloy was prepared under varying laser power levels and scanning speeds by the orthogonal test method using selective laser melting(SLM).The effect of different energy densities on microstructure and mechanical properties of the formed alloy was investigated.The microstructure of ZGH401 was analyzed by scanning electron microscope,electron back-scattered diffraction,and electron probe microanalysis.The results show that the defects of the as-built ZGH401 are gradually reduced,the relative density is correspondingly enhanced with increasing the energy density,and the ultimate density can reach 99.6%.An increase in laser power leads to a corresponding rise in hardness of ZGH401,while a faster scanning speed reduces the residual stress in asbuilt ZGH401 samples.In addition,better tensile properties are achieved at room temperature due to more grain boundaries perpendicular to the build direction than parallel to the build direction.The precipitated phases are identified as carbides and Laves phases via chemical composition analysis,with fewer carbides observed at the molten pool boundaries than within the molten pools.展开更多
We report a robust pillar-layered metal-organic framework,Zn‑tfbdc‑dabco(tfbdc:tetrafluoroterephthal-ate,dabco:1,4-diazabicyclo[2.2.2]octane),featuring the fluorinated pore environment,for the preferential binding of ...We report a robust pillar-layered metal-organic framework,Zn‑tfbdc‑dabco(tfbdc:tetrafluoroterephthal-ate,dabco:1,4-diazabicyclo[2.2.2]octane),featuring the fluorinated pore environment,for the preferential binding of propane over propylene and thus highly inverse selective separation of propane/propylene mixture.The inverse propane-selective performance of Zn‑tfbdc‑dabco for the propane/propylene separation was validated by single-component gas adsorption isotherms,isosteric enthalpy of adsorption calculations,ideal adsorbed solution theory calculations,along with the breakthrough experiment.The customized fluorinated networks served as a propane-trap to form more interactions with the exposed hydrogen atoms of propane,as unveiled by the simulation studies at the molecular level.With the advantage of inverse propane-selective adsorption behavior,high adsorption capacity,good cycling stability,and low isosteric enthalpy of adsorption,Zn‑tfbdc‑dabco can be a promising candidate adsorbent for the challenging propane/propylene separation to realize one-step purification of the target propylene substance.展开更多
Carbon dots(CDs)-based composites have shown impressive performance in fields of information encryption and sensing,however,a great challenge is to simultaneously implement multi-mode luminescence and room-temperature...Carbon dots(CDs)-based composites have shown impressive performance in fields of information encryption and sensing,however,a great challenge is to simultaneously implement multi-mode luminescence and room-temperature phosphorescence(RTP)detection in single system due to the formidable synthesis.Herein,a multifunctional composite of Eu&CDs@p RHO has been designed by co-assembly strategy and prepared via a facile calcination and impregnation treatment.Eu&CDs@p RHO exhibits intense fluorescence(FL)and RTP coming from two individual luminous centers,Eu3+in the free pores and CDs in the interrupted structure of RHO zeolite.Unique four-mode color outputs including pink(Eu^(3+),ex.254 nm),light violet(CDs,ex.365 nm),blue(CDs,254 nm off),and green(CDs,365 nm off)could be realized,on the basis of it,a preliminary application of advanced information encoding has been demonstrated.Given the free pores of matrix and stable RTP in water of confined CDs,a visual RTP detection of Fe^(3+)ions is achieved with the detection limit as low as 9.8μmol/L.This work has opened up a new perspective for the strategic amalgamation of luminous vips with porous zeolite to construct the advanced functional materials.展开更多
The selective hydrogenation ofα,β-unsaturated aldehydes/ketones enables precise control over product structures and properties by regulating hydrogen transport pathways and bond cleavage sequences to selectively red...The selective hydrogenation ofα,β-unsaturated aldehydes/ketones enables precise control over product structures and properties by regulating hydrogen transport pathways and bond cleavage sequences to selectively reduce C=C or C=O bonds while preserving other functional groups within the molecule.This approach serves as a critical strategy for the directional synthesis of high-value molecules.However,achieving such selectivity remains challenging due to the thermodynamic equilibrium and kinetic competition between C=O and C=C bonds inα,β-unsaturated systems.Consequently,constructing precisely targeted catalytic systems is essential to overcome these limitations,offering both fundamental scientific significance and industrial application potential.Metal-organic frameworks(MOFs)and their derivatives have emerged as innovative platforms for designing such systems,owing to their programmable topology,tunable pore microenvironments,spatially controllable active sites,and modifiable electronic structures.This review systematically summarizes the research progress of MOF-based catalysts for selec-tive hydrogenation ofα,β-unsaturated aldehydes/ketones in the last decade,with emphasis on the design strategy,conformational relationship,and catalytic mechanism,aiming to provide new ideas for the design of targeted catalyt-ic systems for the selective hydrogenation ofα,β-unsaturated aldehydes/ketones.展开更多
Prostate cancer(PCa)is characterized by high incidence and propensity for easy metastasis,presenting significant challenges in clinical diagnosis and treatment.Tumor microenvironment(TME)-responsive nanomaterials prov...Prostate cancer(PCa)is characterized by high incidence and propensity for easy metastasis,presenting significant challenges in clinical diagnosis and treatment.Tumor microenvironment(TME)-responsive nanomaterials provide a promising prospect for imaging-guided precision therapy.Considering that tumor-derived alkaline phosphatase(ALP)is over-expressed in metastatic PCa,it makes a great chance to develop a theranostics system with ALP responsive in the TME.Herein,an ALP-responsive aggregationinduced emission luminogens(AIEgens)nanoprobe AMNF self-assembly was designed for enhancing the diagnosis and treatment of metastatic PCa.The nanoprobe exhibited self-aggregation in the presence of ALP resulted in aggregation-induced fluorescence,and enhanced accumulation and prolonged retention period at the tumor site.In terms of detection,the fluorescence(FL)/computed tomography(CT)/magnetic resonance(MR)multi-mode imaging effect of nanoprobe was significantly improved post-aggregation,enabling precise diagnosis through the amalgamation of multiple imaging modes.Enhanced CT/MR imaging can achieve assist preoperative tumor diagnosis,and enhanced FL imaging technology can achieve“intraoperative visual navigation”,showing its potential application value in clinical tumor detection and surgical guidance.In terms of treatment,AMNF showed strong absorption in the near infrared region after aggregation,which improved the photothermal treatment effect.Overall,our work developed an effective aggregation-enhanced theranostic strategy for ALP-related cancers.展开更多
Compared with natural enzymes, nanozymes have the advantages of high stability and low cost;however,selectivity and sensitivity are key issues that prevent their further development. In this study, we report a cascade...Compared with natural enzymes, nanozymes have the advantages of high stability and low cost;however,selectivity and sensitivity are key issues that prevent their further development. In this study, we report a cascade nanozymatic system with significantly improved selectivity and sensitivity that combines more substrate-specific reactions and sensitive fiuorescence detection. Taking detection of ascorbic acid(AA)as an example, a cascade catalytic reaction system consisting of oxidase-like N-doped carbon nanocages(NC) and peroxidase-like copper oxide(Cu O) improved the reaction selectivity in transforming the substrate into the target product by more than 1200 times against the interference of uric acid. The cascade catalytic reaction system was also applicable for transfer from open reactors into a spatially confined microfiuidic device, increasing the slope of the calibration curves by approximately 1000-fold with a linear detection range of 2.5 nmol/L to 100 nmol/L and a low limit of detection of 0.77 nmol/L. This work offers a new strategy that achieves significant improvements in selectivity and sensitivity.展开更多
The environment-friendly and efficient selective separation of chalcopyrite and molybdenite poses a challenge in mineral pro-cessing.In this study,gum Arabic(GA)was initially proposed as a novel depressant for the sel...The environment-friendly and efficient selective separation of chalcopyrite and molybdenite poses a challenge in mineral pro-cessing.In this study,gum Arabic(GA)was initially proposed as a novel depressant for the selective separation of molybdenite from chalcopyrite during flotation.Microflotation results indicated that the inhibitory capacity of GA was stronger toward molybdenite than chalcopyrite.At pH 8.0 with 20 mg/L GA addition,the recovery rate of chalcopyrite in the concentrate obtained from mixed mineral flota-tion was 67.49%higher than that of molybdenite.Furthermore,the mechanism of GA was systematically investigated by various surface characterization techniques.Contact angle tests indicated that after GA treatment,the hydrophobicity of the molybdenite surface signifi-cantly decreased,but that of the chalcopyrite surface showed no apparent change.Fourier transform-infrared spectroscopy and X-ray photoelectron spectroscopy revealed a weak interaction force between GA and chalcopyrite.By contrast,GA was primarily adsorbed onto the molybdenite surface through chemical chelation,with possible contributions from hydrogen bonding and hydrophobic interactions.Pre-adsorbed GA could prevent butyl xanthate from being adsorbed onto molybdenite.Scanning electron microscopy–energy-dispersive spectrometry further indicated that GA was primarily adsorbed onto the“face”of molybdenite rather than the“edge.”Therefore,GA could be a promising molybdenite depressant for the flotation separation of Cu–Mo.展开更多
The photocatalytic selective oxidation of biomass-derived 5-hydroxymethylfurfural(HMF)offers a sustainable alternative to thermal catalysis.However,the efficiency of this process is significantly limited by inadequate...The photocatalytic selective oxidation of biomass-derived 5-hydroxymethylfurfural(HMF)offers a sustainable alternative to thermal catalysis.However,the efficiency of this process is significantly limited by inadequate light absorption efficiency and the rapid recombination of photogenerated charge carriers in conventional photocatalysts.Herein,we developed a Co_(3)O_(4)/ZnIn_(2)S_(4)(Co_(3)O_(4)/ZIS)photocatalyst,in which Co_(3)O_(4)functions as a multifunctional cocatalyst.This photocatalyst significantly enhances the chemisorption and activation of HMF molecules through interfacial oxygen-hydroxyl interactions.Additionally,the incorporation of narrow-band gap Co_(3)O_(4)broadens the optical absorption range of the composite photocatalyst.Besides,integrating Co_(3)O_(4)with ZnIn_(2)S_(4)leads to a 5.9-fold increase in charge separation efficiency compared to pristine ZnIn_(2)S_(4).The optimized Co_(3)O_(4)/ZIS-3 photocatalyst(3 wt% Co_(3)O_(4)loading)exhibits exceptional selectivity and yield for 2,5-diformylfuran(DFF)under visible light irradiation,achieving 70.4%DFF selectivity with a 5.4-fold enhancement compared to pristine ZnIn_(2)S_(4).Scavenger experiments and electron spin resonance(ESR)spectroscopy indicate that superoxide radicals(O_(2)^(-))and h^(+)are the main active species driving the photocatalytic oxidation of HMF.Molecular simulations reveal that the activation of HMF and the transformation of the intermediate^(*)MF to^(*)DFF are more favorable over the Co_(3)O_(4)/ZIS composite due to lower activation barriers compared to those over ZnIn_(2)S_(4).Through this work,we aim to design highly efficient and affordable photocatalysts for biomass valorization and contribute valuable insights into the mechanisms of photocatalytic oxidation of HMF.展开更多
The efficient recovery of fluorite is paid more and more attention with the increasing application especially in strategic emerging industries.In this study,acrylic acid-2-acrylamido-2-methylpropane sulfonic acid copo...The efficient recovery of fluorite is paid more and more attention with the increasing application especially in strategic emerging industries.In this study,acrylic acid-2-acrylamido-2-methylpropane sulfonic acid copolymer(AAAMPS)was first used as the depressant in fluorite flotation,and its effect on the flotation separation of fluorite and dolomite in sodium oleate(NaOL)system was investigated.The depression mechanism was analyzed by contact angle measurement,zeta potential test,FTIR and XPS analyses.The micro-flotation test results showed that dolomite can be inhibited in fluorite flotation system in the addition of 2 mg/L AA-AMPS and 20 mg/L NaOL at pH 10.The CaF_(2) grade increased from 49.85%in the artificial mixed mineral to 89.60%in the fluorite concentrate.The depression mechanism indicated that AA-AMPS could adsorb strongly on dolomite surface by the chelation with Ca and Mg active sites.Moreover,the further adsorption of NaOL on dolomite surface was prevented by the AA-AMPS adsorption,but that on fluorite surface was little affected,thereby increasing the difference in the hydrophobicity and floatability of the two minerals.展开更多
The hydroformylation of olefins,known as the"oxo reaction",involves the use of syngas(CO/H_(2))to produce aldehyde with an additional carbon atom.However,side reactions such as the isomerization or hydrogena...The hydroformylation of olefins,known as the"oxo reaction",involves the use of syngas(CO/H_(2))to produce aldehyde with an additional carbon atom.However,side reactions such as the isomerization or hydrogenation of olefins often result in unexpected products and other by-products.Recent efforts in developing efficient ligands represent the most effective approach to addressing these challenges.In this study,we described a Bis-OPNN phosphorus ligand facilitated Rh-catalyzed hydroformylation with a high degree of linear selectivity across various olefins.Under mild conditions,a broad range of olefins were efficiently converted into linear aldehydes with high yields and excellent regioselectivity.The protocol also showed impressive functional group tolerance and was successfully applied to modify drugs and natural products,including the total synthesis of(±)-crispine A.Preliminary mechanistic studies revealed that this Bis-OPNN phosphorus ligand anchoring the rhodium catalyst is crucial for controlling the linear selectivity.展开更多
Bisphenol A(BPA)has threatened ecological safety and human health due to its endocrine disrupting effect and widely diffused in the environment.Peroxymonosulfate(PMS)based on oxidation technology exhibits good potenti...Bisphenol A(BPA)has threatened ecological safety and human health due to its endocrine disrupting effect and widely diffused in the environment.Peroxymonosulfate(PMS)based on oxidation technology exhibits good potential for environmental remediation whereas the highly efficient activator needs to be developed.Herein,the Bi OBr(BOB)was synthesized to efficiently activate PMS to remove 95.6%of BPA within 60 min.The observed rate constant of BPA removal in BOB/PMS system is 0.049 min^(-1),which is 60 and 148 times to that of the BOB and PMS processes separately and 129 times to the compared Bi OCl(BOC)/PMS system,respectively.Comparison experiments and analytic methods demonstrate that BOB with a larger content of oxygen vacancies(Ov)can act as the bridge of electron transfer between Bi^(3+)/Bi^(4+)with PMS to enhance the activation ability for PMS,resulting in the production of abundant reactive oxygen species(O_(2)^(·-)and ^(1)O_(2)).Additionally,the breakdown processes of BPA and the toxicity of its byproducts were uncovered,and the potential for actual water treatment was evaluated to confirm the detoxification,efficiency,stability and practical use of the BOB/PMS system for eliminating BPA.This study may widen the application of traditional semiconductors and develop the cost-effective PMS activation methods for environmental remediation.展开更多
基金Supported by the National Natural Science Foundation of China(12261018)Universities Key Laboratory of Mathematical Modeling and Data Mining in Guizhou Province(2023013)。
文摘In this paper,we establish and study a single-species logistic model with impulsive age-selective harvesting.First,we prove the ultimate boundedness of the solutions of the system.Then,we obtain conditions for the asymptotic stability of the trivial solution and the positive periodic solution.Finally,numerical simulations are presented to validate our results.Our results show that age-selective harvesting is more conducive to sustainable population survival than non-age-selective harvesting.
基金National Natural Science Foundation of China(51504138,51674118,52271177)Hunan Provincial Natural Science Foundation of China(2023JJ50181)Supported by State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology(P2024-022)。
文摘To explore the formation mechanism of anisotropy in Ti-6Al-4V alloy fabricated by selective laser melting(SLM),the compressive mechanical properties,microhardness,microstructure,and crystallographic orientation of the alloy across different planes were investigated.The anisotropy of SLM-fabricated Ti-6Al-4V alloys was analyzed,and the electron backscatter diffraction technique was used to investigate the influence of different grain types and orientations on the stress-strain distribution at various scales.Results reveal that in room-temperature compression tests at a strain rate of 10^(-3) s^(-1),both the compressive yield strength and microhardness vary along the deposition direction,indicating a certain degree of mechanical property anisotropy.The alloy exhibits a columnar microstructure;along the deposition direction,the grains appear equiaxed,and they have internal hexagonal close-packed(hcp)α/α'martensitic structure.α'phase has a preferential orientation approximately along the<0001>direction.Anisotropy arises from the high aspect ratio of columnar grains,along with the weak texture of the microstructure and low symmetry of the hcp crystal structure.
基金Supported by Open Project of Jiangsu Province Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Geriatric Diseases,No.202232.
文摘BACKGROUND Post-stroke depression(PSD)is associated with hypothalamic-pituitary-adrenal(HPA)axis dysfunction and neurotransmitter deficits.Selective serotonin reuptake inhibitors(SSRIs)are commonly used,but their efficacy is limited.This study investigated whether combining SSRIs with traditional Chinese medicine(TCM)Free San could enhance their therapeutic effects.AIM To evaluate the clinical efficacy and safety of combining SSRIs with Free San in treating PSD,and to assess its impact on HPA axis function.METHODS Ninety-two patients with PSD were enrolled and randomly divided into control groups(n=46)and study groups(n=46).The control group received the SSRI paroxetine alone,whereas the study group received paroxetine combined with Free San for 4 weeks.Hamilton Depression Scale and TCM syndrome scores were assessed before and after treatment.Serum serotonin,norepinephrine,cortisol,cor-ticotropin-releasing hormone,and adrenocorticotropic hormone were measured.The treatment responses and adverse reactions were recorded.RESULTS After treatment,the Hamilton Depression Scale and TCM syndrome scores were significantly lower in the study group than in the control group(P<0.05).Serum serotonin and norepinephrine levels were significantly higher in the study group than in the control group,whereas cortisol,corticotropin-releasing hormone,and adrenocorticotropic hormone levels were significantly lower(P<0.05).The total efficacy rates were 84.78%and 65.22%in the study and control groups,respectively(P<0.05).No significant differences in adverse reactions were observed between the two groups(P>0.05).CONCLUSION Combining SSRIs with Free San can enhance therapeutic efficacy,improve depressive symptoms,and regulate HPA axis function in patients with PSD with good safety and clinical application value.
基金the National Nature Science Foundation of China for Excellent Young Scientists Fund(32222058)Fundamental Research Foundation of CAF(CAFYBB2022QB001).
文摘Developing biomass platform compounds into high value-added chemicals is a key step in renewable resource utilization.Herein,we report porous carbon-supported Ni-ZnO nanoparticles catalyst(Ni-ZnO/AC)synthesized via low-temperature coprecipitation,exhibiting excellent performance for the selective hydrogenation of 5-hydroxymethylfurfural(HMF).A linear correlation is first observed between solvent polarity(E_(T)(30))and product selectivity within both polar aprotic and protic solvent classes,suggesting that solvent properties play a vital role in directing reaction pathways.Among these,1,4-dioxane(aprotic)favors the formation of 2,5-bis(hydroxymethyl)furan(BHMF)with 97.5%selectivity,while isopropanol(iPrOH,protic)promotes 2,5-dimethylfuran production with up to 99.5%selectivity.Mechanistic investigations further reveal that beyond polarity,proton-donating ability is critical in facilitating hydrodeoxygenation.iPrOH enables a hydrogen shuttle mechanism where protons assist in hydroxyl group removal,lowering the activation barrier.In contrast,1,4-dioxane,lacking hydrogen bond donors,stabilizes BHMF and hinders further conversion.Density functional theory calculations confirm a lower activation energy in iPrOH(0.60 eV)compared to 1,4-dioxane(1.07 eV).This work offers mechanistic insights and a practical strategy for solvent-mediated control of product selectivity in biomass hydrogenation,highlighting the decisive role of solvent-catalyst-substrate interactions.
基金supported by the University Salah Boubnider-Constantine 3 (Algeria).
文摘This research aims to study the bio-adsorption process of two dyes,Cibacron Green H3G(CG-H3G)and Terasil Red(TR),in a single system and to bring them closer to the industrial textile discharge by a binary mixture of two dyes(TR+CG-H3G).The Cockle Shell(CS)was used as a natural bio-adsorbent.The characterizations of CS were investigated by Fourier transform infrared(FTIR),X-ray diffraction(XRD),scanning electron microscopy(SEM),energy-dispersive X-ray spectroscopy(EDX)and Brunauer–Emmett–Teller(BET).The adsorption potential of Cockle Shells was tested in two cases(single and binary system)and determined by:contact time(0–60 min),bio-adsorption dose(3–15 g/L),initial concentration(10–300 mg/L),temperature(22–61°C)and pH solution(2–12).The study of bio-adsorption(equilibrium and kinetics)was conducted at 22°C.The kinetic studies demon-strated that a pseudo-second-order adsorption mechanism had a good correlation coefficient(R2≥0.999).The Langmuir isotherm modeling provided a well-defined description of TR and CG-H3G bio-adsorption on cockle shells,exhibiting maximum capacities of 29.41 and 3.69 mg/g respectively at 22°C.The thermodynamic study shows that the reaction between the TR,CG-H3G dyes molecules and the bio-adsorbent is exothermic,spontaneous in the range of 22–31°C with the aleatory character decrease at the solid-liquid interface.The study of selectivity in single and binary systems has been performed under optimal operating conditions using the industrial textile rejection pH(pH=6.04).CG-H3G dye is found to have a higher selectivity than TR in single(0–60 min)and binary systems with a range of 6–45 min,as shown by the selectivity measurement.It was discovered that CS has the capability to remove both CG-H3G and TR dyes in both simple and binary systems,making it a superior bio-adsorbent.
基金supported by the National Key Research and Development Program of China(No.2019YFC1803501)the National Natural Science Foundation of China(No.52074357)+2 种基金the Natural Science Foundation of Hunan Province,China(No.2022JJ30713)the Vanadium Titanium Union Foundationthe Project of Technology Innovation Center for Comprehensive Utilization of Strategic Mineral Resources,Ministry of Natural Resources,China。
文摘The potential of 2-amino-1-propanol(AP)as a novel depressant in selectively floating ilmenite from titanaugite under weakly acidic conditions was investigated.Micro-flotation results show that AP significantly reduces the recovery of titanaugite while having no evident impact on ilmenite flotation.Subsequent bench-scale flotation tests further confirm a remarkable improvement in separation efficiency upon the introduction of AP.Contact angle and adsorption tests reveal a stronger affinity of AP towards the titanaugite surface in comparison to ilmenite.Zeta potential measurements and X-ray photoelectron spectroscopy(XPS)analyses exhibit favorable adsorption characteristics of AP on titanaugite,resulting from a synergy of electrostatic attraction and chemical interaction.In contrast,electrostatic repulsion hinders any significant interaction between AP and the ilmenite surface.These findings highlight the potential of AP as a highly efficient depressant for ilmenite flotation,paving the way for reduced reliance on sulfuric acid in the industry.
基金supported by the National Major Scientific and Technological Special Project for“Significant New Drugs Development”(No.2018ZX09201018–028)the nuclear energy development projects of China during the 13thFive Year Plan periodthe key research and development project of the Sichuan Provincial Department of Science and Technology(No.18ZDYF1466)。
文摘Radioactive microspheres have demonstrated excellent therapeutic effects and good tolerance in the treatment of unresectable primary and secondary liver malignancies.This is attributed to precise embolization and potent anti-tumor effect.However,certain limitations such as unstable loading,perfusion stasis,heterogeneous distribution,ectopic distribution,and insufficient dosage,restrict their clinical application.Herein,a novel personalized Y-90 carbon microsphere with high uniformity,high specific activity and high availability(^(90)Y-HUACM)is presented.It is synthesized through planar molecular complex adsorption and chemical deposition solidification.^(90)Y-HUACM exhibited controllable size,excellent biocompatibility,outstanding in vitro and in vivo stability.The radiolabeling efficiency of Y-90 exceeded 99%and the leaching rate of Y-90 is far below 0.1%.Furthermore,the excellent anti-tumor effect,nuclide loading stability,anti-reflux characteristics,precise embolization,and biosafety of^(90)Y-HUACM were validated in a rabbit VX2liver tumor model.In summary,this new,high-performance,and customizable radioactive microsphere provides a superior choice for selective internal radiation treatment of advanced liver cancer is expected to be rapidly applied in clinical practice.
基金funded by Central Guidance on Local Science and Technology Development Fund of Hebei Province,China(Grant No.:226Z2605G)the Key Project from Hebei Provincial Department of Science and Technology,China(Grant No.:21372601D)+6 种基金Graduate Student Innovation Grant Program of Hebei Medical University,China(Grant No.:XCXZZB202303)Science Research Project of Hebei Education Department,China(Grant Nos.:BJ2025046,and CYZD202501)Program for Young Scientists in the Field of Natural Science of Hebei Medical University,China(Program Nos.:CYCZ2023010,CYCZ2023011,CYQD2021011,CYQD2021015 and CYQD2023012)Traditional Chinese Medicine Administration Project of Hebei Province,China(Project No.:2025427)National Natural Science Foundation of China(Grant No.:32100771)the Hebei Provincial Medical Science Research Project Plan,China(Project Nos.:20240241 and 20220200)Shijiazhuang Science and Technology Bureau,China(Grant Nos.:241200487A,and 07202204).
文摘Increasing evidence showed that histone deacetylase 6(HDAC6)dysfunction is directly associated with the onset and progression of various diseases,especially cancers,making the development of HDAC6-targeted anti-tumor agents a research hotspot.In this study,artificial intelligence(AI)technology and molecular simulation strategies were fully integrated to construct an efficient and precise drug screening pipeline,which combined Voting strategy based on compound-protein interaction(CPI)prediction models,cascade molecular docking,and molecular dynamic(MD)simulations.The biological potential of the screened compounds was further evaluated through enzymatic and cellular activity assays.Among the identified compounds,Cmpd.18 exhibited more potent HDAC6 enzyme inhibitory activity(IC_(50)=5.41 nM)than that of tubastatin A(TubA)(IC_(50)=15.11 nM),along with a favorable subtype selectivity profile(selectivity index z 117.23 for HDAC1),which was further verified by the Western blot analysis.Additionally,Cmpd.18 induced G2/M phase arrest and promoted apoptosis in HCT-116 cells,exerting desirable antiproliferative activity(IC_(50)=2.59 mM).Furthermore,based on long-term MD simulation trajectory,the key residues facilitating Cmpd.18's binding were identified by decomposition free energy analysis,thereby elucidating its binding mechanism.Moreover,the representative conformation analysis also indicated that Cmpd.18 could stably bind to the active pocket in an effective conformation,thus demonstrating the potential for in-depth research of the 2-(2-phenoxyethyl)pyridazin-3(2H)-one scaffold.
文摘Base-catalyzed nucleophilic substitution reactions ofβ-ketonitrile with azodicarboxylates have been developed.A series of disubstituted C—N coupling products were obtained in good to excellent yields under Et_(3)N catalysis.Monosubstitu-tion C—N bond formation reaction catalyzed by K_(2)CO_(3) also gave novel enol-based target products.This method is simple and mild,with good chemoselectivity,excellent substrate compatibility and tolerance for various functional groups,and achieves gram-scale synthesis.The reaction is a nucleophilic substitution process without the involvement of free radicals.
基金National Defense Science and Technology Project Management Center(2021-JCJQ-JJ-0092)。
文摘ZGH401 alloy was prepared under varying laser power levels and scanning speeds by the orthogonal test method using selective laser melting(SLM).The effect of different energy densities on microstructure and mechanical properties of the formed alloy was investigated.The microstructure of ZGH401 was analyzed by scanning electron microscope,electron back-scattered diffraction,and electron probe microanalysis.The results show that the defects of the as-built ZGH401 are gradually reduced,the relative density is correspondingly enhanced with increasing the energy density,and the ultimate density can reach 99.6%.An increase in laser power leads to a corresponding rise in hardness of ZGH401,while a faster scanning speed reduces the residual stress in asbuilt ZGH401 samples.In addition,better tensile properties are achieved at room temperature due to more grain boundaries perpendicular to the build direction than parallel to the build direction.The precipitated phases are identified as carbides and Laves phases via chemical composition analysis,with fewer carbides observed at the molten pool boundaries than within the molten pools.
文摘We report a robust pillar-layered metal-organic framework,Zn‑tfbdc‑dabco(tfbdc:tetrafluoroterephthal-ate,dabco:1,4-diazabicyclo[2.2.2]octane),featuring the fluorinated pore environment,for the preferential binding of propane over propylene and thus highly inverse selective separation of propane/propylene mixture.The inverse propane-selective performance of Zn‑tfbdc‑dabco for the propane/propylene separation was validated by single-component gas adsorption isotherms,isosteric enthalpy of adsorption calculations,ideal adsorbed solution theory calculations,along with the breakthrough experiment.The customized fluorinated networks served as a propane-trap to form more interactions with the exposed hydrogen atoms of propane,as unveiled by the simulation studies at the molecular level.With the advantage of inverse propane-selective adsorption behavior,high adsorption capacity,good cycling stability,and low isosteric enthalpy of adsorption,Zn‑tfbdc‑dabco can be a promising candidate adsorbent for the challenging propane/propylene separation to realize one-step purification of the target propylene substance.
基金supported by the National Natural Science Foundation of China(No.22288101)the 111 Project(No.B17020)。
文摘Carbon dots(CDs)-based composites have shown impressive performance in fields of information encryption and sensing,however,a great challenge is to simultaneously implement multi-mode luminescence and room-temperature phosphorescence(RTP)detection in single system due to the formidable synthesis.Herein,a multifunctional composite of Eu&CDs@p RHO has been designed by co-assembly strategy and prepared via a facile calcination and impregnation treatment.Eu&CDs@p RHO exhibits intense fluorescence(FL)and RTP coming from two individual luminous centers,Eu3+in the free pores and CDs in the interrupted structure of RHO zeolite.Unique four-mode color outputs including pink(Eu^(3+),ex.254 nm),light violet(CDs,ex.365 nm),blue(CDs,254 nm off),and green(CDs,365 nm off)could be realized,on the basis of it,a preliminary application of advanced information encoding has been demonstrated.Given the free pores of matrix and stable RTP in water of confined CDs,a visual RTP detection of Fe^(3+)ions is achieved with the detection limit as low as 9.8μmol/L.This work has opened up a new perspective for the strategic amalgamation of luminous vips with porous zeolite to construct the advanced functional materials.
文摘The selective hydrogenation ofα,β-unsaturated aldehydes/ketones enables precise control over product structures and properties by regulating hydrogen transport pathways and bond cleavage sequences to selectively reduce C=C or C=O bonds while preserving other functional groups within the molecule.This approach serves as a critical strategy for the directional synthesis of high-value molecules.However,achieving such selectivity remains challenging due to the thermodynamic equilibrium and kinetic competition between C=O and C=C bonds inα,β-unsaturated systems.Consequently,constructing precisely targeted catalytic systems is essential to overcome these limitations,offering both fundamental scientific significance and industrial application potential.Metal-organic frameworks(MOFs)and their derivatives have emerged as innovative platforms for designing such systems,owing to their programmable topology,tunable pore microenvironments,spatially controllable active sites,and modifiable electronic structures.This review systematically summarizes the research progress of MOF-based catalysts for selec-tive hydrogenation ofα,β-unsaturated aldehydes/ketones in the last decade,with emphasis on the design strategy,conformational relationship,and catalytic mechanism,aiming to provide new ideas for the design of targeted catalyt-ic systems for the selective hydrogenation ofα,β-unsaturated aldehydes/ketones.
基金supported by Natural Science Foundation of Jilin Province(No.SKL202302002)Key Research and Development project of Jilin Provincial Science and Technology Department(No.20210204142YY)+2 种基金The Science and Technology Development Program of Jilin Province(No.2020122256JC)Beijing Kechuang Medical Development Foundation Fund of China(No.KC2023-JX-0186BQ079)Talent Reserve Program(TRP),the First Hospital of Jilin University(No.JDYY-TRP-2024007)。
文摘Prostate cancer(PCa)is characterized by high incidence and propensity for easy metastasis,presenting significant challenges in clinical diagnosis and treatment.Tumor microenvironment(TME)-responsive nanomaterials provide a promising prospect for imaging-guided precision therapy.Considering that tumor-derived alkaline phosphatase(ALP)is over-expressed in metastatic PCa,it makes a great chance to develop a theranostics system with ALP responsive in the TME.Herein,an ALP-responsive aggregationinduced emission luminogens(AIEgens)nanoprobe AMNF self-assembly was designed for enhancing the diagnosis and treatment of metastatic PCa.The nanoprobe exhibited self-aggregation in the presence of ALP resulted in aggregation-induced fluorescence,and enhanced accumulation and prolonged retention period at the tumor site.In terms of detection,the fluorescence(FL)/computed tomography(CT)/magnetic resonance(MR)multi-mode imaging effect of nanoprobe was significantly improved post-aggregation,enabling precise diagnosis through the amalgamation of multiple imaging modes.Enhanced CT/MR imaging can achieve assist preoperative tumor diagnosis,and enhanced FL imaging technology can achieve“intraoperative visual navigation”,showing its potential application value in clinical tumor detection and surgical guidance.In terms of treatment,AMNF showed strong absorption in the near infrared region after aggregation,which improved the photothermal treatment effect.Overall,our work developed an effective aggregation-enhanced theranostic strategy for ALP-related cancers.
基金supported by the National Natural Science Foundation of China (Nos. 22174014 and 22074015)。
文摘Compared with natural enzymes, nanozymes have the advantages of high stability and low cost;however,selectivity and sensitivity are key issues that prevent their further development. In this study, we report a cascade nanozymatic system with significantly improved selectivity and sensitivity that combines more substrate-specific reactions and sensitive fiuorescence detection. Taking detection of ascorbic acid(AA)as an example, a cascade catalytic reaction system consisting of oxidase-like N-doped carbon nanocages(NC) and peroxidase-like copper oxide(Cu O) improved the reaction selectivity in transforming the substrate into the target product by more than 1200 times against the interference of uric acid. The cascade catalytic reaction system was also applicable for transfer from open reactors into a spatially confined microfiuidic device, increasing the slope of the calibration curves by approximately 1000-fold with a linear detection range of 2.5 nmol/L to 100 nmol/L and a low limit of detection of 0.77 nmol/L. This work offers a new strategy that achieves significant improvements in selectivity and sensitivity.
基金supported by the National Key Research and Development Program of China(Nos.2022YFC2904502 and 2022YFC2904501)the Major Science and Technology Projects in Yunnan Province,China(No.202202AB080012).
文摘The environment-friendly and efficient selective separation of chalcopyrite and molybdenite poses a challenge in mineral pro-cessing.In this study,gum Arabic(GA)was initially proposed as a novel depressant for the selective separation of molybdenite from chalcopyrite during flotation.Microflotation results indicated that the inhibitory capacity of GA was stronger toward molybdenite than chalcopyrite.At pH 8.0 with 20 mg/L GA addition,the recovery rate of chalcopyrite in the concentrate obtained from mixed mineral flota-tion was 67.49%higher than that of molybdenite.Furthermore,the mechanism of GA was systematically investigated by various surface characterization techniques.Contact angle tests indicated that after GA treatment,the hydrophobicity of the molybdenite surface signifi-cantly decreased,but that of the chalcopyrite surface showed no apparent change.Fourier transform-infrared spectroscopy and X-ray photoelectron spectroscopy revealed a weak interaction force between GA and chalcopyrite.By contrast,GA was primarily adsorbed onto the molybdenite surface through chemical chelation,with possible contributions from hydrogen bonding and hydrophobic interactions.Pre-adsorbed GA could prevent butyl xanthate from being adsorbed onto molybdenite.Scanning electron microscopy–energy-dispersive spectrometry further indicated that GA was primarily adsorbed onto the“face”of molybdenite rather than the“edge.”Therefore,GA could be a promising molybdenite depressant for the flotation separation of Cu–Mo.
基金financially supported by the National Key Research and Development Program of China(No.2022YFB3805400)the National Natural Science Foundation of China(No.22178297,No.22478327)+3 种基金the Science and Technology Innovation Program of Hunan Province(No.2024RC9009)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDC04010100)the Provincial Natural Science Foundation of Hunan(No.2024JJ5371)the Scientific Research Fund of Hunan Provincial Education Department(No.24A0107)。
文摘The photocatalytic selective oxidation of biomass-derived 5-hydroxymethylfurfural(HMF)offers a sustainable alternative to thermal catalysis.However,the efficiency of this process is significantly limited by inadequate light absorption efficiency and the rapid recombination of photogenerated charge carriers in conventional photocatalysts.Herein,we developed a Co_(3)O_(4)/ZnIn_(2)S_(4)(Co_(3)O_(4)/ZIS)photocatalyst,in which Co_(3)O_(4)functions as a multifunctional cocatalyst.This photocatalyst significantly enhances the chemisorption and activation of HMF molecules through interfacial oxygen-hydroxyl interactions.Additionally,the incorporation of narrow-band gap Co_(3)O_(4)broadens the optical absorption range of the composite photocatalyst.Besides,integrating Co_(3)O_(4)with ZnIn_(2)S_(4)leads to a 5.9-fold increase in charge separation efficiency compared to pristine ZnIn_(2)S_(4).The optimized Co_(3)O_(4)/ZIS-3 photocatalyst(3 wt% Co_(3)O_(4)loading)exhibits exceptional selectivity and yield for 2,5-diformylfuran(DFF)under visible light irradiation,achieving 70.4%DFF selectivity with a 5.4-fold enhancement compared to pristine ZnIn_(2)S_(4).Scavenger experiments and electron spin resonance(ESR)spectroscopy indicate that superoxide radicals(O_(2)^(-))and h^(+)are the main active species driving the photocatalytic oxidation of HMF.Molecular simulations reveal that the activation of HMF and the transformation of the intermediate^(*)MF to^(*)DFF are more favorable over the Co_(3)O_(4)/ZIS composite due to lower activation barriers compared to those over ZnIn_(2)S_(4).Through this work,we aim to design highly efficient and affordable photocatalysts for biomass valorization and contribute valuable insights into the mechanisms of photocatalytic oxidation of HMF.
基金Project(52004333)supported by the National Science Foundation of ChinaProject(2021CB1002)supported by Hunan International Joint Research Center for Efficient and Clean Utilization of Critical Metal Mineral Resources,China。
文摘The efficient recovery of fluorite is paid more and more attention with the increasing application especially in strategic emerging industries.In this study,acrylic acid-2-acrylamido-2-methylpropane sulfonic acid copolymer(AAAMPS)was first used as the depressant in fluorite flotation,and its effect on the flotation separation of fluorite and dolomite in sodium oleate(NaOL)system was investigated.The depression mechanism was analyzed by contact angle measurement,zeta potential test,FTIR and XPS analyses.The micro-flotation test results showed that dolomite can be inhibited in fluorite flotation system in the addition of 2 mg/L AA-AMPS and 20 mg/L NaOL at pH 10.The CaF_(2) grade increased from 49.85%in the artificial mixed mineral to 89.60%in the fluorite concentrate.The depression mechanism indicated that AA-AMPS could adsorb strongly on dolomite surface by the chelation with Ca and Mg active sites.Moreover,the further adsorption of NaOL on dolomite surface was prevented by the AA-AMPS adsorption,but that on fluorite surface was little affected,thereby increasing the difference in the hydrophobicity and floatability of the two minerals.
基金financial support from the National Key Research and Development Program of China(No.2021YFF0600704).
文摘The hydroformylation of olefins,known as the"oxo reaction",involves the use of syngas(CO/H_(2))to produce aldehyde with an additional carbon atom.However,side reactions such as the isomerization or hydrogenation of olefins often result in unexpected products and other by-products.Recent efforts in developing efficient ligands represent the most effective approach to addressing these challenges.In this study,we described a Bis-OPNN phosphorus ligand facilitated Rh-catalyzed hydroformylation with a high degree of linear selectivity across various olefins.Under mild conditions,a broad range of olefins were efficiently converted into linear aldehydes with high yields and excellent regioselectivity.The protocol also showed impressive functional group tolerance and was successfully applied to modify drugs and natural products,including the total synthesis of(±)-crispine A.Preliminary mechanistic studies revealed that this Bis-OPNN phosphorus ligand anchoring the rhodium catalyst is crucial for controlling the linear selectivity.
基金financially supported by the National Key Research and Development Program of China(No.2022YFC3703103)National Natural Science Foundation of China(Nos.22206053,42277427)the Guangzhou Science and Technology Plan Project(No.2024A04J4058)。
文摘Bisphenol A(BPA)has threatened ecological safety and human health due to its endocrine disrupting effect and widely diffused in the environment.Peroxymonosulfate(PMS)based on oxidation technology exhibits good potential for environmental remediation whereas the highly efficient activator needs to be developed.Herein,the Bi OBr(BOB)was synthesized to efficiently activate PMS to remove 95.6%of BPA within 60 min.The observed rate constant of BPA removal in BOB/PMS system is 0.049 min^(-1),which is 60 and 148 times to that of the BOB and PMS processes separately and 129 times to the compared Bi OCl(BOC)/PMS system,respectively.Comparison experiments and analytic methods demonstrate that BOB with a larger content of oxygen vacancies(Ov)can act as the bridge of electron transfer between Bi^(3+)/Bi^(4+)with PMS to enhance the activation ability for PMS,resulting in the production of abundant reactive oxygen species(O_(2)^(·-)and ^(1)O_(2)).Additionally,the breakdown processes of BPA and the toxicity of its byproducts were uncovered,and the potential for actual water treatment was evaluated to confirm the detoxification,efficiency,stability and practical use of the BOB/PMS system for eliminating BPA.This study may widen the application of traditional semiconductors and develop the cost-effective PMS activation methods for environmental remediation.