There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because the...There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring.展开更多
A new modeling and monitoring approach for multi-mode processes is proposed.The method of similarity measure(SM) and kernel principal component analysis(KPCA) are integrated to construct SM-KPCA monitoring scheme,wher...A new modeling and monitoring approach for multi-mode processes is proposed.The method of similarity measure(SM) and kernel principal component analysis(KPCA) are integrated to construct SM-KPCA monitoring scheme,where SM method serves as the separation of common subspace and specific subspace.Compared with the traditional methods,the main contributions of this work are:1) SM consisted of two measures of distance and angle to accommodate process characters.The different monitoring effect involves putting on the different weight,which would simplify the monitoring model structure and enhance its reliability and robustness.2) The proposed method can be used to find faults by the common space and judge which mode the fault belongs to by the specific subspace.Results of algorithm analysis and fault detection experiments indicate the validity and practicability of the presented method.展开更多
Since there are not enough fault data in historical data sets, it is very difficult to diagnose faults for batch processes. In addition, a complete batch trajectory can be obtained till the end of its operation. In or...Since there are not enough fault data in historical data sets, it is very difficult to diagnose faults for batch processes. In addition, a complete batch trajectory can be obtained till the end of its operation. In order to overcome the need for estimated or filled up future unmeasured values in the online fault diagnosis, sufficiently utilize the finite information of faults, and enhance the diagnostic performance, an improved multi-model Fisher discriminant analysis is represented. The trait of the proposed method is that the training data sets are made of the current measured information and the past major discriminant information, and not only the current information or the whole batch data. An industrial typical multi-stage streptomycin fermentation process is used to test the performance of fault diagnosis of the proposed method.展开更多
Since the current slagging of argon blowing refining process is relatively fixed,which cannot adapt to the fluctuation of converter smelting process,it poses the problems of poor metallurgical property of refining sla...Since the current slagging of argon blowing refining process is relatively fixed,which cannot adapt to the fluctuation of converter smelting process,it poses the problems of poor metallurgical property of refining slag and a large amount of molten heel.An optimization system coupled with multiple models was proposed to dynamic control the ladle slagging in the argon blowing refining process.It can compile the optimal dynamic slagging scheme in real time under the guarantee of deoxidation performance and reasonable fluidity.The argon blowing refining slag composition range of CaO/Al_(2)O_(3)=1.3-1.7,CaO/SiO_(2)=6-12,w(MgO)=2%-6% was determined based on FeO activity and liquidus temperature by equilibrium thermodynamic calculation.In addition,it demonstrated better performance in the viscosity prediction task of the presented Visual Geometry Group 16-like one-dimensional convolutional neural network deep learning algorithm versus the Random Forest ensemble learning algorithm,as the adjusted coefficients of determination were 0.9712 and 0.9637,respectively.After the system was applied in operation,the argon blowing refining process was stable,and the steel yield was enhanced,which promoted the intelligent steelmaking level while achieving the cost reduction and efficiency improvement.展开更多
Carbon dots(CDs)-based composites have shown impressive performance in fields of information encryption and sensing,however,a great challenge is to simultaneously implement multi-mode luminescence and room-temperature...Carbon dots(CDs)-based composites have shown impressive performance in fields of information encryption and sensing,however,a great challenge is to simultaneously implement multi-mode luminescence and room-temperature phosphorescence(RTP)detection in single system due to the formidable synthesis.Herein,a multifunctional composite of Eu&CDs@p RHO has been designed by co-assembly strategy and prepared via a facile calcination and impregnation treatment.Eu&CDs@p RHO exhibits intense fluorescence(FL)and RTP coming from two individual luminous centers,Eu3+in the free pores and CDs in the interrupted structure of RHO zeolite.Unique four-mode color outputs including pink(Eu^(3+),ex.254 nm),light violet(CDs,ex.365 nm),blue(CDs,254 nm off),and green(CDs,365 nm off)could be realized,on the basis of it,a preliminary application of advanced information encoding has been demonstrated.Given the free pores of matrix and stable RTP in water of confined CDs,a visual RTP detection of Fe^(3+)ions is achieved with the detection limit as low as 9.8μmol/L.This work has opened up a new perspective for the strategic amalgamation of luminous vips with porous zeolite to construct the advanced functional materials.展开更多
Prostate cancer(PCa)is characterized by high incidence and propensity for easy metastasis,presenting significant challenges in clinical diagnosis and treatment.Tumor microenvironment(TME)-responsive nanomaterials prov...Prostate cancer(PCa)is characterized by high incidence and propensity for easy metastasis,presenting significant challenges in clinical diagnosis and treatment.Tumor microenvironment(TME)-responsive nanomaterials provide a promising prospect for imaging-guided precision therapy.Considering that tumor-derived alkaline phosphatase(ALP)is over-expressed in metastatic PCa,it makes a great chance to develop a theranostics system with ALP responsive in the TME.Herein,an ALP-responsive aggregationinduced emission luminogens(AIEgens)nanoprobe AMNF self-assembly was designed for enhancing the diagnosis and treatment of metastatic PCa.The nanoprobe exhibited self-aggregation in the presence of ALP resulted in aggregation-induced fluorescence,and enhanced accumulation and prolonged retention period at the tumor site.In terms of detection,the fluorescence(FL)/computed tomography(CT)/magnetic resonance(MR)multi-mode imaging effect of nanoprobe was significantly improved post-aggregation,enabling precise diagnosis through the amalgamation of multiple imaging modes.Enhanced CT/MR imaging can achieve assist preoperative tumor diagnosis,and enhanced FL imaging technology can achieve“intraoperative visual navigation”,showing its potential application value in clinical tumor detection and surgical guidance.In terms of treatment,AMNF showed strong absorption in the near infrared region after aggregation,which improved the photothermal treatment effect.Overall,our work developed an effective aggregation-enhanced theranostic strategy for ALP-related cancers.展开更多
Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power li...Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power line communication(DC-PLC)enables real-time data transmission on DC power lines.With traffic adaptation,DC-PLC can be integrated with other complementary media such as 5G to reduce transmission delay and improve reliability.However,traffic adaptation for DC-PLC and 5G integration still faces the challenges such as coupling between traffic admission control and traffic partition,dimensionality curse,and the ignorance of extreme event occurrence.To address these challenges,we propose a deep reinforcement learning(DRL)-based delay sensitive and reliable traffic adaptation algorithm(DSRTA)to minimize the total queuing delay under the constraints of traffic admission control,queuing delay,and extreme events occurrence probability.DSRTA jointly optimizes traffic admission control and traffic partition,and enables learning-based intelligent traffic adaptation.The long-term constraints are incorporated into both state and bound of drift-pluspenalty to achieve delay awareness and enforce reliability guarantee.Simulation results show that DSRTA has lower queuing delay and more reliable quality of service(QoS)guarantee than other state-of-the-art algorithms.展开更多
Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim ...Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.展开更多
There is one problem existing in gyroscope signal processing,which is that single models can' t adapt to change of carrier maneuvering process.Since it is difficult to identify the angular motion state of gyroscope c...There is one problem existing in gyroscope signal processing,which is that single models can' t adapt to change of carrier maneuvering process.Since it is difficult to identify the angular motion state of gyroscope carriers,interacting multiple model (IMM) is employed here to solve the problem.The Kalman filter-based IMM (IMMKF) algorithm is explained in detail and its application in gyro signal processing is introduced.And with the help of the Singer model,the system model set of gyro outputs is constructed.In order to demonstrate the effectiveness of the proposed approach,static experiment and dynamic experiment are carried out respectively.Simulation analysis results indicate that the IMMKF algorithm is excellent in eliminating gyro drift errors,which could adapt to the change of carrier maneuvering process well.展开更多
Hepatology encompasses various aspects,such as metabolic-associated fatty liver disease,viral hepatitis,alcoholic liver disease,liver cirrhosis,liver failure,liver tumors,and liver transplantation.The global epidemiol...Hepatology encompasses various aspects,such as metabolic-associated fatty liver disease,viral hepatitis,alcoholic liver disease,liver cirrhosis,liver failure,liver tumors,and liver transplantation.The global epidemiological situation of liver diseases is grave,posing a substantial threat to human health and quality of life.Characterized by high incidence and mortality rates,liver diseases have emerged as a prominent global public health concern.In recent years,the rapid advan-cement of artificial intelligence(AI),deep learning,and radiomics has transfor-med medical research and clinical practice,demonstrating considerable potential in hepatology.AI is capable of automatically detecting abnormal cells in liver tissue sections,enhancing the accu-racy and efficiency of pathological diagnosis.Deep learning models are able to extract features from computed tomography and magnetic resonance imaging images to facilitate liver disease classification.Machine learning models are capable of integrating clinical data to forecast disease progression and treatment responses,thus supporting clinical decision-making for personalized medicine.Through the analysis of imaging data,laboratory results,and genomic information,AI can assist in diagnosis,forecast disease progression,and optimize treatment plans,thereby improving clinical outcomes for liver disease patients.This minireview intends to comprehensively summarize the state-of-the-art theories and applications of AI in hepatology,explore the opportunities and challenges it presents in clinical practice,basic research,and translational medicine,and propose future research directions to guide the advancement of hepatology and ultimately improve patient outcomes.展开更多
The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurode...The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurodegenerative diseases are characterized by the progressive loss of neuronal structure and function.展开更多
The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer r...The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer rise earthquakes have been observed along the Sunda arc,following the estimated rupture area of the 2005 M_(W)8.6 Nias earthquakes.Here,we used kinematic waveform inversion(KIWI)to obtain the source parameters of the 14 May 2021 M_(W)6.6 event off the west coast of northern Sumatra and to define the fault plane that triggered this outer rise event.The KIWI algorithm allows two types of seismic source to be configured:the moment tensor model to describe the type of shear with six moment tensor components and the Eikonal model for the rupture of pure double-couple sources.This method was chosen for its flexibility to be applied for different sources of seismicity and also for the automated full-moment tensor solution with real-time monitoring.We used full waveform traces from 8 broadband seismic stations within 1000 km epicentral distances sourced from the Incorporated Research Institutions for Seismology(IRIS-IDA)and Geofon GFZ seismic record databases.The initial origin time and hypocenter values are obtained from the IRIS-IDA.The synthetic seismograms used in the inversion process are based on the existing regional green function database model and were accessed from the KIWI Tools Green's Function Database.The obtained scalar seismic moment value is 1.18×10^(19)N·m,equivalent to a moment magnitude M_(W)6.6.The source parameters are 140°,44°,and−99°for the strike,dip,and rake values at a centroid depth of 10.2 km,indicating that this event is a normal fault earthquake that occurred in the outer rise area.The outer rise events with normal faults typically occur at the shallow part of the plate,with nodal-plane dips predominantly in the range of 30°-60°on the weak oceanic lithosphere due to hydrothermal alteration.The stress regime around the plate subduction zone varies both temporally and spatially due to the cyclic influences of megathrust earthquakes.Tensional outer rise earthquakes tend to occur after the megathrust events.The relative timing of these events is not known due to the viscous relaxation of the down going slab and poroelastic response in the trench slope region.The occurrence of the 14 May 2021 earthquake shows the seismicity in the outer rise region in the strongly coupled Sunda arc subduction zone due to elastic bending stress within the duration of the seismic cycle.展开更多
To explore the best preparation process for terminal blend(TB)composite-modified asphalt and to filter its formulation with excellent performance,this study evaluates the performance of TB composite modified asphalt b...To explore the best preparation process for terminal blend(TB)composite-modified asphalt and to filter its formulation with excellent performance,this study evaluates the performance of TB composite modified asphalt by physical property index,microscopic morphology,rheological testing,and infrared spectroscopy on multiple scales.The results show that the best preparation process for TB-modified asphalt is stirring at 260℃ for 4 h at 400 rpm,which significantly reduces the modification time of the asphalt.From a physical property viewpoint,the TB composite-modified asphalt sample with 5% styrene-butadiene-styrene(SBS)+1% aromatics+0.1% sulfur exhibits high-comprehensive,high-and low-temperature properties.More-over,its crosslinked mesh structure comprises black rubber particles uniformly interwoven in the middle,which further enhances the performance of the asphalt and results in an excellent performance formulation.In addition,the sample with 5%SBS content has a higher G*value and smaller δ value than that with 3%SBS content,indicating that its high-temperature resistance is improved.The effect of adding 3%SBS content on the viscoelastic ratio is,to some extent,less than that caused by 20% rubber powder.展开更多
Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening pa...Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening particles also deteriorates the processability and it is of great importance to establish accurate processing maps to guide the thermomechanical processes to enhance the formability.In this study,we performed particle swarm optimization-based back propagation artificial neural network model to predict the high temperature flow behavior of 0.25wt%Al2O3 particle-reinforced Cu alloys,and compared the accuracy with that of derived by Arrhenius-type constitutive model and back propagation artificial neural network model.To train these models,we obtained the raw data by fabricating ODS Cu alloys using the internal oxidation and reduction method,and conducting systematic hot compression tests between 400 and800℃with strain rates of 10^(-2)-10 S^(-1).At last,processing maps for ODS Cu alloys were proposed by combining processing parameters,mechanical behavior,microstructure characterization,and the modeling results achieved a coefficient of determination higher than>99%.展开更多
This paper considers the problem of time varying congestion pricing to determine optimal time-varying tolls at peak periods for a queuing network with the interactions between buses and private cars.Through the combin...This paper considers the problem of time varying congestion pricing to determine optimal time-varying tolls at peak periods for a queuing network with the interactions between buses and private cars.Through the combined applications of the space-time expanded network(STEN) and the conventional network equilibrium modeling techniques,a multi-class,multi-mode and multi-criteria traffic network equilibrium model is developed.Travelers of different classes have distinctive value of times(VOTs),and travelers from the same class perceive their travel disutility or generalized costs on a route according to different weights of travel time and travel costs.Moreover,the symmetric cost function model is extended to deal with the interactions between buses and private cars.It is found that there exists a uniform(anonymous) link toll pattern which can drive a multi-class,multi-mode and multi-criteria user equilibrium flow pattern to a system optimum when the system's objective function is measured in terms of money.It is also found that the marginal cost pricing models with a symmetric travel cost function do not reflect the interactions between traffic flows of different road sections,and the obtained congestion pricing toll is smaller than the real value.展开更多
Gas Turbine Engines (GTEs) are vastly used for generation of mechanical power in a wide range of applications from airplane propulsion systems to stationary power plants. The gaspath components of a GTE are exposed ...Gas Turbine Engines (GTEs) are vastly used for generation of mechanical power in a wide range of applications from airplane propulsion systems to stationary power plants. The gaspath components of a GTE are exposed to harsh operating and ambient conditions, leading to several degradation mechanisms. Because GTE components are mostly inaccessible for direct measure- ments and their degradation levels must be inferred from the measurements of accessible parameters, it is a challenge to acquire reliable information on the degradation conditions of the parts in different fault modes. In this work, a data-driven fault detection and degradation estima- tion scheme is developed for GTE diagnostics based on an Adaptive Neuro-Fuzzy Inference System (ANFIS). To verify the performance and accuracy of the developed diagnostic framework on GTE data, an ensemble of measurable gas path parameters has been generated by a high-fidelity GTE model under (a) diverse ambient conditions and control settings, (b) every possible combination of degradation symptoms, and (c) a broad range of signal to noise ratios. The results prove the competency of the developed framework in fault diagnostics and reveal the sensitivity of diagnostic results to measurement noise for different degradation symptoms.展开更多
For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to p...For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to process intercepted signals,which has a negative effect on signal classification. A classificationmethod based on spatial data mining is presented to address theabove challenge. Inspired by the idea of spatial data mining, theclassification method applies nuclear field to depicting the distributioninformation of pulse samples in feature space, and digs out thehidden cluster information by analyzing distribution characteristics.In addition, a membership-degree criterion to quantify the correlationamong all classes is established, which ensures classificationaccuracy of signal samples. Numerical experiments show that thepresented method can effectively prevent different working statesof multi-mode emitter from being classified as several emitters,and achieve higher classification accuracy.展开更多
A new multi-mode resistivity imaging sonde, with toroidal coils as source, can conduct three resistivity measurements: azimuthal resistivity, lateral resistivity, and bit resistivity measurements. Thus, the logging ti...A new multi-mode resistivity imaging sonde, with toroidal coils as source, can conduct three resistivity measurements: azimuthal resistivity, lateral resistivity, and bit resistivity measurements. Thus, the logging time and cost are greatly saved. The toroidal coils are simplified as an extended voltage dipole and the response equations are derived for a homogenous formation. Based on 3D FEM, the depth of investigation(DOI), vertical resolution, circumferential azimuthal capacity, borehole diameter, mud resistivity, thickness of target formation, and the resistivity of the surrounding formation and mud invasion are simulated. The results suggest that the three measurement modes of the new sonde are different in vertical resolutions and DOIs. The circumferential detection ability of the azimuth button depends on the contrast between the anomaly and formation resistivity and the open angle of the anomaly. Whether the borehole is truncated at the bit or not has a great influence on the simulation results. The borehole and mud invasion affect the apparent resistivity in all modes, but the effects of resistivity of surrounding formation and thickness of the target formation are only corrected for lateral resistivity measurement.展开更多
基金Project(61374140)supported by the National Natural Science Foundation of China
文摘There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring.
基金Projects(61273163,61325015,61304121)supported by the National Natural Science Foundation of China
文摘A new modeling and monitoring approach for multi-mode processes is proposed.The method of similarity measure(SM) and kernel principal component analysis(KPCA) are integrated to construct SM-KPCA monitoring scheme,where SM method serves as the separation of common subspace and specific subspace.Compared with the traditional methods,the main contributions of this work are:1) SM consisted of two measures of distance and angle to accommodate process characters.The different monitoring effect involves putting on the different weight,which would simplify the monitoring model structure and enhance its reliability and robustness.2) The proposed method can be used to find faults by the common space and judge which mode the fault belongs to by the specific subspace.Results of algorithm analysis and fault detection experiments indicate the validity and practicability of the presented method.
基金Supported by the National Natural Science Foundation of China (No.60421002).
文摘Since there are not enough fault data in historical data sets, it is very difficult to diagnose faults for batch processes. In addition, a complete batch trajectory can be obtained till the end of its operation. In order to overcome the need for estimated or filled up future unmeasured values in the online fault diagnosis, sufficiently utilize the finite information of faults, and enhance the diagnostic performance, an improved multi-model Fisher discriminant analysis is represented. The trait of the proposed method is that the training data sets are made of the current measured information and the past major discriminant information, and not only the current information or the whole batch data. An industrial typical multi-stage streptomycin fermentation process is used to test the performance of fault diagnosis of the proposed method.
基金the fund support from the Natural Science Foundation of Anhui Provincial Education Department(KJ2021A0358)the National Natural Science Foundation of China(51804004).
文摘Since the current slagging of argon blowing refining process is relatively fixed,which cannot adapt to the fluctuation of converter smelting process,it poses the problems of poor metallurgical property of refining slag and a large amount of molten heel.An optimization system coupled with multiple models was proposed to dynamic control the ladle slagging in the argon blowing refining process.It can compile the optimal dynamic slagging scheme in real time under the guarantee of deoxidation performance and reasonable fluidity.The argon blowing refining slag composition range of CaO/Al_(2)O_(3)=1.3-1.7,CaO/SiO_(2)=6-12,w(MgO)=2%-6% was determined based on FeO activity and liquidus temperature by equilibrium thermodynamic calculation.In addition,it demonstrated better performance in the viscosity prediction task of the presented Visual Geometry Group 16-like one-dimensional convolutional neural network deep learning algorithm versus the Random Forest ensemble learning algorithm,as the adjusted coefficients of determination were 0.9712 and 0.9637,respectively.After the system was applied in operation,the argon blowing refining process was stable,and the steel yield was enhanced,which promoted the intelligent steelmaking level while achieving the cost reduction and efficiency improvement.
基金supported by the National Natural Science Foundation of China(No.22288101)the 111 Project(No.B17020)。
文摘Carbon dots(CDs)-based composites have shown impressive performance in fields of information encryption and sensing,however,a great challenge is to simultaneously implement multi-mode luminescence and room-temperature phosphorescence(RTP)detection in single system due to the formidable synthesis.Herein,a multifunctional composite of Eu&CDs@p RHO has been designed by co-assembly strategy and prepared via a facile calcination and impregnation treatment.Eu&CDs@p RHO exhibits intense fluorescence(FL)and RTP coming from two individual luminous centers,Eu3+in the free pores and CDs in the interrupted structure of RHO zeolite.Unique four-mode color outputs including pink(Eu^(3+),ex.254 nm),light violet(CDs,ex.365 nm),blue(CDs,254 nm off),and green(CDs,365 nm off)could be realized,on the basis of it,a preliminary application of advanced information encoding has been demonstrated.Given the free pores of matrix and stable RTP in water of confined CDs,a visual RTP detection of Fe^(3+)ions is achieved with the detection limit as low as 9.8μmol/L.This work has opened up a new perspective for the strategic amalgamation of luminous vips with porous zeolite to construct the advanced functional materials.
基金supported by Natural Science Foundation of Jilin Province(No.SKL202302002)Key Research and Development project of Jilin Provincial Science and Technology Department(No.20210204142YY)+2 种基金The Science and Technology Development Program of Jilin Province(No.2020122256JC)Beijing Kechuang Medical Development Foundation Fund of China(No.KC2023-JX-0186BQ079)Talent Reserve Program(TRP),the First Hospital of Jilin University(No.JDYY-TRP-2024007)。
文摘Prostate cancer(PCa)is characterized by high incidence and propensity for easy metastasis,presenting significant challenges in clinical diagnosis and treatment.Tumor microenvironment(TME)-responsive nanomaterials provide a promising prospect for imaging-guided precision therapy.Considering that tumor-derived alkaline phosphatase(ALP)is over-expressed in metastatic PCa,it makes a great chance to develop a theranostics system with ALP responsive in the TME.Herein,an ALP-responsive aggregationinduced emission luminogens(AIEgens)nanoprobe AMNF self-assembly was designed for enhancing the diagnosis and treatment of metastatic PCa.The nanoprobe exhibited self-aggregation in the presence of ALP resulted in aggregation-induced fluorescence,and enhanced accumulation and prolonged retention period at the tumor site.In terms of detection,the fluorescence(FL)/computed tomography(CT)/magnetic resonance(MR)multi-mode imaging effect of nanoprobe was significantly improved post-aggregation,enabling precise diagnosis through the amalgamation of multiple imaging modes.Enhanced CT/MR imaging can achieve assist preoperative tumor diagnosis,and enhanced FL imaging technology can achieve“intraoperative visual navigation”,showing its potential application value in clinical tumor detection and surgical guidance.In terms of treatment,AMNF showed strong absorption in the near infrared region after aggregation,which improved the photothermal treatment effect.Overall,our work developed an effective aggregation-enhanced theranostic strategy for ALP-related cancers.
基金supported by the Science and Technology Project of State Grid Corporation of China under grant 52094021N010(5400-202199534A-0-5-ZN)。
文摘Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power line communication(DC-PLC)enables real-time data transmission on DC power lines.With traffic adaptation,DC-PLC can be integrated with other complementary media such as 5G to reduce transmission delay and improve reliability.However,traffic adaptation for DC-PLC and 5G integration still faces the challenges such as coupling between traffic admission control and traffic partition,dimensionality curse,and the ignorance of extreme event occurrence.To address these challenges,we propose a deep reinforcement learning(DRL)-based delay sensitive and reliable traffic adaptation algorithm(DSRTA)to minimize the total queuing delay under the constraints of traffic admission control,queuing delay,and extreme events occurrence probability.DSRTA jointly optimizes traffic admission control and traffic partition,and enables learning-based intelligent traffic adaptation.The long-term constraints are incorporated into both state and bound of drift-pluspenalty to achieve delay awareness and enforce reliability guarantee.Simulation results show that DSRTA has lower queuing delay and more reliable quality of service(QoS)guarantee than other state-of-the-art algorithms.
文摘Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.
基金Supported by the National High Technology Research and Development Program of China(No.2012AA061101)the Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information(Nanjing University of Science and Technology),Ministry of Education(No.3092013012205)
文摘There is one problem existing in gyroscope signal processing,which is that single models can' t adapt to change of carrier maneuvering process.Since it is difficult to identify the angular motion state of gyroscope carriers,interacting multiple model (IMM) is employed here to solve the problem.The Kalman filter-based IMM (IMMKF) algorithm is explained in detail and its application in gyro signal processing is introduced.And with the help of the Singer model,the system model set of gyro outputs is constructed.In order to demonstrate the effectiveness of the proposed approach,static experiment and dynamic experiment are carried out respectively.Simulation analysis results indicate that the IMMKF algorithm is excellent in eliminating gyro drift errors,which could adapt to the change of carrier maneuvering process well.
文摘Hepatology encompasses various aspects,such as metabolic-associated fatty liver disease,viral hepatitis,alcoholic liver disease,liver cirrhosis,liver failure,liver tumors,and liver transplantation.The global epidemiological situation of liver diseases is grave,posing a substantial threat to human health and quality of life.Characterized by high incidence and mortality rates,liver diseases have emerged as a prominent global public health concern.In recent years,the rapid advan-cement of artificial intelligence(AI),deep learning,and radiomics has transfor-med medical research and clinical practice,demonstrating considerable potential in hepatology.AI is capable of automatically detecting abnormal cells in liver tissue sections,enhancing the accu-racy and efficiency of pathological diagnosis.Deep learning models are able to extract features from computed tomography and magnetic resonance imaging images to facilitate liver disease classification.Machine learning models are capable of integrating clinical data to forecast disease progression and treatment responses,thus supporting clinical decision-making for personalized medicine.Through the analysis of imaging data,laboratory results,and genomic information,AI can assist in diagnosis,forecast disease progression,and optimize treatment plans,thereby improving clinical outcomes for liver disease patients.This minireview intends to comprehensively summarize the state-of-the-art theories and applications of AI in hepatology,explore the opportunities and challenges it presents in clinical practice,basic research,and translational medicine,and propose future research directions to guide the advancement of hepatology and ultimately improve patient outcomes.
文摘The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurodegenerative diseases are characterized by the progressive loss of neuronal structure and function.
基金supported by the National Natural Science Foundation of China(Grant No.42130312)。
文摘The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer rise earthquakes have been observed along the Sunda arc,following the estimated rupture area of the 2005 M_(W)8.6 Nias earthquakes.Here,we used kinematic waveform inversion(KIWI)to obtain the source parameters of the 14 May 2021 M_(W)6.6 event off the west coast of northern Sumatra and to define the fault plane that triggered this outer rise event.The KIWI algorithm allows two types of seismic source to be configured:the moment tensor model to describe the type of shear with six moment tensor components and the Eikonal model for the rupture of pure double-couple sources.This method was chosen for its flexibility to be applied for different sources of seismicity and also for the automated full-moment tensor solution with real-time monitoring.We used full waveform traces from 8 broadband seismic stations within 1000 km epicentral distances sourced from the Incorporated Research Institutions for Seismology(IRIS-IDA)and Geofon GFZ seismic record databases.The initial origin time and hypocenter values are obtained from the IRIS-IDA.The synthetic seismograms used in the inversion process are based on the existing regional green function database model and were accessed from the KIWI Tools Green's Function Database.The obtained scalar seismic moment value is 1.18×10^(19)N·m,equivalent to a moment magnitude M_(W)6.6.The source parameters are 140°,44°,and−99°for the strike,dip,and rake values at a centroid depth of 10.2 km,indicating that this event is a normal fault earthquake that occurred in the outer rise area.The outer rise events with normal faults typically occur at the shallow part of the plate,with nodal-plane dips predominantly in the range of 30°-60°on the weak oceanic lithosphere due to hydrothermal alteration.The stress regime around the plate subduction zone varies both temporally and spatially due to the cyclic influences of megathrust earthquakes.Tensional outer rise earthquakes tend to occur after the megathrust events.The relative timing of these events is not known due to the viscous relaxation of the down going slab and poroelastic response in the trench slope region.The occurrence of the 14 May 2021 earthquake shows the seismicity in the outer rise region in the strongly coupled Sunda arc subduction zone due to elastic bending stress within the duration of the seismic cycle.
基金Funded by the National Natural Science Foundation of China(No.52278446)。
文摘To explore the best preparation process for terminal blend(TB)composite-modified asphalt and to filter its formulation with excellent performance,this study evaluates the performance of TB composite modified asphalt by physical property index,microscopic morphology,rheological testing,and infrared spectroscopy on multiple scales.The results show that the best preparation process for TB-modified asphalt is stirring at 260℃ for 4 h at 400 rpm,which significantly reduces the modification time of the asphalt.From a physical property viewpoint,the TB composite-modified asphalt sample with 5% styrene-butadiene-styrene(SBS)+1% aromatics+0.1% sulfur exhibits high-comprehensive,high-and low-temperature properties.More-over,its crosslinked mesh structure comprises black rubber particles uniformly interwoven in the middle,which further enhances the performance of the asphalt and results in an excellent performance formulation.In addition,the sample with 5%SBS content has a higher G*value and smaller δ value than that with 3%SBS content,indicating that its high-temperature resistance is improved.The effect of adding 3%SBS content on the viscoelastic ratio is,to some extent,less than that caused by 20% rubber powder.
基金financial support of the National Natural Science Foundation of China(No.52371103)the Fundamental Research Funds for the Central Universities,China(No.2242023K40028)+1 种基金the Open Research Fund of Jiangsu Key Laboratory for Advanced Metallic Materials,China(No.AMM2023B01).financial support of the Research Fund of Shihezi Key Laboratory of AluminumBased Advanced Materials,China(No.2023PT02)financial support of Guangdong Province Science and Technology Major Project,China(No.2021B0301030005)。
文摘Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening particles also deteriorates the processability and it is of great importance to establish accurate processing maps to guide the thermomechanical processes to enhance the formability.In this study,we performed particle swarm optimization-based back propagation artificial neural network model to predict the high temperature flow behavior of 0.25wt%Al2O3 particle-reinforced Cu alloys,and compared the accuracy with that of derived by Arrhenius-type constitutive model and back propagation artificial neural network model.To train these models,we obtained the raw data by fabricating ODS Cu alloys using the internal oxidation and reduction method,and conducting systematic hot compression tests between 400 and800℃with strain rates of 10^(-2)-10 S^(-1).At last,processing maps for ODS Cu alloys were proposed by combining processing parameters,mechanical behavior,microstructure characterization,and the modeling results achieved a coefficient of determination higher than>99%.
基金The National High Technology Research and Development Program of China (863 Program) (No. 2007AA11Z202)the National Key Technology R & D Program of China during the 11th Five-Year Plan Period(No. 2006BAJ18B03)the Fundamental Research Funds for the Central Universities (No. DUT10RC(3) 112)
文摘This paper considers the problem of time varying congestion pricing to determine optimal time-varying tolls at peak periods for a queuing network with the interactions between buses and private cars.Through the combined applications of the space-time expanded network(STEN) and the conventional network equilibrium modeling techniques,a multi-class,multi-mode and multi-criteria traffic network equilibrium model is developed.Travelers of different classes have distinctive value of times(VOTs),and travelers from the same class perceive their travel disutility or generalized costs on a route according to different weights of travel time and travel costs.Moreover,the symmetric cost function model is extended to deal with the interactions between buses and private cars.It is found that there exists a uniform(anonymous) link toll pattern which can drive a multi-class,multi-mode and multi-criteria user equilibrium flow pattern to a system optimum when the system's objective function is measured in terms of money.It is also found that the marginal cost pricing models with a symmetric travel cost function do not reflect the interactions between traffic flows of different road sections,and the obtained congestion pricing toll is smaller than the real value.
基金financially co-supported by Fond de Recherche Nature et Technologies (FRQNT) from the Quebec government in Canadathe Natural Sciences and Engineering Research Council (NSERC) of CanadaLife Prediction Technologies Inc. (LPTi) in Ottawa, Canada
文摘Gas Turbine Engines (GTEs) are vastly used for generation of mechanical power in a wide range of applications from airplane propulsion systems to stationary power plants. The gaspath components of a GTE are exposed to harsh operating and ambient conditions, leading to several degradation mechanisms. Because GTE components are mostly inaccessible for direct measure- ments and their degradation levels must be inferred from the measurements of accessible parameters, it is a challenge to acquire reliable information on the degradation conditions of the parts in different fault modes. In this work, a data-driven fault detection and degradation estima- tion scheme is developed for GTE diagnostics based on an Adaptive Neuro-Fuzzy Inference System (ANFIS). To verify the performance and accuracy of the developed diagnostic framework on GTE data, an ensemble of measurable gas path parameters has been generated by a high-fidelity GTE model under (a) diverse ambient conditions and control settings, (b) every possible combination of degradation symptoms, and (c) a broad range of signal to noise ratios. The results prove the competency of the developed framework in fault diagnostics and reveal the sensitivity of diagnostic results to measurement noise for different degradation symptoms.
基金supported by the National Natural Science Foundation of China(61371172)the International S&T Cooperation Program of China(2015DFR10220)+1 种基金the Ocean Engineering Project of National Key Laboratory Foundation(1213)the Fundamental Research Funds for the Central Universities(HEUCF1608)
文摘For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to process intercepted signals,which has a negative effect on signal classification. A classificationmethod based on spatial data mining is presented to address theabove challenge. Inspired by the idea of spatial data mining, theclassification method applies nuclear field to depicting the distributioninformation of pulse samples in feature space, and digs out thehidden cluster information by analyzing distribution characteristics.In addition, a membership-degree criterion to quantify the correlationamong all classes is established, which ensures classificationaccuracy of signal samples. Numerical experiments show that thepresented method can effectively prevent different working statesof multi-mode emitter from being classified as several emitters,and achieve higher classification accuracy.
基金sponsored by Study on High-Precision Logging While Drilling Imaging Technology of Low-Permeability Reservoirs(No.2016ZX05021-002)
文摘A new multi-mode resistivity imaging sonde, with toroidal coils as source, can conduct three resistivity measurements: azimuthal resistivity, lateral resistivity, and bit resistivity measurements. Thus, the logging time and cost are greatly saved. The toroidal coils are simplified as an extended voltage dipole and the response equations are derived for a homogenous formation. Based on 3D FEM, the depth of investigation(DOI), vertical resolution, circumferential azimuthal capacity, borehole diameter, mud resistivity, thickness of target formation, and the resistivity of the surrounding formation and mud invasion are simulated. The results suggest that the three measurement modes of the new sonde are different in vertical resolutions and DOIs. The circumferential detection ability of the azimuth button depends on the contrast between the anomaly and formation resistivity and the open angle of the anomaly. Whether the borehole is truncated at the bit or not has a great influence on the simulation results. The borehole and mud invasion affect the apparent resistivity in all modes, but the effects of resistivity of surrounding formation and thickness of the target formation are only corrected for lateral resistivity measurement.