期刊文献+
共找到78,296篇文章
< 1 2 250 >
每页显示 20 50 100
An intelligent navigation experimental system based on multi-mode fusion
1
作者 Rui HAN Zhiquan FENG +3 位作者 Jinglan TIAN Xue FAN Xiaohui YANG Qingbei GUO 《Virtual Reality & Intelligent Hardware》 2020年第4期345-353,共9页
At present,most experimental teaching systems lack guidance of an operator,and thus users often do not know what to do during an experiment.The user load is therefore increased,and the learning efficiency of the stude... At present,most experimental teaching systems lack guidance of an operator,and thus users often do not know what to do during an experiment.The user load is therefore increased,and the learning efficiency of the students is decreased.To solve the problem of insufficient system interactivity and guidance,an experimental navigation system based on multi-mode fusion is proposed in this paper.The system first obtains user information by sensing the hardware devices,intelligently perceives the user intention and progress of the experiment according to the information acquired,and finally carries out a multi-modal intelligent navigation process for users.As an innovative aspect of this study,an intelligent multi-mode navigation system is used to guide users in conducting experiments,thereby reducing the user load and enabling the users to effectively complete their experiments.The results prove that this system can guide users in completing their experiments,and can effectively reduce the user load during the interaction process and improve the efficiency. 展开更多
关键词 Navigation interaction Chemical experiment system multi-mode fusion
在线阅读 下载PDF
基于UPLC-Orbitrap Fusion Lumos Tribrid-MS的女贞子酒蒸前后血清药物化学对比分析
2
作者 刘昊霖 郑历史 +3 位作者 孙淑仃 赵迪 李焕茹 冯素香 《中华中医药学刊》 北大核心 2026年第1期175-186,I0027,共13页
目的基于超高效液相色谱-四极杆-静电场轨道阱-线性离子阱质谱法(ultra performance liquid chromatography-orbitrap fusion lumos tribrid-mass spectrometry,UPLC-Orbitrap Fusion Lumos Tribrid-MS)对大鼠灌胃女贞子、酒女贞子水提... 目的基于超高效液相色谱-四极杆-静电场轨道阱-线性离子阱质谱法(ultra performance liquid chromatography-orbitrap fusion lumos tribrid-mass spectrometry,UPLC-Orbitrap Fusion Lumos Tribrid-MS)对大鼠灌胃女贞子、酒女贞子水提液后血清中的移行成分进行对比分析。方法雄性Sprague-Dawley(SD)大鼠随机分为空白组、女贞子组(10.8 g·kg^(-1)·d^(-1))和酒女贞子组(10.8 g·kg^(-1)·d^(-1)),每组6只,给药组分别灌胃给予女贞子、酒女贞子水提液,空白组灌胃等体积纯净水,早晚各1次,连续5 d,末次给药1 h后腹主动脉取血,制备血清样品。采用Accucore^(TM) C_(18)(100 mm×2.1 mm,2.6μm)色谱柱,流动相为乙腈(A)-0.1%甲酸水(B),梯度洗脱(0~5 min,95%B→85%B;5~10 min,85%B→73%B;10~24 min,73%B→15%B),流速0.2 mL·min^(-1),进样量5μL,正、负离子模式扫描,扫描范围m/z 120~1200。采用Compound Discoverer 3.3软件,根据质谱数据和相关文献对女贞子、酒女贞子入血原型成分和代谢产物进行分析鉴定;采用多元统计分析方法对比女贞子、酒女贞子含药血清间的差异性成分。结果在给予女贞子水提液大鼠血清中共鉴定得到64个入血成分,包括40个原型成分和24个代谢产物;在给予酒女贞子水提液大鼠血清中共鉴定得到57个入血成分,包括35个原型成分和22个代谢产物。原型成分主要包括苯乙醇苷类、环烯醚萜类、三萜类、黄酮类等,代谢途径主要包括羟基化、甲基化、葡萄糖醛酸化等。根据变量重要性投影(variable importance in projection,VIP)值>1,t检验(Student's t test)结果P<0.05筛选出特女贞苷、女贞苷酸等12个差异性入血成分,其中7个原型成分、5个代谢产物。结论女贞子酒蒸后血清移行成分发生明显改变,可为阐明女贞子、酒女贞子药效物质基础提供理论依据。 展开更多
关键词 女贞子 炮制 血清药物化学 UPLC-Orbitrap fusion Lumos Tribrid-MS 多元统计分析
原文传递
Construction and evaluation of a predictive model for the degree of coronary artery occlusion based on adaptive weighted multi-modal fusion of traditional Chinese and western medicine data 被引量:2
3
作者 Jiyu ZHANG Jiatuo XU +1 位作者 Liping TU Hongyuan FU 《Digital Chinese Medicine》 2025年第2期163-173,共11页
Objective To develop a non-invasive predictive model for coronary artery stenosis severity based on adaptive multi-modal integration of traditional Chinese and western medicine data.Methods Clinical indicators,echocar... Objective To develop a non-invasive predictive model for coronary artery stenosis severity based on adaptive multi-modal integration of traditional Chinese and western medicine data.Methods Clinical indicators,echocardiographic data,traditional Chinese medicine(TCM)tongue manifestations,and facial features were collected from patients who underwent coro-nary computed tomography angiography(CTA)in the Cardiac Care Unit(CCU)of Shanghai Tenth People's Hospital between May 1,2023 and May 1,2024.An adaptive weighted multi-modal data fusion(AWMDF)model based on deep learning was constructed to predict the severity of coronary artery stenosis.The model was evaluated using metrics including accura-cy,precision,recall,F1 score,and the area under the receiver operating characteristic(ROC)curve(AUC).Further performance assessment was conducted through comparisons with six ensemble machine learning methods,data ablation,model component ablation,and various decision-level fusion strategies.Results A total of 158 patients were included in the study.The AWMDF model achieved ex-cellent predictive performance(AUC=0.973,accuracy=0.937,precision=0.937,recall=0.929,and F1 score=0.933).Compared with model ablation,data ablation experiments,and various traditional machine learning models,the AWMDF model demonstrated superior per-formance.Moreover,the adaptive weighting strategy outperformed alternative approaches,including simple weighting,averaging,voting,and fixed-weight schemes.Conclusion The AWMDF model demonstrates potential clinical value in the non-invasive prediction of coronary artery disease and could serve as a tool for clinical decision support. 展开更多
关键词 Coronary artery disease Deep learning multi-modAL Clinical prediction Traditional Chinese medicine diagnosis
暂未订购
Research Progress on Multi-Modal Fusion Object Detection Algorithms for Autonomous Driving:A Review
4
作者 Peicheng Shi Li Yang +2 位作者 Xinlong Dong Heng Qi Aixi Yang 《Computers, Materials & Continua》 2025年第6期3877-3917,共41页
As the number and complexity of sensors in autonomous vehicles continue to rise,multimodal fusionbased object detection algorithms are increasingly being used to detect 3D environmental information,significantly advan... As the number and complexity of sensors in autonomous vehicles continue to rise,multimodal fusionbased object detection algorithms are increasingly being used to detect 3D environmental information,significantly advancing the development of perception technology in autonomous driving.To further promote the development of fusion algorithms and improve detection performance,this paper discusses the advantages and recent advancements of multimodal fusion-based object detection algorithms.Starting fromsingle-modal sensor detection,the paper provides a detailed overview of typical sensors used in autonomous driving and introduces object detection methods based on images and point clouds.For image-based detection methods,they are categorized into monocular detection and binocular detection based on different input types.For point cloud-based detection methods,they are classified into projection-based,voxel-based,point cluster-based,pillar-based,and graph structure-based approaches based on the technical pathways for processing point cloud features.Additionally,multimodal fusion algorithms are divided into Camera-LiDAR fusion,Camera-Radar fusion,Camera-LiDAR-Radar fusion,and other sensor fusion methods based on the types of sensors involved.Furthermore,the paper identifies five key future research directions in this field,aiming to provide insights for researchers engaged in multimodal fusion-based object detection algorithms and to encourage broader attention to the research and application of multimodal fusion-based object detection. 展开更多
关键词 multi-modal fusion 3D object detection deep learning autonomous driving
在线阅读 下载PDF
Multi-Modal Named Entity Recognition with Auxiliary Visual Knowledge and Word-Level Fusion
5
作者 Huansha Wang Ruiyang Huang +1 位作者 Qinrang Liu Xinghao Wang 《Computers, Materials & Continua》 2025年第6期5747-5760,共14页
Multi-modal Named Entity Recognition(MNER)aims to better identify meaningful textual entities by integrating information from images.Previous work has focused on extracting visual semantics at a fine-grained level,or ... Multi-modal Named Entity Recognition(MNER)aims to better identify meaningful textual entities by integrating information from images.Previous work has focused on extracting visual semantics at a fine-grained level,or obtaining entity related external knowledge from knowledge bases or Large Language Models(LLMs).However,these approaches ignore the poor semantic correlation between visual and textual modalities in MNER datasets and do not explore different multi-modal fusion approaches.In this paper,we present MMAVK,a multi-modal named entity recognition model with auxiliary visual knowledge and word-level fusion,which aims to leverage the Multi-modal Large Language Model(MLLM)as an implicit knowledge base.It also extracts vision-based auxiliary knowledge from the image formore accurate and effective recognition.Specifically,we propose vision-based auxiliary knowledge generation,which guides the MLLM to extract external knowledge exclusively derived from images to aid entity recognition by designing target-specific prompts,thus avoiding redundant recognition and cognitive confusion caused by the simultaneous processing of image-text pairs.Furthermore,we employ a word-level multi-modal fusion mechanism to fuse the extracted external knowledge with each word-embedding embedded from the transformerbased encoder.Extensive experimental results demonstrate that MMAVK outperforms or equals the state-of-the-art methods on the two classical MNER datasets,even when the largemodels employed have significantly fewer parameters than other baselines. 展开更多
关键词 multi-modal named entity recognition large language model multi-modal fusion
在线阅读 下载PDF
Multi-Modal Pre-Synergistic Fusion Entity Alignment Based on Mutual Information Strategy Optimization
6
作者 Huayu Li Xinxin Chen +3 位作者 Lizhuang Tan Konstantin I.Kostromitin Athanasios V.Vasilakos Peiying Zhang 《Computers, Materials & Continua》 2025年第11期4133-4153,共21页
To address the challenge of missing modal information in entity alignment and to mitigate information loss or bias arising frommodal heterogeneity during fusion,while also capturing shared information acrossmodalities... To address the challenge of missing modal information in entity alignment and to mitigate information loss or bias arising frommodal heterogeneity during fusion,while also capturing shared information acrossmodalities,this paper proposes a Multi-modal Pre-synergistic Entity Alignmentmodel based on Cross-modalMutual Information Strategy Optimization(MPSEA).The model first employs independent encoders to process multi-modal features,including text,images,and numerical values.Next,a multi-modal pre-synergistic fusion mechanism integrates graph structural and visual modal features into the textual modality as preparatory information.This pre-fusion strategy enables unified perception of heterogeneous modalities at the model’s initial stage,reducing discrepancies during the fusion process.Finally,using cross-modal deep perception reinforcement learning,the model achieves adaptive multilevel feature fusion between modalities,supporting learningmore effective alignment strategies.Extensive experiments on multiple public datasets show that the MPSEA method achieves gains of up to 7% in Hits@1 and 8.2% in MRR on the FBDB15K dataset,and up to 9.1% in Hits@1 and 7.7% in MRR on the FBYG15K dataset,compared to existing state-of-the-art methods.These results confirm the effectiveness of the proposed model. 展开更多
关键词 Knowledge graph multi-modAL entity alignment feature fusion pre-synergistic fusion
在线阅读 下载PDF
Method of Multi-Mode Sensor Data Fusion with an Adaptive Deep Coupling Convolutional Auto-Encoder
7
作者 Xiaoxiong Feng Jianhua Liu 《Journal of Sensor Technology》 2023年第4期69-85,共17页
To address the difficulties in fusing multi-mode sensor data for complex industrial machinery, an adaptive deep coupling convolutional auto-encoder (ADCCAE) fusion method was proposed. First, the multi-mode features e... To address the difficulties in fusing multi-mode sensor data for complex industrial machinery, an adaptive deep coupling convolutional auto-encoder (ADCCAE) fusion method was proposed. First, the multi-mode features extracted synchronously by the CCAE were stacked and fed to the multi-channel convolution layers for fusion. Then, the fused data was passed to all connection layers for compression and fed to the Softmax module for classification. Finally, the coupling loss function coefficients and the network parameters were optimized through an adaptive approach using the gray wolf optimization (GWO) algorithm. Experimental comparisons showed that the proposed ADCCAE fusion model was superior to existing models for multi-mode data fusion. 展开更多
关键词 multi-mode Data fusion Coupling Convolutional Auto-Encoder Adaptive Optimization Deep Learning
在线阅读 下载PDF
Multi-mode luminescence anti-counterfeiting and visual iron(Ⅲ)ions RTP detection constructed by assembly of CDs&Eu3+in porous RHO zeolite
8
作者 Siyu Zong Xiaowei Yu +2 位作者 Yining Yang Xin Yang Jiyang Li 《Chinese Chemical Letters》 2025年第6期567-572,共6页
Carbon dots(CDs)-based composites have shown impressive performance in fields of information encryption and sensing,however,a great challenge is to simultaneously implement multi-mode luminescence and room-temperature... Carbon dots(CDs)-based composites have shown impressive performance in fields of information encryption and sensing,however,a great challenge is to simultaneously implement multi-mode luminescence and room-temperature phosphorescence(RTP)detection in single system due to the formidable synthesis.Herein,a multifunctional composite of Eu&CDs@p RHO has been designed by co-assembly strategy and prepared via a facile calcination and impregnation treatment.Eu&CDs@p RHO exhibits intense fluorescence(FL)and RTP coming from two individual luminous centers,Eu3+in the free pores and CDs in the interrupted structure of RHO zeolite.Unique four-mode color outputs including pink(Eu^(3+),ex.254 nm),light violet(CDs,ex.365 nm),blue(CDs,254 nm off),and green(CDs,365 nm off)could be realized,on the basis of it,a preliminary application of advanced information encoding has been demonstrated.Given the free pores of matrix and stable RTP in water of confined CDs,a visual RTP detection of Fe^(3+)ions is achieved with the detection limit as low as 9.8μmol/L.This work has opened up a new perspective for the strategic amalgamation of luminous vips with porous zeolite to construct the advanced functional materials. 展开更多
关键词 Carbon dots ZEOLITE Host-vip assembly multi-mode luminescence Phosphorescence detection Information encryption
原文传递
Strength through unity:Alkaline phosphatase-responsive AIEgen nanoprobe for aggregation-enhanced multi-mode imaging and photothermal therapy of metastatic prostate cancer
9
作者 Ze Wang Hao Liang +7 位作者 Annan Liu Xingchen Li Lin Guan Lei Li Liang He Andrew K.Whittaker Bai Yang Quan Lin 《Chinese Chemical Letters》 2025年第2期261-268,共8页
Prostate cancer(PCa)is characterized by high incidence and propensity for easy metastasis,presenting significant challenges in clinical diagnosis and treatment.Tumor microenvironment(TME)-responsive nanomaterials prov... Prostate cancer(PCa)is characterized by high incidence and propensity for easy metastasis,presenting significant challenges in clinical diagnosis and treatment.Tumor microenvironment(TME)-responsive nanomaterials provide a promising prospect for imaging-guided precision therapy.Considering that tumor-derived alkaline phosphatase(ALP)is over-expressed in metastatic PCa,it makes a great chance to develop a theranostics system with ALP responsive in the TME.Herein,an ALP-responsive aggregationinduced emission luminogens(AIEgens)nanoprobe AMNF self-assembly was designed for enhancing the diagnosis and treatment of metastatic PCa.The nanoprobe exhibited self-aggregation in the presence of ALP resulted in aggregation-induced fluorescence,and enhanced accumulation and prolonged retention period at the tumor site.In terms of detection,the fluorescence(FL)/computed tomography(CT)/magnetic resonance(MR)multi-mode imaging effect of nanoprobe was significantly improved post-aggregation,enabling precise diagnosis through the amalgamation of multiple imaging modes.Enhanced CT/MR imaging can achieve assist preoperative tumor diagnosis,and enhanced FL imaging technology can achieve“intraoperative visual navigation”,showing its potential application value in clinical tumor detection and surgical guidance.In terms of treatment,AMNF showed strong absorption in the near infrared region after aggregation,which improved the photothermal treatment effect.Overall,our work developed an effective aggregation-enhanced theranostic strategy for ALP-related cancers. 展开更多
关键词 AIE Prostate cancer ALP responsive Enhanced multi-mode imaging Enhanced photothermal therapy
原文传递
Learning-Based Delay Sensitive and Reliable Traffic Adaptation for DC-PLC and 5G Integrated Multi-Mode Heterogeneous Networks
10
作者 Tian Gexing Wang Ruiqiuyu +6 位作者 Pan Chao Zhou Zhenyu Yang Junzhong Zhao Chenkai Chen Bei Yang Sen Shahid Mumtaz 《China Communications》 2025年第4期65-80,共16页
Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power li... Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power line communication(DC-PLC)enables real-time data transmission on DC power lines.With traffic adaptation,DC-PLC can be integrated with other complementary media such as 5G to reduce transmission delay and improve reliability.However,traffic adaptation for DC-PLC and 5G integration still faces the challenges such as coupling between traffic admission control and traffic partition,dimensionality curse,and the ignorance of extreme event occurrence.To address these challenges,we propose a deep reinforcement learning(DRL)-based delay sensitive and reliable traffic adaptation algorithm(DSRTA)to minimize the total queuing delay under the constraints of traffic admission control,queuing delay,and extreme events occurrence probability.DSRTA jointly optimizes traffic admission control and traffic partition,and enables learning-based intelligent traffic adaptation.The long-term constraints are incorporated into both state and bound of drift-pluspenalty to achieve delay awareness and enforce reliability guarantee.Simulation results show that DSRTA has lower queuing delay and more reliable quality of service(QoS)guarantee than other state-of-the-art algorithms. 展开更多
关键词 DC-PLC and 5G integration multi-mode heterogeneous networks traffic adaptation traffic admission control traffic partition
在线阅读 下载PDF
Bearing Fault Diagnosis Based on Multimodal Fusion GRU and Swin-Transformer
11
作者 Yingyong Zou Yu Zhang +2 位作者 Long Li Tao Liu Xingkui Zhang 《Computers, Materials & Continua》 2026年第1期1587-1610,共24页
Fault diagnosis of rolling bearings is crucial for ensuring the stable operation of mechanical equipment and production safety in industrial environments.However,due to the nonlinearity and non-stationarity of collect... Fault diagnosis of rolling bearings is crucial for ensuring the stable operation of mechanical equipment and production safety in industrial environments.However,due to the nonlinearity and non-stationarity of collected vibration signals,single-modal methods struggle to capture fault features fully.This paper proposes a rolling bearing fault diagnosis method based on multi-modal information fusion.The method first employs the Hippopotamus Optimization Algorithm(HO)to optimize the number of modes in Variational Mode Decomposition(VMD)to achieve optimal modal decomposition performance.It combines Convolutional Neural Networks(CNN)and Gated Recurrent Units(GRU)to extract temporal features from one-dimensional time-series signals.Meanwhile,the Markovian Transition Field(MTF)is used to transform one-dimensional signals into two-dimensional images for spatial feature mining.Through visualization techniques,the effectiveness of generated images from different parameter combinations is compared to determine the optimal parameter configuration.A multi-modal network(GSTCN)is constructed by integrating Swin-Transformer and the Convolutional Block Attention Module(CBAM),where the attention module is utilized to enhance fault features.Finally,the fault features extracted from different modalities are deeply fused and fed into a fully connected layer to complete fault classification.Experimental results show that the GSTCN model achieves an average diagnostic accuracy of 99.5%across three datasets,significantly outperforming existing comparison methods.This demonstrates that the proposed model has high diagnostic precision and good generalization ability,providing an efficient and reliable solution for rolling bearing fault diagnosis. 展开更多
关键词 multi-modAL GRU swin-transformer CBAM CNN feature fusion
在线阅读 下载PDF
Multi-Model Fusion Framework Using Deep Learning for Visual-Textual Sentiment Classification
12
作者 Israa K.Salman Al-Tameemi Mohammad-Reza Feizi-Derakhshi +1 位作者 Saeed Pashazadeh Mohammad Asadpour 《Computers, Materials & Continua》 SCIE EI 2023年第8期2145-2177,共33页
Multimodal Sentiment Analysis(SA)is gaining popularity due to its broad application potential.The existing studies have focused on the SA of single modalities,such as texts or photos,posing challenges in effectively h... Multimodal Sentiment Analysis(SA)is gaining popularity due to its broad application potential.The existing studies have focused on the SA of single modalities,such as texts or photos,posing challenges in effectively handling social media data with multiple modalities.Moreover,most multimodal research has concentrated on merely combining the two modalities rather than exploring their complex correlations,leading to unsatisfactory sentiment classification results.Motivated by this,we propose a new visualtextual sentiment classification model named Multi-Model Fusion(MMF),which uses a mixed fusion framework for SA to effectively capture the essential information and the intrinsic relationship between the visual and textual content.The proposed model comprises three deep neural networks.Two different neural networks are proposed to extract the most emotionally relevant aspects of image and text data.Thus,more discriminative features are gathered for accurate sentiment classification.Then,a multichannel joint fusion modelwith a self-attention technique is proposed to exploit the intrinsic correlation between visual and textual characteristics and obtain emotionally rich information for joint sentiment classification.Finally,the results of the three classifiers are integrated using a decision fusion scheme to improve the robustness and generalizability of the proposed model.An interpretable visual-textual sentiment classification model is further developed using the Local Interpretable Model-agnostic Explanation model(LIME)to ensure the model’s explainability and resilience.The proposed MMF model has been tested on four real-world sentiment datasets,achieving(99.78%)accuracy on Binary_Getty(BG),(99.12%)on Binary_iStock(BIS),(95.70%)on Twitter,and(79.06%)on the Multi-View Sentiment Analysis(MVSA)dataset.These results demonstrate the superior performance of our MMF model compared to single-model approaches and current state-of-the-art techniques based on model evaluation criteria. 展开更多
关键词 Sentiment analysis multimodal classification deep learning joint fusion decision fusion INTERPRETABILITY
在线阅读 下载PDF
Effect of Addition of Er-TiB_(2)Dual-Phase Nanoparticles on Strength-Ductility of Al-Mn-Mg-Sc-Zr Alloy Prepared by Laser Powder Bed Fusion
13
作者 Li Suli Zhang Yanze +5 位作者 Yang Mengjia Zhang Longbo Xie Qidong Yang Laixia MaoFeng Chen Zhen 《稀有金属材料与工程》 北大核心 2026年第1期9-17,共9页
A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5w... A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5wt%Er-1wt%TiB_(2)/Al-Mn-Mg-Sc-Zr nanocomposite were prepared using vacuum homogenization technique,and the density of samples prepared through the LPBF process reached 99.8%.The strengthening and toughening mechanisms of Er-TiB_(2)were investigated.The results show that Al_(3)Er diffraction peaks are detected by X-ray diffraction analysis,and texture strength decreases according to electron backscatter diffraction results.The added Er and TiB_(2)nano-reinforcing phases act as heterogeneous nucleation sites during the LPBF forming process,hindering grain growth and effectively refining the grains.After incorporating the Er-TiB_(2)dual-phase nano-reinforcing phases,the tensile strength and elongation at break of the LPBF-deposited samples reach 550 MPa and 18.7%,which are 13.4%and 26.4%higher than those of the matrix material,respectively. 展开更多
关键词 Al-Mn-Mg-Sc-Zr alloy laser powder bed fusion nano-reinforcing phase synergistic enhancement
原文传递
Trajectory and influencing factors of changes in anxiety and depression in elderly patients after lumbar interbody fusion
14
作者 Xiao-Feng Liu Yan-Hua Wu +4 位作者 Guang-Xi Huang Bin Yu Hui-Juan Xu Meng-Hua Qiu Lin Kang 《World Journal of Psychiatry》 2026年第1期312-321,共10页
BACKGROUND Lumbar interbody fusion(LIF)is the primary treatment for lumbar degenerative diseases.Elderly patients are prone to anxiety and depression after undergoing surgery,which affects their postoperative recovery... BACKGROUND Lumbar interbody fusion(LIF)is the primary treatment for lumbar degenerative diseases.Elderly patients are prone to anxiety and depression after undergoing surgery,which affects their postoperative recovery speed and quality of life.Effective prevention of anxiety and depression in elderly patients has become an urgent problem.AIM To investigate the trajectory of anxiety and depression levels in elderly patients after LIF,and the influencing factors.METHODS Random sampling was used to select 239 elderly patients who underwent LIF from January 2020 to December 2024 in Shenzhen Pingle Orthopedic Hospital.General information and surgery-related indices were recorded,and participants completed measures of psychological status,lumbar spine dysfunction,and quality of life.A latent class growth model was used to analyze the post-LIF trajectory of anxiety and depression levels,and unordered multi-categorical logistic regression was used to analyze the influencing factors.RESULTS Three trajectories of change in anxiety level were identified:Increasing anxiety(n=26,10.88%),decreasing anxiety(n=27,11.30%),and stable anxiety(n=186,77.82%).Likewise,three trajectories of change in depression level were identified:Increasing depression(n=30,12.55%),decreasing depression(n=26,10.88%),and stable depression(n=183,76.57%).Regression analysis showed that having no partner,female sex,elevated Oswestry dysfunction index(ODI)scores,and reduced 36-Item Short Form Health Survey scores all contributed to increased anxiety levels,whereas female sex,postoperative opioid use,and elevated ODI scores all contributed to increased depression levels.CONCLUSION During clinical observation,combining factors to predict anxiety and depression in post-LIF elderly patients enables timely intervention,quickens recovery,and enhances quality of life. 展开更多
关键词 Lumbar interbody fusion Elderly patients ANXIETY DEPRESSION Trajectory of change Influencing factors
暂未订购
Cephalomedullary fusion nails for treatment of infected stemmed revision total knee arthroplasty:Four case reports
15
作者 Gregory M Georgiadis Isaac A Arefi +3 位作者 Summer M Drees Ajay Nair Drew Wagner Austin C Lawrence 《World Journal of Orthopedics》 2026年第1期189-196,共8页
BACKGROUND Salvage of the infected long stem revision total knee arthroplasty is challenging due to the presence of well-fixed ingrown or cemented stems.Reconstructive options are limited.Above knee amputation(AKA)is ... BACKGROUND Salvage of the infected long stem revision total knee arthroplasty is challenging due to the presence of well-fixed ingrown or cemented stems.Reconstructive options are limited.Above knee amputation(AKA)is often recommended.We present a surgical technique that was successfully used on four such patients to convert them to a knee fusion(KF)using a cephalomedullary nail.CASE SUMMARY Four patients with infected long stem revision knee replacements that refused AKA had a single stage removal of their infected revision total knee followed by a KF.They were all treated with a statically locked antegrade cephalomedullary fusion nail,augmented with antibiotic impregnated bone cement.All patients had successful limb salvage and were ambulatory with assistive devices at the time of last follow-up.All were infection free at an average follow-up of 25.5 months(range 16-31).CONCLUSION Single stage cephalomedullary nailing can result in a successful KF in patients with infected long stem revision total knees. 展开更多
关键词 Knee fusion Knee arthrodesis Intramedullary nail Cephalomedullary nail Total knee infection Case report
暂未订购
Identification of small impact craters in Chang’e-4 landing areas using a new multi-scale fusion crater detection algorithm
16
作者 FangChao Liu HuiWen Liu +7 位作者 Li Zhang Jian Chen DiJun Guo Bo Li ChangQing Liu ZongCheng Ling Ying-Bo Lu JunSheng Yao 《Earth and Planetary Physics》 2026年第1期92-104,共13页
Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious an... Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy. 展开更多
关键词 impact craters Chang’e-4 landing area multi-scale automatic detection YOLO11 fusion algorithm
在线阅读 下载PDF
Time varying congestion pricing for multi-class and multi-mode transportation system with asymmetric cost functions
17
作者 钟绍鹏 邓卫 《Journal of Southeast University(English Edition)》 EI CAS 2011年第1期77-82,共6页
This paper considers the problem of time varying congestion pricing to determine optimal time-varying tolls at peak periods for a queuing network with the interactions between buses and private cars.Through the combin... This paper considers the problem of time varying congestion pricing to determine optimal time-varying tolls at peak periods for a queuing network with the interactions between buses and private cars.Through the combined applications of the space-time expanded network(STEN) and the conventional network equilibrium modeling techniques,a multi-class,multi-mode and multi-criteria traffic network equilibrium model is developed.Travelers of different classes have distinctive value of times(VOTs),and travelers from the same class perceive their travel disutility or generalized costs on a route according to different weights of travel time and travel costs.Moreover,the symmetric cost function model is extended to deal with the interactions between buses and private cars.It is found that there exists a uniform(anonymous) link toll pattern which can drive a multi-class,multi-mode and multi-criteria user equilibrium flow pattern to a system optimum when the system's objective function is measured in terms of money.It is also found that the marginal cost pricing models with a symmetric travel cost function do not reflect the interactions between traffic flows of different road sections,and the obtained congestion pricing toll is smaller than the real value. 展开更多
关键词 time varying congestion pricing ASYMMETRIC MULTI-CLASS multi-mode MULTI-CRITERIA
在线阅读 下载PDF
基于UPLC-Orbitrap Fusion Lumos Tribrid-MS、网络药理学与实验验证的正骨紫金丸活性成分及作用机制研究
18
作者 冯志毅 孙淑仃 +3 位作者 郑历史 孙琪 刘泽 冯素香 《中国现代应用药学》 北大核心 2025年第21期3704-3716,共13页
目的基于UPLC-Orbitrap Fusion Lumos Tribrid-MS联合网络药理学与实验验证预测正骨紫金丸活血化瘀的活性成分及其作用机制。方法首先,采用UPLC-Orbitrap Fusion Lumos Tribrid-MS快速表征正骨紫金丸中的化学成分;其次,通过网络药理学... 目的基于UPLC-Orbitrap Fusion Lumos Tribrid-MS联合网络药理学与实验验证预测正骨紫金丸活血化瘀的活性成分及其作用机制。方法首先,采用UPLC-Orbitrap Fusion Lumos Tribrid-MS快速表征正骨紫金丸中的化学成分;其次,通过网络药理学的研究方法构建“药物-成分-靶点”网络,获取关键靶点及主要活性成分,结合String平台与CytoScape软件构建蛋白质-蛋白质相互作用(protein-protein interaction,PPI)网络,通过MateScape数据库富集分析通路,利用DiscoVery Studio 4.5软件进行分子对接验证;最后,建立急性软组织损伤动物模型,以急性软组织损伤评分与全血黏度为药效学指标开展药效学研究。结果正骨紫金丸中共鉴定出包括黄酮类、生物碱类、有机酸类和香豆素类等化合物67个,其中大黄素、藁本内酯、肉桂酸、水杨酸、芦荟大黄素可能为正骨紫金丸活血化瘀的主要活性成分。PPI网络拓扑分析得到TNF、ALB、AKT1等26个核心靶点,KEGG富集分析表明正骨紫金丸主要通过调控TNF、PI3K-Akt、NF-κB等信号通路发挥活血化瘀作用,分子对接结果显示正骨紫金丸主要活性成分与关键靶点结合良好,药效学结果表明正骨紫金丸可显著降低急性软组织损伤大鼠的全血黏度。结论本研究明确了正骨紫金丸活血化瘀的活性成分和作用机制,同时表明其可能通过作用于多靶点、多通路整体调节,共同发挥活血化瘀作用,为其后续深入研究提供参考。 展开更多
关键词 正骨紫金丸 UPLC-Orbitrap fusion Lumos Tribrid-MS 成分分析 网络药理学 活血化瘀
原文传递
A Comprehensive Survey on Deep Learning Multi-Modal Fusion:Methods,Technologies and Applications 被引量:6
19
作者 Tianzhe Jiao Chaopeng Guo +2 位作者 Xiaoyue Feng Yuming Chen Jie Song 《Computers, Materials & Continua》 SCIE EI 2024年第7期1-35,共35页
Multi-modal fusion technology gradually become a fundamental task in many fields,such as autonomous driving,smart healthcare,sentiment analysis,and human-computer interaction.It is rapidly becoming the dominant resear... Multi-modal fusion technology gradually become a fundamental task in many fields,such as autonomous driving,smart healthcare,sentiment analysis,and human-computer interaction.It is rapidly becoming the dominant research due to its powerful perception and judgment capabilities.Under complex scenes,multi-modal fusion technology utilizes the complementary characteristics of multiple data streams to fuse different data types and achieve more accurate predictions.However,achieving outstanding performance is challenging because of equipment performance limitations,missing information,and data noise.This paper comprehensively reviews existing methods based onmulti-modal fusion techniques and completes a detailed and in-depth analysis.According to the data fusion stage,multi-modal fusion has four primary methods:early fusion,deep fusion,late fusion,and hybrid fusion.The paper surveys the three majormulti-modal fusion technologies that can significantly enhance the effect of data fusion and further explore the applications of multi-modal fusion technology in various fields.Finally,it discusses the challenges and explores potential research opportunities.Multi-modal tasks still need intensive study because of data heterogeneity and quality.Preserving complementary information and eliminating redundant information between modalities is critical in multi-modal technology.Invalid data fusion methods may introduce extra noise and lead to worse results.This paper provides a comprehensive and detailed summary in response to these challenges. 展开更多
关键词 multi-modal fusion REPRESENTATION TRANSLATION ALIGNMENT deep learning comparative analysis
在线阅读 下载PDF
大学英语的Multi-Mode教学模式
20
作者 郑洁雯 《中国科教创新导刊》 2007年第27期224-224,226,共2页
针对目前高职院校大学英语教学普遍存在的问题,结合全国性大学英语教学需要改革的迫切要求,笔者对所在院校研究并应用的Multi-Mode教学模式进行分析说明,其关键性在于培养学生自主学习的积极性,较好地落实教学任务,提高学生参加英语等... 针对目前高职院校大学英语教学普遍存在的问题,结合全国性大学英语教学需要改革的迫切要求,笔者对所在院校研究并应用的Multi-Mode教学模式进行分析说明,其关键性在于培养学生自主学习的积极性,较好地落实教学任务,提高学生参加英语等级考试的通过率。 展开更多
关键词 multi-mode教学模式 编串故事 多媒体教学 写作
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部