Phosphorus(P)is an essential nutrient for crop growth,making it important for maintaining food security as the global population continues to increase.Plants acquire P primarily via the uptake of inorganic phosphate(P...Phosphorus(P)is an essential nutrient for crop growth,making it important for maintaining food security as the global population continues to increase.Plants acquire P primarily via the uptake of inorganic phosphate(Pi)in soil through their roots.Pi,which is usually sequestered in soils,is not easily absorbed by plants and represses plant growth.Plants have developed a series of mechanisms to cope with P deficiency.Moreover,P fertilizer applications are critical for maximizing crop yield.Maize is a major cereal crop cultivated worldwide.Increasing its P-use efficiency is important for optimizing maize production.Over the past two decades,considerable progresses have been achieved in studies aimed at adapting maize varieties to changes in environmental P supply.Here,we present an overview of the morphological,physiological,and molecular mechanisms involved in P acquisition,translocation,and redistribution in maize and combine the advances in Arabidopsis and rice,to better elucidate the progress of P nutrition.Additionally,we summarize the correlation between P and abiotic stress responses.Clarifying the mechanisms relevant to improving P absorption and use in maize can guide future research on sustainable agriculture.展开更多
With the continued expansion of oil and gas exploration,both in the eastern and western regions,the quality of seismic acquisition has become a key factor in oil and gas exploration in complex areas.However,convention...With the continued expansion of oil and gas exploration,both in the eastern and western regions,the quality of seismic acquisition has become a key factor in oil and gas exploration in complex areas.However,conventional seismic acquisition methods cannot efficiently avoid challenging acquisition locations and produce high-quality seismic data.In this regard,based on the curvelet transform,this paper proposes an irregular seismic acquisition method,which utilizes the high-precision characteristics of the curvelet transform and simulated annealing algorithm to establish a method for the evaluation of the coherence of irregular sampling matrices and design of observation systems.The method was verified using forward simulation and actual acquisition data.The results suggest the superior quality of seismic data gathered in complicated areas through this method over those acquired using traditional methods,which can provide technical guidance for the design of observation systems in complex areas.展开更多
Carbon dots(CDs)-based composites have shown impressive performance in fields of information encryption and sensing,however,a great challenge is to simultaneously implement multi-mode luminescence and room-temperature...Carbon dots(CDs)-based composites have shown impressive performance in fields of information encryption and sensing,however,a great challenge is to simultaneously implement multi-mode luminescence and room-temperature phosphorescence(RTP)detection in single system due to the formidable synthesis.Herein,a multifunctional composite of Eu&CDs@p RHO has been designed by co-assembly strategy and prepared via a facile calcination and impregnation treatment.Eu&CDs@p RHO exhibits intense fluorescence(FL)and RTP coming from two individual luminous centers,Eu3+in the free pores and CDs in the interrupted structure of RHO zeolite.Unique four-mode color outputs including pink(Eu^(3+),ex.254 nm),light violet(CDs,ex.365 nm),blue(CDs,254 nm off),and green(CDs,365 nm off)could be realized,on the basis of it,a preliminary application of advanced information encoding has been demonstrated.Given the free pores of matrix and stable RTP in water of confined CDs,a visual RTP detection of Fe^(3+)ions is achieved with the detection limit as low as 9.8μmol/L.This work has opened up a new perspective for the strategic amalgamation of luminous vips with porous zeolite to construct the advanced functional materials.展开更多
Deblending is a data processing procedure used to separate the source interferences of blended seismic data,which are obtained by simultaneous sources with random time delays to reduce the cost of seismic acquisition....Deblending is a data processing procedure used to separate the source interferences of blended seismic data,which are obtained by simultaneous sources with random time delays to reduce the cost of seismic acquisition.There are three types of deblending algorithms,i.e.,filtering-type noise suppression algorithm,inversion-based algorithm and deep-learning based algorithm.We review the merits of these techniques,and propose to use a sparse inversion method for seismic data deblending.Filtering-based deblending approach is applicable to blended data with a low blending fold and simple geometry.Otherwise,it can suffer from signal distortion and noise leakage.At present,the deep learning based deblending methods are still under development and field data applications are limited due to the lack of high-quality training labels.In contrast,the inversion-based deblending approaches have gained industrial acceptance.Our used inversion approach transforms the pseudo-deblended data into the frequency-wavenumber-wavenumher(FKK)domain,and a sparse constraint is imposed for the coherent signal estimation.The estimated signal is used to predict the interference noise for subtraction from the original pseudo-deblended data.Via minimizing the data misfit,the signal can be iteratively updated with a shrinking threshold until the signal and interference are fully separated.The used FKK sparse inversion algorithm is very accurate and efficient compared with other sparse inversion methods,and it is widely applied in field cases.Synthetic example shows that the deblending error is less than 1%in average amplitudes and less than-40 dB in amplitude spectra.We present three field data examples of land,marine OBN(Ocean Bottom Nodes)and streamer acquisitions to demonstrate its successful applications in separating the source interferences efficiently and accurately.展开更多
The paper aims to examine the application of multimedia technology in expanding vocabulary in second language acquisition.Incorporating innovative technology such as mobile applications,gaming applications,websites,an...The paper aims to examine the application of multimedia technology in expanding vocabulary in second language acquisition.Incorporating innovative technology such as mobile applications,gaming applications,websites,and other related online tools has increased learners’vocabulary mastery,engagement,and motivation levels.Interactional processes like media-embedded objects,teach-learning capacity algorithms,and feedback help learners receive the course in a personalized way that considers individual learning patterns or abilities.However,there are the following challenges:accessibility issues,total reliance on technology,and issues related to privacy.The following challenges affecting learning that arise from using gadgets:the digital divide,limited device access,and environmental issues that may distract a learner in a technology-enabled environment.Moreover,the security issue for data and the ethical question of users’information remain important too.Hence,the paper provides arguments that although these technologies contribute significantly to vocabulary acquisition,the challenge that emerges should be addressed by integrating technology in teaching and learning alongside conventional methods for vocabulary acquisition,which is a practical language acquisition tool that should not be monopolized.展开更多
Prostate cancer(PCa)is characterized by high incidence and propensity for easy metastasis,presenting significant challenges in clinical diagnosis and treatment.Tumor microenvironment(TME)-responsive nanomaterials prov...Prostate cancer(PCa)is characterized by high incidence and propensity for easy metastasis,presenting significant challenges in clinical diagnosis and treatment.Tumor microenvironment(TME)-responsive nanomaterials provide a promising prospect for imaging-guided precision therapy.Considering that tumor-derived alkaline phosphatase(ALP)is over-expressed in metastatic PCa,it makes a great chance to develop a theranostics system with ALP responsive in the TME.Herein,an ALP-responsive aggregationinduced emission luminogens(AIEgens)nanoprobe AMNF self-assembly was designed for enhancing the diagnosis and treatment of metastatic PCa.The nanoprobe exhibited self-aggregation in the presence of ALP resulted in aggregation-induced fluorescence,and enhanced accumulation and prolonged retention period at the tumor site.In terms of detection,the fluorescence(FL)/computed tomography(CT)/magnetic resonance(MR)multi-mode imaging effect of nanoprobe was significantly improved post-aggregation,enabling precise diagnosis through the amalgamation of multiple imaging modes.Enhanced CT/MR imaging can achieve assist preoperative tumor diagnosis,and enhanced FL imaging technology can achieve“intraoperative visual navigation”,showing its potential application value in clinical tumor detection and surgical guidance.In terms of treatment,AMNF showed strong absorption in the near infrared region after aggregation,which improved the photothermal treatment effect.Overall,our work developed an effective aggregation-enhanced theranostic strategy for ALP-related cancers.展开更多
This article focuses on financial management issues in mergers and acquisitions(M&A).It provides an indepth analysis of the financial risks and management challenges faced by contemporary businesses during various...This article focuses on financial management issues in mergers and acquisitions(M&A).It provides an indepth analysis of the financial risks and management challenges faced by contemporary businesses during various stages of M&A,such as pre-merger valuation pricing difficulties,unreasonable financing structures,risks in payment method selection,obstacles to financial integration,and lack of risk management.Targeted management strategies are proposed to address these issues.This paper suggests strengthening due diligence and valuation management,optimizing financing structures,rationally selecting payment methods,deepening financial integration,and improving tax planning.These strategies aim to enhance the level of financial management in M&A,promote economic synergies and management effects,help companies quickly achieve M&A goals,and drive sustainable business development.展开更多
In the anticorrosive coating line of a welded tube plant, the current status and existing problems of the medium-frequency induction heating equipment were discussed.Partial renovations of the power control cabinet ha...In the anticorrosive coating line of a welded tube plant, the current status and existing problems of the medium-frequency induction heating equipment were discussed.Partial renovations of the power control cabinet have been conducted.Parameters such as the DC current, DC voltage, intermediate frequency power, heating temperature, and the positioning signal at the pipe end were collected.A data acquisition and processing system, which can process data according to user needs and provide convenient data processing functions, has been developed using LabVIEW software.This system has been successfully applied in the coating line for the automatic control of high-power induction heating equipment, production management, and digital steel tube and/or digital delivery.展开更多
The paper is an introduction to the front-end pulse acquisition and the back-end pulse biomimetic reproduction system.This system is capable of faithfully replicating the complete pulse waveform collected at the front...The paper is an introduction to the front-end pulse acquisition and the back-end pulse biomimetic reproduction system.This system is capable of faithfully replicating the complete pulse waveform collected at the front end.Traditional Chinese Medicine(TCM)practitioners analyze and diagnose the pulse patterns at the replication end.Meanwhile,the obtained pulse waveforms are analyzed and learnt by a neural network based on key diagnostic points in TCM pulse taking,which enables the determination of the corresponding relationships between different pulse waveforms and various pulse patterns in TCM pulse taking.With the support of clinical samples,an auxiliary diagnostic system for TCM pulse patterns ensures the accuracy of pulse pattern replication.展开更多
Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power li...Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power line communication(DC-PLC)enables real-time data transmission on DC power lines.With traffic adaptation,DC-PLC can be integrated with other complementary media such as 5G to reduce transmission delay and improve reliability.However,traffic adaptation for DC-PLC and 5G integration still faces the challenges such as coupling between traffic admission control and traffic partition,dimensionality curse,and the ignorance of extreme event occurrence.To address these challenges,we propose a deep reinforcement learning(DRL)-based delay sensitive and reliable traffic adaptation algorithm(DSRTA)to minimize the total queuing delay under the constraints of traffic admission control,queuing delay,and extreme events occurrence probability.DSRTA jointly optimizes traffic admission control and traffic partition,and enables learning-based intelligent traffic adaptation.The long-term constraints are incorporated into both state and bound of drift-pluspenalty to achieve delay awareness and enforce reliability guarantee.Simulation results show that DSRTA has lower queuing delay and more reliable quality of service(QoS)guarantee than other state-of-the-art algorithms.展开更多
Objective To explore the impact of mergers and acquisitions(M&A)on the innovation performance of the companies from both a patent perspective and a financial perspective by taking the case of M&A Company J as ...Objective To explore the impact of mergers and acquisitions(M&A)on the innovation performance of the companies from both a patent perspective and a financial perspective by taking the case of M&A Company J as an example.Methods The literature research method,patent data analysis method,and financial data analysis method were used.Results:The M&A has a positive impact on the innovation performance of Company J,and the results from the patent perspective and the financial perspective are consistent.Results and Conclusion The literature research method,patent data analysis method,and financial data analysis method were used.The M&A has a positive impact on the innovation performance of Company J,and the results from the patent perspective and the financial perspective are consistent.展开更多
Mega Low Earth Orbit(LEO)satellite constellations can provide pervasive intelligent services in the forthcoming Six-Generation(6G)network via the Free-Space Optical(FSO)InterSatellite Link(ISL).However,the challenges ...Mega Low Earth Orbit(LEO)satellite constellations can provide pervasive intelligent services in the forthcoming Six-Generation(6G)network via the Free-Space Optical(FSO)InterSatellite Link(ISL).However,the challenges posed by the mega LEO satellite constellations,such as limited onboard resources,high-speed movement and the vibration of satellite platforms,present significant obstacles for the existing Pointing,Acquisition and Tracking(PAT)schemes of FSOISL.To address these challenges,we propose a beaconless PAT scheme under satellite platform vibrations,employing a composite scanning approach combining an inner Archimedean spiral scan with an outer regular hexagon step scan.The proposed composite scanning approach covers a wide range of the Field of Uncertainty(FOU)and reduces the required scans by actuator,which can ensure a high Acquisition Probability(AP)while reducing the Average Acquisition Time(AAT)for the inner scan.Specifically,we model and analyze the effect of satellite platform vibrations on the acquisition performance of our beaconless PAT scheme,and derive closed-form expressions for both AP and AAT by utilizing a 2-track model where the acquisition happens on two adjacent spiral scan tracks.By utilizing the theoretical derivations,we can achieve a minimum AAT under diverse APs by selecting appropriate values of overlapping region and scanning range.Simulation results validate that our optimized composite scanning approach for beaconless PAT scheme outperforms the existing schemes.展开更多
A state-of-the-art detector array with a digital data acquisition system has been developed for charged-particle decay studies,includingβ-delayed protons,αdecay,and direct proton emissions from exotic proton-rich nu...A state-of-the-art detector array with a digital data acquisition system has been developed for charged-particle decay studies,includingβ-delayed protons,αdecay,and direct proton emissions from exotic proton-rich nuclei.The digital data acquisition system enables precise synchronization and processing of complex signals from various detectors,such as plastic scintillators,silicon detectors,and germaniumγdetectors.The system's performance was evaluated using theβdecay of^(32)Ar and its neighboring nuclei,produced via projectile fragmentation at the first Radioactive Ion Beam Line in Lanzhou(RIBLL1).Key measurements,including the half-life,charged-particle spectrum,andγ-ray spectrum,were obtained and compared with previous results for validation.Using the implantation–decay method,the isotopes of interest were implanted into two doublesided silicon strip detectors,where their subsequent decays were measured and correlated with preceding implantations using both position and time information.This detection system has potential for further applications,including the study ofβ-delayed charged-particle decay and direct proton emissions from even more exotic proton-rich nuclei.展开更多
With the continuous evolution of electronic technology,field-programmable gate array(FPGA)has demonstrated significant advantages in the realm of signal acquisition and processing,and signal acquisition plays a pivota...With the continuous evolution of electronic technology,field-programmable gate array(FPGA)has demonstrated significant advantages in the realm of signal acquisition and processing,and signal acquisition plays a pivotal role in the practical applications of laser gyros.By analysis of the output signals from a laser gyro and an accelerometer,this paper presents a circuit design for signal acquisition of the laser gyro based on domestic devices.The design incorporates a finite impulse response(FIR)filter to process the gyro signal and employs a small-volume,impact-resistant quartz flexible accelerometer for signal aquisition.Simulation results demonstrate that the errors in X,Y,and Z axes fall within acceptable ranges while meeting filtering requirements.The use of FPGA for signal acquisition and preprocessing enhances configuration flexibility,which provides an idea and method for optimizing performance and processing signals in laser gyro applications.展开更多
A digital data-acquisition system based on XIA LLC products was used in a complex nuclear reaction experiment using radioactive ion beams.A flexible trigger system based on a field-programmable gate array(FPGA)paramet...A digital data-acquisition system based on XIA LLC products was used in a complex nuclear reaction experiment using radioactive ion beams.A flexible trigger system based on a field-programmable gate array(FPGA)parametrization was developed to adapt to different experimental sizes.A user-friendly interface was implemented,which allows converting script language expressions into FPGA internal control parameters.The proposed digital system can be combined with a conventional analog data acquisition system to provide more flexibility.The performance of the combined system was veri-fied using experimental data.展开更多
The all-wheel drive(AWD)hybrid system is a research focus on high-performance new energy vehicles that can meet the demands of dynamic performance and passing ability.Simultaneous optimization of the power and economy...The all-wheel drive(AWD)hybrid system is a research focus on high-performance new energy vehicles that can meet the demands of dynamic performance and passing ability.Simultaneous optimization of the power and economy of hybrid vehicles becomes an issue.A unique multi-mode coupling(MMC)AWD hybrid system is presented to realize the distributed and centralized driving of the front and rear axles to achieve vectored distribution and full utilization of the system power between the axles of vehicles.Based on the parameters of the benchmarking model of a hybrid vehicle,the best model-predictive control-based energy management strategy is proposed.First,the drive system model was built after the analysis of the MMC-AWD’s drive modes.Next,three fundamental strategies were established to address power distribution adjustment and battery SOC maintenance when the SOC changed,which was followed by the design of a road driving force observer.Then,the energy consumption rate in the average time domain was processed before designing the minimum fuel consumption controller based on the equivalent fuel consumption coefficient.Finally,the advantage of the MMC-AWD was confirmed by comparison with the dynamic performance and economy of the BYD Song PLUS DMI-AWD.The findings indicate that,in comparison to the comparative hybrid system at road adhesion coefficients of 0.8 and 0.6,the MMC-AWD’s capacity to accelerate increases by 5.26%and 7.92%,respectively.When the road adhesion coefficient is 0.8,0.6,and 0.4,the maximum climbing ability increases by 14.22%,12.88%,and 4.55%,respectively.As a result,the dynamic performance is greatly enhanced,and the fuel savings rate per 100 km of mileage reaches 12.06%,which is also very economical.The proposed control strategies for the new hybrid AWD vehicle can optimize the power and economy simultaneously.展开更多
This work evaluates the viability of a cutting-edge flexible wing prototype actuated by Shape Memory Alloy(SMA)wire actuators.Such flexible wings have garnered significant interest for their potential to enhance aerod...This work evaluates the viability of a cutting-edge flexible wing prototype actuated by Shape Memory Alloy(SMA)wire actuators.Such flexible wings have garnered significant interest for their potential to enhance aerodynamic efficiency by mitigating noise and delaying flow separation.SMA actuators are particularly advantageous due to their superior power-to-weight ratio and adaptive response,making them increasingly favored in morphing aircraft applications.Our methodology begins with a detailed delineation of the fishbone camber morphing wing rib structure,followed by the construction of a multi-mode morphing wing segment through 3D-printed rib assembly.Comprehensive testing of the SMA wire actuators’actuation capacity and efficiency was conducted to establish their operational parameters.Subsequent experimental analyses focused on the bi-directional and reciprocating morphing performance of the fishbone wing rib,which incorporates SMA wires on the upper and lower sides.These experiments confirmed the segment’s multi-mode morphing abilities.Aerodynamic assessments have demonstrated that our design substantially improves the Lift-to-Drag ratio(L/D)when compared to conventional rigid wings.Finally,two phases of flight tests demonstrated the feasibility of SMA as an aircraft actuator and the validity of flexible wing structures to adjust the aircraft attitude,respectively.展开更多
The Chepaizi Exploration Area,Junggar Basin(NW China)holds substantial importance for seismic exploration endeavors,yet it poses notable challenges due to the intricate nature of its subsurface and near-surface condit...The Chepaizi Exploration Area,Junggar Basin(NW China)holds substantial importance for seismic exploration endeavors,yet it poses notable challenges due to the intricate nature of its subsurface and near-surface conditions.To address these challenges,we introduce a novel and comprehensive workflow tailored to evaluate and optimize seismic acquisition geometries while considering the impacts of near-surface viscosity.By integrating geological knowledge,historical seismic data,and subsurface modeling,we conduct simulations employing the visco-acoustic wave equation and reverse-time migration to produce detailed subsurface images.The quality of these images is quantitatively evaluated using a local similarity metric,a pivotal tool for evaluating the accuracy of seismic imaging.The culmination of this workflow results in an automated optimization strategy for acquisition geometries that enhances subsurface exploration.Our proposed methodology underscores the importance of incorporating near-surface viscosity effects in seismic imaging,offering a robust framework for improving the accuracy of subsurface imaging.Herein,we aim to contribute to the advancement of seismic imaging methodologies by providing valuable insights for achieving high-quality seismic exploration outcomes in regions characterized by complex subsurface and near-surface conditions.展开更多
As modern electromagnetic environments are more and more complex,the anti-interference performance of the synchronization acquisition is becoming vital in wireless communications.With the rapid development of the digi...As modern electromagnetic environments are more and more complex,the anti-interference performance of the synchronization acquisition is becoming vital in wireless communications.With the rapid development of the digital signal processing technologies,some synchronization acquisition algorithms for hybrid direct-sequence(DS)/frequency hopping(FH)spread spectrum communications have been proposed.However,these algorithms do not focus on the analysis and the design of the synchronization acquisition under typical interferences.In this paper,a synchronization acquisition algorithm based on the frequency hopping pulses combining(FHPC)is proposed.Specifically,the proposed algorithm is composed of two modules:an adaptive interference suppression(IS)module and an adaptive combining decision module.The adaptive IS module mitigates the effect of the interfered samples in the time-domain or the frequencydomain,and the adaptive combining decision module can utilize each frequency hopping pulse to construct an anti-interference decision metric and generate an adaptive acquisition decision threshold to complete the acquisition.Theory and simulation demonstrate that the proposed algorithm significantly enhances the antiinterference and anti-noise performances of the synchronization acquisition for hybrid DS/FH communications.展开更多
基金supported by grants from the National Key Research and Development Program of China(2021YFF1000500)the National Natural Science Foundation of China(32370272,31970273,and 31921001).
文摘Phosphorus(P)is an essential nutrient for crop growth,making it important for maintaining food security as the global population continues to increase.Plants acquire P primarily via the uptake of inorganic phosphate(Pi)in soil through their roots.Pi,which is usually sequestered in soils,is not easily absorbed by plants and represses plant growth.Plants have developed a series of mechanisms to cope with P deficiency.Moreover,P fertilizer applications are critical for maximizing crop yield.Maize is a major cereal crop cultivated worldwide.Increasing its P-use efficiency is important for optimizing maize production.Over the past two decades,considerable progresses have been achieved in studies aimed at adapting maize varieties to changes in environmental P supply.Here,we present an overview of the morphological,physiological,and molecular mechanisms involved in P acquisition,translocation,and redistribution in maize and combine the advances in Arabidopsis and rice,to better elucidate the progress of P nutrition.Additionally,we summarize the correlation between P and abiotic stress responses.Clarifying the mechanisms relevant to improving P absorption and use in maize can guide future research on sustainable agriculture.
基金innovation consortium project of China Petroleum and Southwest Petroleum University(No.2020CX010201)Sichuan Science and Technology Program(No.2024NSFSC0081)。
文摘With the continued expansion of oil and gas exploration,both in the eastern and western regions,the quality of seismic acquisition has become a key factor in oil and gas exploration in complex areas.However,conventional seismic acquisition methods cannot efficiently avoid challenging acquisition locations and produce high-quality seismic data.In this regard,based on the curvelet transform,this paper proposes an irregular seismic acquisition method,which utilizes the high-precision characteristics of the curvelet transform and simulated annealing algorithm to establish a method for the evaluation of the coherence of irregular sampling matrices and design of observation systems.The method was verified using forward simulation and actual acquisition data.The results suggest the superior quality of seismic data gathered in complicated areas through this method over those acquired using traditional methods,which can provide technical guidance for the design of observation systems in complex areas.
基金supported by the National Natural Science Foundation of China(No.22288101)the 111 Project(No.B17020)。
文摘Carbon dots(CDs)-based composites have shown impressive performance in fields of information encryption and sensing,however,a great challenge is to simultaneously implement multi-mode luminescence and room-temperature phosphorescence(RTP)detection in single system due to the formidable synthesis.Herein,a multifunctional composite of Eu&CDs@p RHO has been designed by co-assembly strategy and prepared via a facile calcination and impregnation treatment.Eu&CDs@p RHO exhibits intense fluorescence(FL)and RTP coming from two individual luminous centers,Eu3+in the free pores and CDs in the interrupted structure of RHO zeolite.Unique four-mode color outputs including pink(Eu^(3+),ex.254 nm),light violet(CDs,ex.365 nm),blue(CDs,254 nm off),and green(CDs,365 nm off)could be realized,on the basis of it,a preliminary application of advanced information encoding has been demonstrated.Given the free pores of matrix and stable RTP in water of confined CDs,a visual RTP detection of Fe^(3+)ions is achieved with the detection limit as low as 9.8μmol/L.This work has opened up a new perspective for the strategic amalgamation of luminous vips with porous zeolite to construct the advanced functional materials.
基金supported by National Science and Technology Major Project(Grant No.2017ZX05018-001)。
文摘Deblending is a data processing procedure used to separate the source interferences of blended seismic data,which are obtained by simultaneous sources with random time delays to reduce the cost of seismic acquisition.There are three types of deblending algorithms,i.e.,filtering-type noise suppression algorithm,inversion-based algorithm and deep-learning based algorithm.We review the merits of these techniques,and propose to use a sparse inversion method for seismic data deblending.Filtering-based deblending approach is applicable to blended data with a low blending fold and simple geometry.Otherwise,it can suffer from signal distortion and noise leakage.At present,the deep learning based deblending methods are still under development and field data applications are limited due to the lack of high-quality training labels.In contrast,the inversion-based deblending approaches have gained industrial acceptance.Our used inversion approach transforms the pseudo-deblended data into the frequency-wavenumber-wavenumher(FKK)domain,and a sparse constraint is imposed for the coherent signal estimation.The estimated signal is used to predict the interference noise for subtraction from the original pseudo-deblended data.Via minimizing the data misfit,the signal can be iteratively updated with a shrinking threshold until the signal and interference are fully separated.The used FKK sparse inversion algorithm is very accurate and efficient compared with other sparse inversion methods,and it is widely applied in field cases.Synthetic example shows that the deblending error is less than 1%in average amplitudes and less than-40 dB in amplitude spectra.We present three field data examples of land,marine OBN(Ocean Bottom Nodes)and streamer acquisitions to demonstrate its successful applications in separating the source interferences efficiently and accurately.
基金Interim Achievements of the“Yingying Technology Empowerment–Application-Oriented Talent Enhancement Project at Changchun College of Electronic Technology”under the Fourth Phase of the 2024 Ministry of Education’s Employment-Education Collaboration Project(Project Number:2024121188944Project Leader:Chunhua Ren)+3 种基金Interim Achievements of the“Directional Cultivation Project for Composite Talents at Changchun College of Electronic Technology”under the Fourth Phase of the 2024 Ministry of Education’s Supply-Demand Matching and Employment-Education Cultivation Program(Project Number:2024121107571Project Leader:Chunhua Ren)Interim Achievements of the“Research on the Cultivation Path of Craftsmanship Spirit among University Teachers in the Context of Industry-University Collaboration”under the 2025 Ministry of Education’s Industry-University Cooperative Education Project(Project Number:2505164755Project Leader:Chunhua Ren)。
文摘The paper aims to examine the application of multimedia technology in expanding vocabulary in second language acquisition.Incorporating innovative technology such as mobile applications,gaming applications,websites,and other related online tools has increased learners’vocabulary mastery,engagement,and motivation levels.Interactional processes like media-embedded objects,teach-learning capacity algorithms,and feedback help learners receive the course in a personalized way that considers individual learning patterns or abilities.However,there are the following challenges:accessibility issues,total reliance on technology,and issues related to privacy.The following challenges affecting learning that arise from using gadgets:the digital divide,limited device access,and environmental issues that may distract a learner in a technology-enabled environment.Moreover,the security issue for data and the ethical question of users’information remain important too.Hence,the paper provides arguments that although these technologies contribute significantly to vocabulary acquisition,the challenge that emerges should be addressed by integrating technology in teaching and learning alongside conventional methods for vocabulary acquisition,which is a practical language acquisition tool that should not be monopolized.
基金supported by Natural Science Foundation of Jilin Province(No.SKL202302002)Key Research and Development project of Jilin Provincial Science and Technology Department(No.20210204142YY)+2 种基金The Science and Technology Development Program of Jilin Province(No.2020122256JC)Beijing Kechuang Medical Development Foundation Fund of China(No.KC2023-JX-0186BQ079)Talent Reserve Program(TRP),the First Hospital of Jilin University(No.JDYY-TRP-2024007)。
文摘Prostate cancer(PCa)is characterized by high incidence and propensity for easy metastasis,presenting significant challenges in clinical diagnosis and treatment.Tumor microenvironment(TME)-responsive nanomaterials provide a promising prospect for imaging-guided precision therapy.Considering that tumor-derived alkaline phosphatase(ALP)is over-expressed in metastatic PCa,it makes a great chance to develop a theranostics system with ALP responsive in the TME.Herein,an ALP-responsive aggregationinduced emission luminogens(AIEgens)nanoprobe AMNF self-assembly was designed for enhancing the diagnosis and treatment of metastatic PCa.The nanoprobe exhibited self-aggregation in the presence of ALP resulted in aggregation-induced fluorescence,and enhanced accumulation and prolonged retention period at the tumor site.In terms of detection,the fluorescence(FL)/computed tomography(CT)/magnetic resonance(MR)multi-mode imaging effect of nanoprobe was significantly improved post-aggregation,enabling precise diagnosis through the amalgamation of multiple imaging modes.Enhanced CT/MR imaging can achieve assist preoperative tumor diagnosis,and enhanced FL imaging technology can achieve“intraoperative visual navigation”,showing its potential application value in clinical tumor detection and surgical guidance.In terms of treatment,AMNF showed strong absorption in the near infrared region after aggregation,which improved the photothermal treatment effect.Overall,our work developed an effective aggregation-enhanced theranostic strategy for ALP-related cancers.
文摘This article focuses on financial management issues in mergers and acquisitions(M&A).It provides an indepth analysis of the financial risks and management challenges faced by contemporary businesses during various stages of M&A,such as pre-merger valuation pricing difficulties,unreasonable financing structures,risks in payment method selection,obstacles to financial integration,and lack of risk management.Targeted management strategies are proposed to address these issues.This paper suggests strengthening due diligence and valuation management,optimizing financing structures,rationally selecting payment methods,deepening financial integration,and improving tax planning.These strategies aim to enhance the level of financial management in M&A,promote economic synergies and management effects,help companies quickly achieve M&A goals,and drive sustainable business development.
文摘In the anticorrosive coating line of a welded tube plant, the current status and existing problems of the medium-frequency induction heating equipment were discussed.Partial renovations of the power control cabinet have been conducted.Parameters such as the DC current, DC voltage, intermediate frequency power, heating temperature, and the positioning signal at the pipe end were collected.A data acquisition and processing system, which can process data according to user needs and provide convenient data processing functions, has been developed using LabVIEW software.This system has been successfully applied in the coating line for the automatic control of high-power induction heating equipment, production management, and digital steel tube and/or digital delivery.
基金Key R&D Plan of Liaoning Province(No.202000357-JH13/103):Construction of Liaoning Traditional Chinese Medicine Industry Technology Innovation Research InstituteNational Key Research and Development Plan Special Project(No.2019JH2/10300040)。
文摘The paper is an introduction to the front-end pulse acquisition and the back-end pulse biomimetic reproduction system.This system is capable of faithfully replicating the complete pulse waveform collected at the front end.Traditional Chinese Medicine(TCM)practitioners analyze and diagnose the pulse patterns at the replication end.Meanwhile,the obtained pulse waveforms are analyzed and learnt by a neural network based on key diagnostic points in TCM pulse taking,which enables the determination of the corresponding relationships between different pulse waveforms and various pulse patterns in TCM pulse taking.With the support of clinical samples,an auxiliary diagnostic system for TCM pulse patterns ensures the accuracy of pulse pattern replication.
基金supported by the Science and Technology Project of State Grid Corporation of China under grant 52094021N010(5400-202199534A-0-5-ZN)。
文摘Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power line communication(DC-PLC)enables real-time data transmission on DC power lines.With traffic adaptation,DC-PLC can be integrated with other complementary media such as 5G to reduce transmission delay and improve reliability.However,traffic adaptation for DC-PLC and 5G integration still faces the challenges such as coupling between traffic admission control and traffic partition,dimensionality curse,and the ignorance of extreme event occurrence.To address these challenges,we propose a deep reinforcement learning(DRL)-based delay sensitive and reliable traffic adaptation algorithm(DSRTA)to minimize the total queuing delay under the constraints of traffic admission control,queuing delay,and extreme events occurrence probability.DSRTA jointly optimizes traffic admission control and traffic partition,and enables learning-based intelligent traffic adaptation.The long-term constraints are incorporated into both state and bound of drift-pluspenalty to achieve delay awareness and enforce reliability guarantee.Simulation results show that DSRTA has lower queuing delay and more reliable quality of service(QoS)guarantee than other state-of-the-art algorithms.
文摘Objective To explore the impact of mergers and acquisitions(M&A)on the innovation performance of the companies from both a patent perspective and a financial perspective by taking the case of M&A Company J as an example.Methods The literature research method,patent data analysis method,and financial data analysis method were used.Results:The M&A has a positive impact on the innovation performance of Company J,and the results from the patent perspective and the financial perspective are consistent.Results and Conclusion The literature research method,patent data analysis method,and financial data analysis method were used.The M&A has a positive impact on the innovation performance of Company J,and the results from the patent perspective and the financial perspective are consistent.
基金supported in part by the Major Key Project of PCL of China(No.PCL2024A01)in part by the National Natural Science Foundation of China(Nos.62071141,62027802)+1 种基金in part by the Shenzhen Science and Technology Program of China(Nos.JCYJ20241202123904007,GXWD20231127123203001,JSGG20220831110801003)in part by the Fundamental Research Funds for the Central Universities of China(No.HIT.OCEF.2024046)。
文摘Mega Low Earth Orbit(LEO)satellite constellations can provide pervasive intelligent services in the forthcoming Six-Generation(6G)network via the Free-Space Optical(FSO)InterSatellite Link(ISL).However,the challenges posed by the mega LEO satellite constellations,such as limited onboard resources,high-speed movement and the vibration of satellite platforms,present significant obstacles for the existing Pointing,Acquisition and Tracking(PAT)schemes of FSOISL.To address these challenges,we propose a beaconless PAT scheme under satellite platform vibrations,employing a composite scanning approach combining an inner Archimedean spiral scan with an outer regular hexagon step scan.The proposed composite scanning approach covers a wide range of the Field of Uncertainty(FOU)and reduces the required scans by actuator,which can ensure a high Acquisition Probability(AP)while reducing the Average Acquisition Time(AAT)for the inner scan.Specifically,we model and analyze the effect of satellite platform vibrations on the acquisition performance of our beaconless PAT scheme,and derive closed-form expressions for both AP and AAT by utilizing a 2-track model where the acquisition happens on two adjacent spiral scan tracks.By utilizing the theoretical derivations,we can achieve a minimum AAT under diverse APs by selecting appropriate values of overlapping region and scanning range.Simulation results validate that our optimized composite scanning approach for beaconless PAT scheme outperforms the existing schemes.
基金supported by the National Key Research and Development Project,China(No.2023YFA1606404)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB34010300)+5 种基金the National Natural Science Foundation of China(Nos.12022501,12105329,12475127)the Guangdong Major Project of Basic and Applied Basic Research(No.2021B0301030006)the Research Program of Heavy Ion Science and Technology Key Laboratory,Institute of Modern Physics,Chinese Academy of Sciences(Nos.HIST2024KS04,HIST2024CO04)Longyuan Youth Innovation and Entrepreneurship Talent Project of Gansu Province(No.2024GZT04)State Key Laboratory of Nuclear Physics and Technology,Peking University(No.NPT2023KFY01)the Major Science and Technology Projects in Gansu Province(No.24GD13GA005)。
文摘A state-of-the-art detector array with a digital data acquisition system has been developed for charged-particle decay studies,includingβ-delayed protons,αdecay,and direct proton emissions from exotic proton-rich nuclei.The digital data acquisition system enables precise synchronization and processing of complex signals from various detectors,such as plastic scintillators,silicon detectors,and germaniumγdetectors.The system's performance was evaluated using theβdecay of^(32)Ar and its neighboring nuclei,produced via projectile fragmentation at the first Radioactive Ion Beam Line in Lanzhou(RIBLL1).Key measurements,including the half-life,charged-particle spectrum,andγ-ray spectrum,were obtained and compared with previous results for validation.Using the implantation–decay method,the isotopes of interest were implanted into two doublesided silicon strip detectors,where their subsequent decays were measured and correlated with preceding implantations using both position and time information.This detection system has potential for further applications,including the study ofβ-delayed charged-particle decay and direct proton emissions from even more exotic proton-rich nuclei.
文摘With the continuous evolution of electronic technology,field-programmable gate array(FPGA)has demonstrated significant advantages in the realm of signal acquisition and processing,and signal acquisition plays a pivotal role in the practical applications of laser gyros.By analysis of the output signals from a laser gyro and an accelerometer,this paper presents a circuit design for signal acquisition of the laser gyro based on domestic devices.The design incorporates a finite impulse response(FIR)filter to process the gyro signal and employs a small-volume,impact-resistant quartz flexible accelerometer for signal aquisition.Simulation results demonstrate that the errors in X,Y,and Z axes fall within acceptable ranges while meeting filtering requirements.The use of FPGA for signal acquisition and preprocessing enhances configuration flexibility,which provides an idea and method for optimizing performance and processing signals in laser gyro applications.
基金This work was supported by the National Key R&D Program of China(Nos.2023YFA1606403 and 2023YFE0101600)the National Natural Science Foundation of China(Nos.12027809,11961141003,U1967201,11875073 and 11875074).
文摘A digital data-acquisition system based on XIA LLC products was used in a complex nuclear reaction experiment using radioactive ion beams.A flexible trigger system based on a field-programmable gate array(FPGA)parametrization was developed to adapt to different experimental sizes.A user-friendly interface was implemented,which allows converting script language expressions into FPGA internal control parameters.The proposed digital system can be combined with a conventional analog data acquisition system to provide more flexibility.The performance of the combined system was veri-fied using experimental data.
基金Supported by Hebei Provincial Natural Science Foundation of China(Grant Nos.E2020203174,E2020203078)S&T Program of Hebei Province of China(Grant No.226Z2202G)Science Research Project of Hebei Provincial Education Department of China(Grant No.ZD2022029).
文摘The all-wheel drive(AWD)hybrid system is a research focus on high-performance new energy vehicles that can meet the demands of dynamic performance and passing ability.Simultaneous optimization of the power and economy of hybrid vehicles becomes an issue.A unique multi-mode coupling(MMC)AWD hybrid system is presented to realize the distributed and centralized driving of the front and rear axles to achieve vectored distribution and full utilization of the system power between the axles of vehicles.Based on the parameters of the benchmarking model of a hybrid vehicle,the best model-predictive control-based energy management strategy is proposed.First,the drive system model was built after the analysis of the MMC-AWD’s drive modes.Next,three fundamental strategies were established to address power distribution adjustment and battery SOC maintenance when the SOC changed,which was followed by the design of a road driving force observer.Then,the energy consumption rate in the average time domain was processed before designing the minimum fuel consumption controller based on the equivalent fuel consumption coefficient.Finally,the advantage of the MMC-AWD was confirmed by comparison with the dynamic performance and economy of the BYD Song PLUS DMI-AWD.The findings indicate that,in comparison to the comparative hybrid system at road adhesion coefficients of 0.8 and 0.6,the MMC-AWD’s capacity to accelerate increases by 5.26%and 7.92%,respectively.When the road adhesion coefficient is 0.8,0.6,and 0.4,the maximum climbing ability increases by 14.22%,12.88%,and 4.55%,respectively.As a result,the dynamic performance is greatly enhanced,and the fuel savings rate per 100 km of mileage reaches 12.06%,which is also very economical.The proposed control strategies for the new hybrid AWD vehicle can optimize the power and economy simultaneously.
基金co-supported by the National Key R&D Program of China(No.2022YFB3402200)the National Natural Science Foundation of China(Nos.12372123,12272305 and 12372156)+2 种基金the Key Project of NSFC,China(Nos.92271205,12032018 and 12220101002)the Fundamental Research Funds for the Central Universities of China(No.G2022KY0606)the Basic Research Program of China(No.JCKY2022603C016).
文摘This work evaluates the viability of a cutting-edge flexible wing prototype actuated by Shape Memory Alloy(SMA)wire actuators.Such flexible wings have garnered significant interest for their potential to enhance aerodynamic efficiency by mitigating noise and delaying flow separation.SMA actuators are particularly advantageous due to their superior power-to-weight ratio and adaptive response,making them increasingly favored in morphing aircraft applications.Our methodology begins with a detailed delineation of the fishbone camber morphing wing rib structure,followed by the construction of a multi-mode morphing wing segment through 3D-printed rib assembly.Comprehensive testing of the SMA wire actuators’actuation capacity and efficiency was conducted to establish their operational parameters.Subsequent experimental analyses focused on the bi-directional and reciprocating morphing performance of the fishbone wing rib,which incorporates SMA wires on the upper and lower sides.These experiments confirmed the segment’s multi-mode morphing abilities.Aerodynamic assessments have demonstrated that our design substantially improves the Lift-to-Drag ratio(L/D)when compared to conventional rigid wings.Finally,two phases of flight tests demonstrated the feasibility of SMA as an aircraft actuator and the validity of flexible wing structures to adjust the aircraft attitude,respectively.
基金supported by the Research on Vibroseis Ultra-wideband Excitation Technology in Re-exploration Area of Quasi Western Margin(Project No.:SG22-44K)。
文摘The Chepaizi Exploration Area,Junggar Basin(NW China)holds substantial importance for seismic exploration endeavors,yet it poses notable challenges due to the intricate nature of its subsurface and near-surface conditions.To address these challenges,we introduce a novel and comprehensive workflow tailored to evaluate and optimize seismic acquisition geometries while considering the impacts of near-surface viscosity.By integrating geological knowledge,historical seismic data,and subsurface modeling,we conduct simulations employing the visco-acoustic wave equation and reverse-time migration to produce detailed subsurface images.The quality of these images is quantitatively evaluated using a local similarity metric,a pivotal tool for evaluating the accuracy of seismic imaging.The culmination of this workflow results in an automated optimization strategy for acquisition geometries that enhances subsurface exploration.Our proposed methodology underscores the importance of incorporating near-surface viscosity effects in seismic imaging,offering a robust framework for improving the accuracy of subsurface imaging.Herein,we aim to contribute to the advancement of seismic imaging methodologies by providing valuable insights for achieving high-quality seismic exploration outcomes in regions characterized by complex subsurface and near-surface conditions.
基金supported in part by the National Natural Science Foundation of China (NSFC) under Grants 62131005, 62071096in part by the Fundamental Research Funds for the Central Universities under Grant 2242022k60006+1 种基金in part by the National NSFC under Grant U19B2014in part by the Natural Science Foundation of Sichuan under Grant 2022NSFSC0495
文摘As modern electromagnetic environments are more and more complex,the anti-interference performance of the synchronization acquisition is becoming vital in wireless communications.With the rapid development of the digital signal processing technologies,some synchronization acquisition algorithms for hybrid direct-sequence(DS)/frequency hopping(FH)spread spectrum communications have been proposed.However,these algorithms do not focus on the analysis and the design of the synchronization acquisition under typical interferences.In this paper,a synchronization acquisition algorithm based on the frequency hopping pulses combining(FHPC)is proposed.Specifically,the proposed algorithm is composed of two modules:an adaptive interference suppression(IS)module and an adaptive combining decision module.The adaptive IS module mitigates the effect of the interfered samples in the time-domain or the frequencydomain,and the adaptive combining decision module can utilize each frequency hopping pulse to construct an anti-interference decision metric and generate an adaptive acquisition decision threshold to complete the acquisition.Theory and simulation demonstrate that the proposed algorithm significantly enhances the antiinterference and anti-noise performances of the synchronization acquisition for hybrid DS/FH communications.