There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because the...There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring.展开更多
A new modeling and monitoring approach for multi-mode processes is proposed.The method of similarity measure(SM) and kernel principal component analysis(KPCA) are integrated to construct SM-KPCA monitoring scheme,wher...A new modeling and monitoring approach for multi-mode processes is proposed.The method of similarity measure(SM) and kernel principal component analysis(KPCA) are integrated to construct SM-KPCA monitoring scheme,where SM method serves as the separation of common subspace and specific subspace.Compared with the traditional methods,the main contributions of this work are:1) SM consisted of two measures of distance and angle to accommodate process characters.The different monitoring effect involves putting on the different weight,which would simplify the monitoring model structure and enhance its reliability and robustness.2) The proposed method can be used to find faults by the common space and judge which mode the fault belongs to by the specific subspace.Results of algorithm analysis and fault detection experiments indicate the validity and practicability of the presented method.展开更多
Carbon dots(CDs)-based composites have shown impressive performance in fields of information encryption and sensing,however,a great challenge is to simultaneously implement multi-mode luminescence and room-temperature...Carbon dots(CDs)-based composites have shown impressive performance in fields of information encryption and sensing,however,a great challenge is to simultaneously implement multi-mode luminescence and room-temperature phosphorescence(RTP)detection in single system due to the formidable synthesis.Herein,a multifunctional composite of Eu&CDs@p RHO has been designed by co-assembly strategy and prepared via a facile calcination and impregnation treatment.Eu&CDs@p RHO exhibits intense fluorescence(FL)and RTP coming from two individual luminous centers,Eu3+in the free pores and CDs in the interrupted structure of RHO zeolite.Unique four-mode color outputs including pink(Eu^(3+),ex.254 nm),light violet(CDs,ex.365 nm),blue(CDs,254 nm off),and green(CDs,365 nm off)could be realized,on the basis of it,a preliminary application of advanced information encoding has been demonstrated.Given the free pores of matrix and stable RTP in water of confined CDs,a visual RTP detection of Fe^(3+)ions is achieved with the detection limit as low as 9.8μmol/L.This work has opened up a new perspective for the strategic amalgamation of luminous vips with porous zeolite to construct the advanced functional materials.展开更多
Prostate cancer(PCa)is characterized by high incidence and propensity for easy metastasis,presenting significant challenges in clinical diagnosis and treatment.Tumor microenvironment(TME)-responsive nanomaterials prov...Prostate cancer(PCa)is characterized by high incidence and propensity for easy metastasis,presenting significant challenges in clinical diagnosis and treatment.Tumor microenvironment(TME)-responsive nanomaterials provide a promising prospect for imaging-guided precision therapy.Considering that tumor-derived alkaline phosphatase(ALP)is over-expressed in metastatic PCa,it makes a great chance to develop a theranostics system with ALP responsive in the TME.Herein,an ALP-responsive aggregationinduced emission luminogens(AIEgens)nanoprobe AMNF self-assembly was designed for enhancing the diagnosis and treatment of metastatic PCa.The nanoprobe exhibited self-aggregation in the presence of ALP resulted in aggregation-induced fluorescence,and enhanced accumulation and prolonged retention period at the tumor site.In terms of detection,the fluorescence(FL)/computed tomography(CT)/magnetic resonance(MR)multi-mode imaging effect of nanoprobe was significantly improved post-aggregation,enabling precise diagnosis through the amalgamation of multiple imaging modes.Enhanced CT/MR imaging can achieve assist preoperative tumor diagnosis,and enhanced FL imaging technology can achieve“intraoperative visual navigation”,showing its potential application value in clinical tumor detection and surgical guidance.In terms of treatment,AMNF showed strong absorption in the near infrared region after aggregation,which improved the photothermal treatment effect.Overall,our work developed an effective aggregation-enhanced theranostic strategy for ALP-related cancers.展开更多
Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power li...Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power line communication(DC-PLC)enables real-time data transmission on DC power lines.With traffic adaptation,DC-PLC can be integrated with other complementary media such as 5G to reduce transmission delay and improve reliability.However,traffic adaptation for DC-PLC and 5G integration still faces the challenges such as coupling between traffic admission control and traffic partition,dimensionality curse,and the ignorance of extreme event occurrence.To address these challenges,we propose a deep reinforcement learning(DRL)-based delay sensitive and reliable traffic adaptation algorithm(DSRTA)to minimize the total queuing delay under the constraints of traffic admission control,queuing delay,and extreme events occurrence probability.DSRTA jointly optimizes traffic admission control and traffic partition,and enables learning-based intelligent traffic adaptation.The long-term constraints are incorporated into both state and bound of drift-pluspenalty to achieve delay awareness and enforce reliability guarantee.Simulation results show that DSRTA has lower queuing delay and more reliable quality of service(QoS)guarantee than other state-of-the-art algorithms.展开更多
The all-wheel drive(AWD)hybrid system is a research focus on high-performance new energy vehicles that can meet the demands of dynamic performance and passing ability.Simultaneous optimization of the power and economy...The all-wheel drive(AWD)hybrid system is a research focus on high-performance new energy vehicles that can meet the demands of dynamic performance and passing ability.Simultaneous optimization of the power and economy of hybrid vehicles becomes an issue.A unique multi-mode coupling(MMC)AWD hybrid system is presented to realize the distributed and centralized driving of the front and rear axles to achieve vectored distribution and full utilization of the system power between the axles of vehicles.Based on the parameters of the benchmarking model of a hybrid vehicle,the best model-predictive control-based energy management strategy is proposed.First,the drive system model was built after the analysis of the MMC-AWD’s drive modes.Next,three fundamental strategies were established to address power distribution adjustment and battery SOC maintenance when the SOC changed,which was followed by the design of a road driving force observer.Then,the energy consumption rate in the average time domain was processed before designing the minimum fuel consumption controller based on the equivalent fuel consumption coefficient.Finally,the advantage of the MMC-AWD was confirmed by comparison with the dynamic performance and economy of the BYD Song PLUS DMI-AWD.The findings indicate that,in comparison to the comparative hybrid system at road adhesion coefficients of 0.8 and 0.6,the MMC-AWD’s capacity to accelerate increases by 5.26%and 7.92%,respectively.When the road adhesion coefficient is 0.8,0.6,and 0.4,the maximum climbing ability increases by 14.22%,12.88%,and 4.55%,respectively.As a result,the dynamic performance is greatly enhanced,and the fuel savings rate per 100 km of mileage reaches 12.06%,which is also very economical.The proposed control strategies for the new hybrid AWD vehicle can optimize the power and economy simultaneously.展开更多
This work evaluates the viability of a cutting-edge flexible wing prototype actuated by Shape Memory Alloy(SMA)wire actuators.Such flexible wings have garnered significant interest for their potential to enhance aerod...This work evaluates the viability of a cutting-edge flexible wing prototype actuated by Shape Memory Alloy(SMA)wire actuators.Such flexible wings have garnered significant interest for their potential to enhance aerodynamic efficiency by mitigating noise and delaying flow separation.SMA actuators are particularly advantageous due to their superior power-to-weight ratio and adaptive response,making them increasingly favored in morphing aircraft applications.Our methodology begins with a detailed delineation of the fishbone camber morphing wing rib structure,followed by the construction of a multi-mode morphing wing segment through 3D-printed rib assembly.Comprehensive testing of the SMA wire actuators’actuation capacity and efficiency was conducted to establish their operational parameters.Subsequent experimental analyses focused on the bi-directional and reciprocating morphing performance of the fishbone wing rib,which incorporates SMA wires on the upper and lower sides.These experiments confirmed the segment’s multi-mode morphing abilities.Aerodynamic assessments have demonstrated that our design substantially improves the Lift-to-Drag ratio(L/D)when compared to conventional rigid wings.Finally,two phases of flight tests demonstrated the feasibility of SMA as an aircraft actuator and the validity of flexible wing structures to adjust the aircraft attitude,respectively.展开更多
Recent reports suggest that aging is not solely a physiological process in living beings;instead, it should be considered a pathological process or disease(Amorim et al., 2022). Consequently, this process involves a w...Recent reports suggest that aging is not solely a physiological process in living beings;instead, it should be considered a pathological process or disease(Amorim et al., 2022). Consequently, this process involves a wide range of factors, spanning from genetic to environmental factors, and even includes the gut microbiome(GM)(Mayer et al., 2022). All these processes coincide at some point in the inflammatory process, oxidative stress, and apoptosis, at different degrees in various organs and systems that constitute a living organism(Mayer et al., 2022;AguilarHernández et al., 2023).展开更多
In recent years,how to efficiently and accurately identify multi-model fake news has become more challenging.First,multi-model data provides more evidence but not all are equally important.Secondly,social structure in...In recent years,how to efficiently and accurately identify multi-model fake news has become more challenging.First,multi-model data provides more evidence but not all are equally important.Secondly,social structure information has proven to be effective in fake news detection and how to combine it while reducing the noise information is critical.Unfortunately,existing approaches fail to handle these problems.This paper proposes a multi-model fake news detection framework based on Tex-modal Dominance and fusing Multiple Multi-model Cues(TD-MMC),which utilizes three valuable multi-model clues:text-model importance,text-image complementary,and text-image inconsistency.TD-MMC is dominated by textural content and assisted by image information while using social network information to enhance text representation.To reduce the irrelevant social structure’s information interference,we use a unidirectional cross-modal attention mechanism to selectively learn the social structure’s features.A cross-modal attention mechanism is adopted to obtain text-image cross-modal features while retaining textual features to reduce the loss of important information.In addition,TD-MMC employs a new multi-model loss to improve the model’s generalization ability.Extensive experiments have been conducted on two public real-world English and Chinese datasets,and the results show that our proposed model outperforms the state-of-the-art methods on classification evaluation metrics.展开更多
Since there are not enough fault data in historical data sets, it is very difficult to diagnose faults for batch processes. In addition, a complete batch trajectory can be obtained till the end of its operation. In or...Since there are not enough fault data in historical data sets, it is very difficult to diagnose faults for batch processes. In addition, a complete batch trajectory can be obtained till the end of its operation. In order to overcome the need for estimated or filled up future unmeasured values in the online fault diagnosis, sufficiently utilize the finite information of faults, and enhance the diagnostic performance, an improved multi-model Fisher discriminant analysis is represented. The trait of the proposed method is that the training data sets are made of the current measured information and the past major discriminant information, and not only the current information or the whole batch data. An industrial typical multi-stage streptomycin fermentation process is used to test the performance of fault diagnosis of the proposed method.展开更多
Lanthanum-doped double halide perovskite has attracted increasing interest due to its distinctive upconversion and near-infrared(NIR) luminous characteristics.Here,erbium ion(Er^(3+)) doped Cs_(2)(Na/Ag)BiCl_(6) micro...Lanthanum-doped double halide perovskite has attracted increasing interest due to its distinctive upconversion and near-infrared(NIR) luminous characteristics.Here,erbium ion(Er^(3+)) doped Cs_(2)(Na/Ag)BiCl_(6) microcrystals(MCs) were synthesized and proved to be one of the most prospective candidates for optical thermometry.The enhancement of both white light from self-trapped exciton emission and NIR emission from Er^(3+) ion of Cs_(2)AgBiCl_(6) microcrystals is caused by lattice distortion due to Na^(+) ion doping.Fluorescence intensity ratio and lifetime methods provide self-referenced and sensitive thermometry under 405 and/or 980 nm laser excitation at the temperatures from 80 to 480 K.Besides,the maximum values of relative and absolute sensitivity of 3.62%/K and 27//K can be achieved in the low to high temperature range under 980 and 405 nm laser co-excitation.Through the experimental analysis,Er^(3+)doped Cs_(2)(Na/Ag)BiCl_(6) double perovskite is considered to be an ideal self-calibrating thermometric material due to its good long-term stability and multi-mode function of excitation and detection.展开更多
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a...Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.展开更多
Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the p...Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules.展开更多
Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network act...Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network active layer morphology,featuring a bulk p-in structure and proper vertical segregation achieved through additive-assisted layer-by-layer deposition.This optimized hierarchical gradient fibrillar morphology and optical management synergistically facilitates exciton diffusion,reduces recombination losses,and enhances light capture capability.This approach not only offers a solution to achieving high-efficiency devices but also demonstrates the potential for commercial applications of OSCs.展开更多
Since the current slagging of argon blowing refining process is relatively fixed,which cannot adapt to the fluctuation of converter smelting process,it poses the problems of poor metallurgical property of refining sla...Since the current slagging of argon blowing refining process is relatively fixed,which cannot adapt to the fluctuation of converter smelting process,it poses the problems of poor metallurgical property of refining slag and a large amount of molten heel.An optimization system coupled with multiple models was proposed to dynamic control the ladle slagging in the argon blowing refining process.It can compile the optimal dynamic slagging scheme in real time under the guarantee of deoxidation performance and reasonable fluidity.The argon blowing refining slag composition range of CaO/Al_(2)O_(3)=1.3-1.7,CaO/SiO_(2)=6-12,w(MgO)=2%-6% was determined based on FeO activity and liquidus temperature by equilibrium thermodynamic calculation.In addition,it demonstrated better performance in the viscosity prediction task of the presented Visual Geometry Group 16-like one-dimensional convolutional neural network deep learning algorithm versus the Random Forest ensemble learning algorithm,as the adjusted coefficients of determination were 0.9712 and 0.9637,respectively.After the system was applied in operation,the argon blowing refining process was stable,and the steel yield was enhanced,which promoted the intelligent steelmaking level while achieving the cost reduction and efficiency improvement.展开更多
Objective To develop a non-invasive predictive model for coronary artery stenosis severity based on adaptive multi-modal integration of traditional Chinese and western medicine data.Methods Clinical indicators,echocar...Objective To develop a non-invasive predictive model for coronary artery stenosis severity based on adaptive multi-modal integration of traditional Chinese and western medicine data.Methods Clinical indicators,echocardiographic data,traditional Chinese medicine(TCM)tongue manifestations,and facial features were collected from patients who underwent coro-nary computed tomography angiography(CTA)in the Cardiac Care Unit(CCU)of Shanghai Tenth People's Hospital between May 1,2023 and May 1,2024.An adaptive weighted multi-modal data fusion(AWMDF)model based on deep learning was constructed to predict the severity of coronary artery stenosis.The model was evaluated using metrics including accura-cy,precision,recall,F1 score,and the area under the receiver operating characteristic(ROC)curve(AUC).Further performance assessment was conducted through comparisons with six ensemble machine learning methods,data ablation,model component ablation,and various decision-level fusion strategies.Results A total of 158 patients were included in the study.The AWMDF model achieved ex-cellent predictive performance(AUC=0.973,accuracy=0.937,precision=0.937,recall=0.929,and F1 score=0.933).Compared with model ablation,data ablation experiments,and various traditional machine learning models,the AWMDF model demonstrated superior per-formance.Moreover,the adaptive weighting strategy outperformed alternative approaches,including simple weighting,averaging,voting,and fixed-weight schemes.Conclusion The AWMDF model demonstrates potential clinical value in the non-invasive prediction of coronary artery disease and could serve as a tool for clinical decision support.展开更多
Fenton and Fenton-like processes,which could produce highly reactive species to degrade organic contaminants,have been widely used in the field of wastewater treatment.Therein,the chemistry of Fenton process including...Fenton and Fenton-like processes,which could produce highly reactive species to degrade organic contaminants,have been widely used in the field of wastewater treatment.Therein,the chemistry of Fenton process including the nature of active oxidants,the complicated reactions involved,and the behind reason for its strongly pH-dependent performance,is the basis for the application of Fenton and Fenton-like processes in wastewater treatment.Nevertheless,the conflicting views still exist about the mechanism of the Fenton process.For instance,reaching a unanimous consensus on the nature of active oxidants(hydroxyl radical or tetravalent iron)in this process remains challenging.This review comprehensively examined the mechanism of the Fenton process including the debate on the nature of active oxidants,reactions involved in the Fenton process,and the behind reason for the pH-dependent degradation of contaminants in the Fenton process.Then,we summarized several strategies that promote the Fe(Ⅱ)/Fe(Ⅲ)cycle,reduce the competitive consumption of active oxidants by side reactions,and replace the Fenton reagent,thus improving the performance of the Fenton process.Furthermore,advances for the future were proposed including the demand for the high-accuracy identification of active oxidants and taking advantages of the characteristic of target contaminants during the degradation of contaminants by the Fenton process.展开更多
The Hualien M 7.3 earthquake on April 3,2024,was a significant and strong earthquake in Taiwan,China in the past two decades.The rupture process of the main shock and strong aftershocks is of great significance to the...The Hualien M 7.3 earthquake on April 3,2024,was a significant and strong earthquake in Taiwan,China in the past two decades.The rupture process of the main shock and strong aftershocks is of great significance to the subsequent seismic activity and seismogenic tectonic research.Based on local strong-motion data,we used the IDS(Iterative Deconvolution and Stacking)method to obtain the rupture process of the mainshock and two strong aftershocks on the 23rd.The rupture of the mainshock was mainly unilateral,lasting 31 s,with a maximum slip of 2m,and the depth of the large slip zone is about 41–49 km.There is a clear difference between the rupture depth of the main shock and the two strong aftershocks.The depths of the large slip zones of the latter two are 3–9 km and 8–10 km,respectively.There is also a significant difference in the seismogenic fault between the mainshock and the aftershocks,and we believe that there are two seismogenic fault zones in the study area,the deep and the shallow fault zone.The slip of the deep faults activates the shallow faults.展开更多
In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment techni...In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment technique known as ultrasonic vibration rapid processing(UVRP),which enables the formation of high-density strong magnetic α-Fe clusters,thereby enhancing the soft magnetic properties of Fe_(78)Si(13)B_(9) amorphous alloy ribbon.展开更多
基金Project(61374140)supported by the National Natural Science Foundation of China
文摘There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring.
基金Projects(61273163,61325015,61304121)supported by the National Natural Science Foundation of China
文摘A new modeling and monitoring approach for multi-mode processes is proposed.The method of similarity measure(SM) and kernel principal component analysis(KPCA) are integrated to construct SM-KPCA monitoring scheme,where SM method serves as the separation of common subspace and specific subspace.Compared with the traditional methods,the main contributions of this work are:1) SM consisted of two measures of distance and angle to accommodate process characters.The different monitoring effect involves putting on the different weight,which would simplify the monitoring model structure and enhance its reliability and robustness.2) The proposed method can be used to find faults by the common space and judge which mode the fault belongs to by the specific subspace.Results of algorithm analysis and fault detection experiments indicate the validity and practicability of the presented method.
基金supported by the National Natural Science Foundation of China(No.22288101)the 111 Project(No.B17020)。
文摘Carbon dots(CDs)-based composites have shown impressive performance in fields of information encryption and sensing,however,a great challenge is to simultaneously implement multi-mode luminescence and room-temperature phosphorescence(RTP)detection in single system due to the formidable synthesis.Herein,a multifunctional composite of Eu&CDs@p RHO has been designed by co-assembly strategy and prepared via a facile calcination and impregnation treatment.Eu&CDs@p RHO exhibits intense fluorescence(FL)and RTP coming from two individual luminous centers,Eu3+in the free pores and CDs in the interrupted structure of RHO zeolite.Unique four-mode color outputs including pink(Eu^(3+),ex.254 nm),light violet(CDs,ex.365 nm),blue(CDs,254 nm off),and green(CDs,365 nm off)could be realized,on the basis of it,a preliminary application of advanced information encoding has been demonstrated.Given the free pores of matrix and stable RTP in water of confined CDs,a visual RTP detection of Fe^(3+)ions is achieved with the detection limit as low as 9.8μmol/L.This work has opened up a new perspective for the strategic amalgamation of luminous vips with porous zeolite to construct the advanced functional materials.
基金supported by Natural Science Foundation of Jilin Province(No.SKL202302002)Key Research and Development project of Jilin Provincial Science and Technology Department(No.20210204142YY)+2 种基金The Science and Technology Development Program of Jilin Province(No.2020122256JC)Beijing Kechuang Medical Development Foundation Fund of China(No.KC2023-JX-0186BQ079)Talent Reserve Program(TRP),the First Hospital of Jilin University(No.JDYY-TRP-2024007)。
文摘Prostate cancer(PCa)is characterized by high incidence and propensity for easy metastasis,presenting significant challenges in clinical diagnosis and treatment.Tumor microenvironment(TME)-responsive nanomaterials provide a promising prospect for imaging-guided precision therapy.Considering that tumor-derived alkaline phosphatase(ALP)is over-expressed in metastatic PCa,it makes a great chance to develop a theranostics system with ALP responsive in the TME.Herein,an ALP-responsive aggregationinduced emission luminogens(AIEgens)nanoprobe AMNF self-assembly was designed for enhancing the diagnosis and treatment of metastatic PCa.The nanoprobe exhibited self-aggregation in the presence of ALP resulted in aggregation-induced fluorescence,and enhanced accumulation and prolonged retention period at the tumor site.In terms of detection,the fluorescence(FL)/computed tomography(CT)/magnetic resonance(MR)multi-mode imaging effect of nanoprobe was significantly improved post-aggregation,enabling precise diagnosis through the amalgamation of multiple imaging modes.Enhanced CT/MR imaging can achieve assist preoperative tumor diagnosis,and enhanced FL imaging technology can achieve“intraoperative visual navigation”,showing its potential application value in clinical tumor detection and surgical guidance.In terms of treatment,AMNF showed strong absorption in the near infrared region after aggregation,which improved the photothermal treatment effect.Overall,our work developed an effective aggregation-enhanced theranostic strategy for ALP-related cancers.
基金supported by the Science and Technology Project of State Grid Corporation of China under grant 52094021N010(5400-202199534A-0-5-ZN)。
文摘Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power line communication(DC-PLC)enables real-time data transmission on DC power lines.With traffic adaptation,DC-PLC can be integrated with other complementary media such as 5G to reduce transmission delay and improve reliability.However,traffic adaptation for DC-PLC and 5G integration still faces the challenges such as coupling between traffic admission control and traffic partition,dimensionality curse,and the ignorance of extreme event occurrence.To address these challenges,we propose a deep reinforcement learning(DRL)-based delay sensitive and reliable traffic adaptation algorithm(DSRTA)to minimize the total queuing delay under the constraints of traffic admission control,queuing delay,and extreme events occurrence probability.DSRTA jointly optimizes traffic admission control and traffic partition,and enables learning-based intelligent traffic adaptation.The long-term constraints are incorporated into both state and bound of drift-pluspenalty to achieve delay awareness and enforce reliability guarantee.Simulation results show that DSRTA has lower queuing delay and more reliable quality of service(QoS)guarantee than other state-of-the-art algorithms.
基金Supported by Hebei Provincial Natural Science Foundation of China(Grant Nos.E2020203174,E2020203078)S&T Program of Hebei Province of China(Grant No.226Z2202G)Science Research Project of Hebei Provincial Education Department of China(Grant No.ZD2022029).
文摘The all-wheel drive(AWD)hybrid system is a research focus on high-performance new energy vehicles that can meet the demands of dynamic performance and passing ability.Simultaneous optimization of the power and economy of hybrid vehicles becomes an issue.A unique multi-mode coupling(MMC)AWD hybrid system is presented to realize the distributed and centralized driving of the front and rear axles to achieve vectored distribution and full utilization of the system power between the axles of vehicles.Based on the parameters of the benchmarking model of a hybrid vehicle,the best model-predictive control-based energy management strategy is proposed.First,the drive system model was built after the analysis of the MMC-AWD’s drive modes.Next,three fundamental strategies were established to address power distribution adjustment and battery SOC maintenance when the SOC changed,which was followed by the design of a road driving force observer.Then,the energy consumption rate in the average time domain was processed before designing the minimum fuel consumption controller based on the equivalent fuel consumption coefficient.Finally,the advantage of the MMC-AWD was confirmed by comparison with the dynamic performance and economy of the BYD Song PLUS DMI-AWD.The findings indicate that,in comparison to the comparative hybrid system at road adhesion coefficients of 0.8 and 0.6,the MMC-AWD’s capacity to accelerate increases by 5.26%and 7.92%,respectively.When the road adhesion coefficient is 0.8,0.6,and 0.4,the maximum climbing ability increases by 14.22%,12.88%,and 4.55%,respectively.As a result,the dynamic performance is greatly enhanced,and the fuel savings rate per 100 km of mileage reaches 12.06%,which is also very economical.The proposed control strategies for the new hybrid AWD vehicle can optimize the power and economy simultaneously.
基金co-supported by the National Key R&D Program of China(No.2022YFB3402200)the National Natural Science Foundation of China(Nos.12372123,12272305 and 12372156)+2 种基金the Key Project of NSFC,China(Nos.92271205,12032018 and 12220101002)the Fundamental Research Funds for the Central Universities of China(No.G2022KY0606)the Basic Research Program of China(No.JCKY2022603C016).
文摘This work evaluates the viability of a cutting-edge flexible wing prototype actuated by Shape Memory Alloy(SMA)wire actuators.Such flexible wings have garnered significant interest for their potential to enhance aerodynamic efficiency by mitigating noise and delaying flow separation.SMA actuators are particularly advantageous due to their superior power-to-weight ratio and adaptive response,making them increasingly favored in morphing aircraft applications.Our methodology begins with a detailed delineation of the fishbone camber morphing wing rib structure,followed by the construction of a multi-mode morphing wing segment through 3D-printed rib assembly.Comprehensive testing of the SMA wire actuators’actuation capacity and efficiency was conducted to establish their operational parameters.Subsequent experimental analyses focused on the bi-directional and reciprocating morphing performance of the fishbone wing rib,which incorporates SMA wires on the upper and lower sides.These experiments confirmed the segment’s multi-mode morphing abilities.Aerodynamic assessments have demonstrated that our design substantially improves the Lift-to-Drag ratio(L/D)when compared to conventional rigid wings.Finally,two phases of flight tests demonstrated the feasibility of SMA as an aircraft actuator and the validity of flexible wing structures to adjust the aircraft attitude,respectively.
基金funded by CONAHCYT grant(252808)to GFCONAHCYT’s“Estancias Posdoctorales por México”program(662350)to HTB。
文摘Recent reports suggest that aging is not solely a physiological process in living beings;instead, it should be considered a pathological process or disease(Amorim et al., 2022). Consequently, this process involves a wide range of factors, spanning from genetic to environmental factors, and even includes the gut microbiome(GM)(Mayer et al., 2022). All these processes coincide at some point in the inflammatory process, oxidative stress, and apoptosis, at different degrees in various organs and systems that constitute a living organism(Mayer et al., 2022;AguilarHernández et al., 2023).
基金This research was funded by the General Project of Philosophy and Social Science of Heilongjiang Province,Grant Number:20SHB080.
文摘In recent years,how to efficiently and accurately identify multi-model fake news has become more challenging.First,multi-model data provides more evidence but not all are equally important.Secondly,social structure information has proven to be effective in fake news detection and how to combine it while reducing the noise information is critical.Unfortunately,existing approaches fail to handle these problems.This paper proposes a multi-model fake news detection framework based on Tex-modal Dominance and fusing Multiple Multi-model Cues(TD-MMC),which utilizes three valuable multi-model clues:text-model importance,text-image complementary,and text-image inconsistency.TD-MMC is dominated by textural content and assisted by image information while using social network information to enhance text representation.To reduce the irrelevant social structure’s information interference,we use a unidirectional cross-modal attention mechanism to selectively learn the social structure’s features.A cross-modal attention mechanism is adopted to obtain text-image cross-modal features while retaining textual features to reduce the loss of important information.In addition,TD-MMC employs a new multi-model loss to improve the model’s generalization ability.Extensive experiments have been conducted on two public real-world English and Chinese datasets,and the results show that our proposed model outperforms the state-of-the-art methods on classification evaluation metrics.
基金Supported by the National Natural Science Foundation of China (No.60421002).
文摘Since there are not enough fault data in historical data sets, it is very difficult to diagnose faults for batch processes. In addition, a complete batch trajectory can be obtained till the end of its operation. In order to overcome the need for estimated or filled up future unmeasured values in the online fault diagnosis, sufficiently utilize the finite information of faults, and enhance the diagnostic performance, an improved multi-model Fisher discriminant analysis is represented. The trait of the proposed method is that the training data sets are made of the current measured information and the past major discriminant information, and not only the current information or the whole batch data. An industrial typical multi-stage streptomycin fermentation process is used to test the performance of fault diagnosis of the proposed method.
基金Project supported by the Heilongjiang Provincial Key Laboratory of Micro-nano Sensitive Devices and SystemsBasic Research Project for Outstanding Young Teachers of Heilongjiang Province (YQJH2023128)Cultivation Project of Double First-class Initiative Discipline by Heilongjiang Province(LJGXCG2022-061)。
文摘Lanthanum-doped double halide perovskite has attracted increasing interest due to its distinctive upconversion and near-infrared(NIR) luminous characteristics.Here,erbium ion(Er^(3+)) doped Cs_(2)(Na/Ag)BiCl_(6) microcrystals(MCs) were synthesized and proved to be one of the most prospective candidates for optical thermometry.The enhancement of both white light from self-trapped exciton emission and NIR emission from Er^(3+) ion of Cs_(2)AgBiCl_(6) microcrystals is caused by lattice distortion due to Na^(+) ion doping.Fluorescence intensity ratio and lifetime methods provide self-referenced and sensitive thermometry under 405 and/or 980 nm laser excitation at the temperatures from 80 to 480 K.Besides,the maximum values of relative and absolute sensitivity of 3.62%/K and 27//K can be achieved in the low to high temperature range under 980 and 405 nm laser co-excitation.Through the experimental analysis,Er^(3+)doped Cs_(2)(Na/Ag)BiCl_(6) double perovskite is considered to be an ideal self-calibrating thermometric material due to its good long-term stability and multi-mode function of excitation and detection.
基金supported by the General Program of the National Natural Science Foundation of China(No.52274326)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202109)the Seventh Batch of Ten Thousand Talents Plan of China(No.ZX20220553).
文摘Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.
基金supported by the National Natural Science Foundation of China(51767017)the Basic Research Innovation Group Project of Gansu Province(18JR3RA133)the Industrial Support and Guidance Project of Universities in Gansu Province(2022CYZC-22).
文摘Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules.
基金Technology Development Program of Jilin Province(YDZJ202201ZYTS640)the National Key Research and Development Program of China(2022YFB4200400)funded by MOST+4 种基金the National Natural Science Foundation of China(52172048 and 52103221)Shandong Provincial Natural Science Foundation(ZR2021QB024 and ZR2021ZD06)Guangdong Basic and Applied Basic Research Foundation(2023A1515012323,2023A1515010943,and 2024A1515010023)the Qingdao New Energy Shandong Laboratory open Project(QNESL OP 202309)the Fundamental Research Funds of Shandong University.
文摘Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network active layer morphology,featuring a bulk p-in structure and proper vertical segregation achieved through additive-assisted layer-by-layer deposition.This optimized hierarchical gradient fibrillar morphology and optical management synergistically facilitates exciton diffusion,reduces recombination losses,and enhances light capture capability.This approach not only offers a solution to achieving high-efficiency devices but also demonstrates the potential for commercial applications of OSCs.
基金the fund support from the Natural Science Foundation of Anhui Provincial Education Department(KJ2021A0358)the National Natural Science Foundation of China(51804004).
文摘Since the current slagging of argon blowing refining process is relatively fixed,which cannot adapt to the fluctuation of converter smelting process,it poses the problems of poor metallurgical property of refining slag and a large amount of molten heel.An optimization system coupled with multiple models was proposed to dynamic control the ladle slagging in the argon blowing refining process.It can compile the optimal dynamic slagging scheme in real time under the guarantee of deoxidation performance and reasonable fluidity.The argon blowing refining slag composition range of CaO/Al_(2)O_(3)=1.3-1.7,CaO/SiO_(2)=6-12,w(MgO)=2%-6% was determined based on FeO activity and liquidus temperature by equilibrium thermodynamic calculation.In addition,it demonstrated better performance in the viscosity prediction task of the presented Visual Geometry Group 16-like one-dimensional convolutional neural network deep learning algorithm versus the Random Forest ensemble learning algorithm,as the adjusted coefficients of determination were 0.9712 and 0.9637,respectively.After the system was applied in operation,the argon blowing refining process was stable,and the steel yield was enhanced,which promoted the intelligent steelmaking level while achieving the cost reduction and efficiency improvement.
基金Construction Program of the Key Discipline of State Administration of Traditional Chinese Medicine of China(ZYYZDXK-2023069)Research Project of Shanghai Municipal Health Commission (2024QN018)Shanghai University of Traditional Chinese Medicine Science and Technology Development Program (23KFL005)。
文摘Objective To develop a non-invasive predictive model for coronary artery stenosis severity based on adaptive multi-modal integration of traditional Chinese and western medicine data.Methods Clinical indicators,echocardiographic data,traditional Chinese medicine(TCM)tongue manifestations,and facial features were collected from patients who underwent coro-nary computed tomography angiography(CTA)in the Cardiac Care Unit(CCU)of Shanghai Tenth People's Hospital between May 1,2023 and May 1,2024.An adaptive weighted multi-modal data fusion(AWMDF)model based on deep learning was constructed to predict the severity of coronary artery stenosis.The model was evaluated using metrics including accura-cy,precision,recall,F1 score,and the area under the receiver operating characteristic(ROC)curve(AUC).Further performance assessment was conducted through comparisons with six ensemble machine learning methods,data ablation,model component ablation,and various decision-level fusion strategies.Results A total of 158 patients were included in the study.The AWMDF model achieved ex-cellent predictive performance(AUC=0.973,accuracy=0.937,precision=0.937,recall=0.929,and F1 score=0.933).Compared with model ablation,data ablation experiments,and various traditional machine learning models,the AWMDF model demonstrated superior per-formance.Moreover,the adaptive weighting strategy outperformed alternative approaches,including simple weighting,averaging,voting,and fixed-weight schemes.Conclusion The AWMDF model demonstrates potential clinical value in the non-invasive prediction of coronary artery disease and could serve as a tool for clinical decision support.
基金supported by the National Natural Science Foundation of China(Nos.22206050 and 52270047).
文摘Fenton and Fenton-like processes,which could produce highly reactive species to degrade organic contaminants,have been widely used in the field of wastewater treatment.Therein,the chemistry of Fenton process including the nature of active oxidants,the complicated reactions involved,and the behind reason for its strongly pH-dependent performance,is the basis for the application of Fenton and Fenton-like processes in wastewater treatment.Nevertheless,the conflicting views still exist about the mechanism of the Fenton process.For instance,reaching a unanimous consensus on the nature of active oxidants(hydroxyl radical or tetravalent iron)in this process remains challenging.This review comprehensively examined the mechanism of the Fenton process including the debate on the nature of active oxidants,reactions involved in the Fenton process,and the behind reason for the pH-dependent degradation of contaminants in the Fenton process.Then,we summarized several strategies that promote the Fe(Ⅱ)/Fe(Ⅲ)cycle,reduce the competitive consumption of active oxidants by side reactions,and replace the Fenton reagent,thus improving the performance of the Fenton process.Furthermore,advances for the future were proposed including the demand for the high-accuracy identification of active oxidants and taking advantages of the characteristic of target contaminants during the degradation of contaminants by the Fenton process.
基金sponsored by the Earthquake Spark Technology Project(XH23051B)。
文摘The Hualien M 7.3 earthquake on April 3,2024,was a significant and strong earthquake in Taiwan,China in the past two decades.The rupture process of the main shock and strong aftershocks is of great significance to the subsequent seismic activity and seismogenic tectonic research.Based on local strong-motion data,we used the IDS(Iterative Deconvolution and Stacking)method to obtain the rupture process of the mainshock and two strong aftershocks on the 23rd.The rupture of the mainshock was mainly unilateral,lasting 31 s,with a maximum slip of 2m,and the depth of the large slip zone is about 41–49 km.There is a clear difference between the rupture depth of the main shock and the two strong aftershocks.The depths of the large slip zones of the latter two are 3–9 km and 8–10 km,respectively.There is also a significant difference in the seismogenic fault between the mainshock and the aftershocks,and we believe that there are two seismogenic fault zones in the study area,the deep and the shallow fault zone.The slip of the deep faults activates the shallow faults.
基金supported by the Major Science and Technology Project of Zhongshan City(No.2022AJ004)the Key Basic and Applied Research Program of Guangdong Province(Nos.2019B030302010 and 2022B1515120082)Guangdong Science and Technology Innovation Project(No.2021TX06C111).
文摘In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment technique known as ultrasonic vibration rapid processing(UVRP),which enables the formation of high-density strong magnetic α-Fe clusters,thereby enhancing the soft magnetic properties of Fe_(78)Si(13)B_(9) amorphous alloy ribbon.