Carbon dots(CDs)-based composites have shown impressive performance in fields of information encryption and sensing,however,a great challenge is to simultaneously implement multi-mode luminescence and room-temperature...Carbon dots(CDs)-based composites have shown impressive performance in fields of information encryption and sensing,however,a great challenge is to simultaneously implement multi-mode luminescence and room-temperature phosphorescence(RTP)detection in single system due to the formidable synthesis.Herein,a multifunctional composite of Eu&CDs@p RHO has been designed by co-assembly strategy and prepared via a facile calcination and impregnation treatment.Eu&CDs@p RHO exhibits intense fluorescence(FL)and RTP coming from two individual luminous centers,Eu3+in the free pores and CDs in the interrupted structure of RHO zeolite.Unique four-mode color outputs including pink(Eu^(3+),ex.254 nm),light violet(CDs,ex.365 nm),blue(CDs,254 nm off),and green(CDs,365 nm off)could be realized,on the basis of it,a preliminary application of advanced information encoding has been demonstrated.Given the free pores of matrix and stable RTP in water of confined CDs,a visual RTP detection of Fe^(3+)ions is achieved with the detection limit as low as 9.8μmol/L.This work has opened up a new perspective for the strategic amalgamation of luminous vips with porous zeolite to construct the advanced functional materials.展开更多
Prostate cancer(PCa)is characterized by high incidence and propensity for easy metastasis,presenting significant challenges in clinical diagnosis and treatment.Tumor microenvironment(TME)-responsive nanomaterials prov...Prostate cancer(PCa)is characterized by high incidence and propensity for easy metastasis,presenting significant challenges in clinical diagnosis and treatment.Tumor microenvironment(TME)-responsive nanomaterials provide a promising prospect for imaging-guided precision therapy.Considering that tumor-derived alkaline phosphatase(ALP)is over-expressed in metastatic PCa,it makes a great chance to develop a theranostics system with ALP responsive in the TME.Herein,an ALP-responsive aggregationinduced emission luminogens(AIEgens)nanoprobe AMNF self-assembly was designed for enhancing the diagnosis and treatment of metastatic PCa.The nanoprobe exhibited self-aggregation in the presence of ALP resulted in aggregation-induced fluorescence,and enhanced accumulation and prolonged retention period at the tumor site.In terms of detection,the fluorescence(FL)/computed tomography(CT)/magnetic resonance(MR)multi-mode imaging effect of nanoprobe was significantly improved post-aggregation,enabling precise diagnosis through the amalgamation of multiple imaging modes.Enhanced CT/MR imaging can achieve assist preoperative tumor diagnosis,and enhanced FL imaging technology can achieve“intraoperative visual navigation”,showing its potential application value in clinical tumor detection and surgical guidance.In terms of treatment,AMNF showed strong absorption in the near infrared region after aggregation,which improved the photothermal treatment effect.Overall,our work developed an effective aggregation-enhanced theranostic strategy for ALP-related cancers.展开更多
Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power li...Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power line communication(DC-PLC)enables real-time data transmission on DC power lines.With traffic adaptation,DC-PLC can be integrated with other complementary media such as 5G to reduce transmission delay and improve reliability.However,traffic adaptation for DC-PLC and 5G integration still faces the challenges such as coupling between traffic admission control and traffic partition,dimensionality curse,and the ignorance of extreme event occurrence.To address these challenges,we propose a deep reinforcement learning(DRL)-based delay sensitive and reliable traffic adaptation algorithm(DSRTA)to minimize the total queuing delay under the constraints of traffic admission control,queuing delay,and extreme events occurrence probability.DSRTA jointly optimizes traffic admission control and traffic partition,and enables learning-based intelligent traffic adaptation.The long-term constraints are incorporated into both state and bound of drift-pluspenalty to achieve delay awareness and enforce reliability guarantee.Simulation results show that DSRTA has lower queuing delay and more reliable quality of service(QoS)guarantee than other state-of-the-art algorithms.展开更多
The all-wheel drive(AWD)hybrid system is a research focus on high-performance new energy vehicles that can meet the demands of dynamic performance and passing ability.Simultaneous optimization of the power and economy...The all-wheel drive(AWD)hybrid system is a research focus on high-performance new energy vehicles that can meet the demands of dynamic performance and passing ability.Simultaneous optimization of the power and economy of hybrid vehicles becomes an issue.A unique multi-mode coupling(MMC)AWD hybrid system is presented to realize the distributed and centralized driving of the front and rear axles to achieve vectored distribution and full utilization of the system power between the axles of vehicles.Based on the parameters of the benchmarking model of a hybrid vehicle,the best model-predictive control-based energy management strategy is proposed.First,the drive system model was built after the analysis of the MMC-AWD’s drive modes.Next,three fundamental strategies were established to address power distribution adjustment and battery SOC maintenance when the SOC changed,which was followed by the design of a road driving force observer.Then,the energy consumption rate in the average time domain was processed before designing the minimum fuel consumption controller based on the equivalent fuel consumption coefficient.Finally,the advantage of the MMC-AWD was confirmed by comparison with the dynamic performance and economy of the BYD Song PLUS DMI-AWD.The findings indicate that,in comparison to the comparative hybrid system at road adhesion coefficients of 0.8 and 0.6,the MMC-AWD’s capacity to accelerate increases by 5.26%and 7.92%,respectively.When the road adhesion coefficient is 0.8,0.6,and 0.4,the maximum climbing ability increases by 14.22%,12.88%,and 4.55%,respectively.As a result,the dynamic performance is greatly enhanced,and the fuel savings rate per 100 km of mileage reaches 12.06%,which is also very economical.The proposed control strategies for the new hybrid AWD vehicle can optimize the power and economy simultaneously.展开更多
This work evaluates the viability of a cutting-edge flexible wing prototype actuated by Shape Memory Alloy(SMA)wire actuators.Such flexible wings have garnered significant interest for their potential to enhance aerod...This work evaluates the viability of a cutting-edge flexible wing prototype actuated by Shape Memory Alloy(SMA)wire actuators.Such flexible wings have garnered significant interest for their potential to enhance aerodynamic efficiency by mitigating noise and delaying flow separation.SMA actuators are particularly advantageous due to their superior power-to-weight ratio and adaptive response,making them increasingly favored in morphing aircraft applications.Our methodology begins with a detailed delineation of the fishbone camber morphing wing rib structure,followed by the construction of a multi-mode morphing wing segment through 3D-printed rib assembly.Comprehensive testing of the SMA wire actuators’actuation capacity and efficiency was conducted to establish their operational parameters.Subsequent experimental analyses focused on the bi-directional and reciprocating morphing performance of the fishbone wing rib,which incorporates SMA wires on the upper and lower sides.These experiments confirmed the segment’s multi-mode morphing abilities.Aerodynamic assessments have demonstrated that our design substantially improves the Lift-to-Drag ratio(L/D)when compared to conventional rigid wings.Finally,two phases of flight tests demonstrated the feasibility of SMA as an aircraft actuator and the validity of flexible wing structures to adjust the aircraft attitude,respectively.展开更多
Lanthanum-doped double halide perovskite has attracted increasing interest due to its distinctive upconversion and near-infrared(NIR) luminous characteristics.Here,erbium ion(Er^(3+)) doped Cs_(2)(Na/Ag)BiCl_(6) micro...Lanthanum-doped double halide perovskite has attracted increasing interest due to its distinctive upconversion and near-infrared(NIR) luminous characteristics.Here,erbium ion(Er^(3+)) doped Cs_(2)(Na/Ag)BiCl_(6) microcrystals(MCs) were synthesized and proved to be one of the most prospective candidates for optical thermometry.The enhancement of both white light from self-trapped exciton emission and NIR emission from Er^(3+) ion of Cs_(2)AgBiCl_(6) microcrystals is caused by lattice distortion due to Na^(+) ion doping.Fluorescence intensity ratio and lifetime methods provide self-referenced and sensitive thermometry under 405 and/or 980 nm laser excitation at the temperatures from 80 to 480 K.Besides,the maximum values of relative and absolute sensitivity of 3.62%/K and 27//K can be achieved in the low to high temperature range under 980 and 405 nm laser co-excitation.Through the experimental analysis,Er^(3+)doped Cs_(2)(Na/Ag)BiCl_(6) double perovskite is considered to be an ideal self-calibrating thermometric material due to its good long-term stability and multi-mode function of excitation and detection.展开更多
In recent years,how to efficiently and accurately identify multi-model fake news has become more challenging.First,multi-model data provides more evidence but not all are equally important.Secondly,social structure in...In recent years,how to efficiently and accurately identify multi-model fake news has become more challenging.First,multi-model data provides more evidence but not all are equally important.Secondly,social structure information has proven to be effective in fake news detection and how to combine it while reducing the noise information is critical.Unfortunately,existing approaches fail to handle these problems.This paper proposes a multi-model fake news detection framework based on Tex-modal Dominance and fusing Multiple Multi-model Cues(TD-MMC),which utilizes three valuable multi-model clues:text-model importance,text-image complementary,and text-image inconsistency.TD-MMC is dominated by textural content and assisted by image information while using social network information to enhance text representation.To reduce the irrelevant social structure’s information interference,we use a unidirectional cross-modal attention mechanism to selectively learn the social structure’s features.A cross-modal attention mechanism is adopted to obtain text-image cross-modal features while retaining textual features to reduce the loss of important information.In addition,TD-MMC employs a new multi-model loss to improve the model’s generalization ability.Extensive experiments have been conducted on two public real-world English and Chinese datasets,and the results show that our proposed model outperforms the state-of-the-art methods on classification evaluation metrics.展开更多
This paper considers the problem of time varying congestion pricing to determine optimal time-varying tolls at peak periods for a queuing network with the interactions between buses and private cars.Through the combin...This paper considers the problem of time varying congestion pricing to determine optimal time-varying tolls at peak periods for a queuing network with the interactions between buses and private cars.Through the combined applications of the space-time expanded network(STEN) and the conventional network equilibrium modeling techniques,a multi-class,multi-mode and multi-criteria traffic network equilibrium model is developed.Travelers of different classes have distinctive value of times(VOTs),and travelers from the same class perceive their travel disutility or generalized costs on a route according to different weights of travel time and travel costs.Moreover,the symmetric cost function model is extended to deal with the interactions between buses and private cars.It is found that there exists a uniform(anonymous) link toll pattern which can drive a multi-class,multi-mode and multi-criteria user equilibrium flow pattern to a system optimum when the system's objective function is measured in terms of money.It is also found that the marginal cost pricing models with a symmetric travel cost function do not reflect the interactions between traffic flows of different road sections,and the obtained congestion pricing toll is smaller than the real value.展开更多
Gas Turbine Engines (GTEs) are vastly used for generation of mechanical power in a wide range of applications from airplane propulsion systems to stationary power plants. The gaspath components of a GTE are exposed ...Gas Turbine Engines (GTEs) are vastly used for generation of mechanical power in a wide range of applications from airplane propulsion systems to stationary power plants. The gaspath components of a GTE are exposed to harsh operating and ambient conditions, leading to several degradation mechanisms. Because GTE components are mostly inaccessible for direct measure- ments and their degradation levels must be inferred from the measurements of accessible parameters, it is a challenge to acquire reliable information on the degradation conditions of the parts in different fault modes. In this work, a data-driven fault detection and degradation estima- tion scheme is developed for GTE diagnostics based on an Adaptive Neuro-Fuzzy Inference System (ANFIS). To verify the performance and accuracy of the developed diagnostic framework on GTE data, an ensemble of measurable gas path parameters has been generated by a high-fidelity GTE model under (a) diverse ambient conditions and control settings, (b) every possible combination of degradation symptoms, and (c) a broad range of signal to noise ratios. The results prove the competency of the developed framework in fault diagnostics and reveal the sensitivity of diagnostic results to measurement noise for different degradation symptoms.展开更多
For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to p...For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to process intercepted signals,which has a negative effect on signal classification. A classificationmethod based on spatial data mining is presented to address theabove challenge. Inspired by the idea of spatial data mining, theclassification method applies nuclear field to depicting the distributioninformation of pulse samples in feature space, and digs out thehidden cluster information by analyzing distribution characteristics.In addition, a membership-degree criterion to quantify the correlationamong all classes is established, which ensures classificationaccuracy of signal samples. Numerical experiments show that thepresented method can effectively prevent different working statesof multi-mode emitter from being classified as several emitters,and achieve higher classification accuracy.展开更多
There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because the...There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring.展开更多
A new multi-mode resistivity imaging sonde, with toroidal coils as source, can conduct three resistivity measurements: azimuthal resistivity, lateral resistivity, and bit resistivity measurements. Thus, the logging ti...A new multi-mode resistivity imaging sonde, with toroidal coils as source, can conduct three resistivity measurements: azimuthal resistivity, lateral resistivity, and bit resistivity measurements. Thus, the logging time and cost are greatly saved. The toroidal coils are simplified as an extended voltage dipole and the response equations are derived for a homogenous formation. Based on 3D FEM, the depth of investigation(DOI), vertical resolution, circumferential azimuthal capacity, borehole diameter, mud resistivity, thickness of target formation, and the resistivity of the surrounding formation and mud invasion are simulated. The results suggest that the three measurement modes of the new sonde are different in vertical resolutions and DOIs. The circumferential detection ability of the azimuth button depends on the contrast between the anomaly and formation resistivity and the open angle of the anomaly. Whether the borehole is truncated at the bit or not has a great influence on the simulation results. The borehole and mud invasion affect the apparent resistivity in all modes, but the effects of resistivity of surrounding formation and thickness of the target formation are only corrected for lateral resistivity measurement.展开更多
Multi-mode power internet of things(PIoT)combines various communication media to provide spatio-temporal coverage for low-carbon operation in smart park.Edge-end collaboration is feasible to achieve the full utilizati...Multi-mode power internet of things(PIoT)combines various communication media to provide spatio-temporal coverage for low-carbon operation in smart park.Edge-end collaboration is feasible to achieve the full utilization of heterogeneous resources and anti-eavesdropping.However,edge-end collaboration-based multi-mode PIoT faces challenges of mutual contradiction in communication and security quality of service(QoS)guarantee,inadaptability of resource management,and multi-mode access conflict.We propose an Adaptive learning based delAysensitive and seCure Edge-End Collaboration algorithm(ACE_(2))to optimize multi-mode channel selection and split device power into artificial noise(AN)transmission and data transmission for secure data delivery.ACE_(2) can achieve multi-attribute QoS guarantee,adaptive resource management and security enhancement,and access conflict elimination with the combined power of deep actor-critic(DAC),“win or learn fast(WoLF)”mechanism,and edge-end collaboration.Simulations demonstrate its superior performance in queuing delay,energy consumption,secrecy capacity,and adaptability to differentiated low-carbon services.展开更多
In mobile machinery,hydro-mechanical pumps are increasingly replaced by electronically controlled pumps to improve the automation level,but diversified control functions(e.g.,power limitation and pressure cut-off)are ...In mobile machinery,hydro-mechanical pumps are increasingly replaced by electronically controlled pumps to improve the automation level,but diversified control functions(e.g.,power limitation and pressure cut-off)are integrated into the electronic controller only from the pump level,leading to the potential instability of the overall system.To solve this problem,a multi-mode electrohydraulic load sensing(MELS)control scheme is proposed especially considering the switching stability from the system level,which includes four working modes of flow control,load sensing,power limitation,and pressure control.Depending on the actual working requirements,the switching rules for the different modes and the switching direction(i.e.,the modes can be switched bilaterally or unilaterally)are defined.The priority of different modes is also defined,from high to low:pressure control,power limitation,load sensing,and flow control.When multiple switching rules are satisfied at the same time,the system switches to the control mode with the highest priority.In addition,the switching stability between flow control and pressure control modes is analyzed,and the controller parameters that guarantee the switching stability are obtained.A comparative study is carried out based on a test rig with a 2-ton hydraulic excavator.The results show that the MELS controller can achieve the control functions of proper flow supplement,power limitation,and pressure cut-off,which has good stability performance when switching between different control modes.This research proposes the MELS control method that realizes the stability of multi-mode switching of the hydraulic system of mobile machinery under different working conditions.展开更多
The digital communication in a system of two multi-mode solid state chaotic lasers is investigated theoretically. If the usual method working well in a single-mode laser system is applied to a multi-mode laser system,...The digital communication in a system of two multi-mode solid state chaotic lasers is investigated theoretically. If the usual method working well in a single-mode laser system is applied to a multi-mode laser system, the memory effect of the two nearest digits can cause high rate of mistakes when the digits are decoded through the subtraction of receiver output from the transmittal. By introducing the deviations of two nearest maximum and minimum fluctuationsof the signal to decode the digit, the message can be decoded correctly. Also, this communication method does not critically depend on the quality of the chaotic synchronization of the two multi-mode lasers.展开更多
Based on the effective structure of the self-mixing interference effects,a general model for the self-mixing interference effects in the LD pumped solid-state laser has been established for the first time.The numerica...Based on the effective structure of the self-mixing interference effects,a general model for the self-mixing interference effects in the LD pumped solid-state laser has been established for the first time.The numerical simulation of the self-mixing interference signal has been done,the results show that when the external cavity length is integral times of 1/2,1/3,2/3,1/4,3/4 of the effective cavity length,the intensity of the self-mixing interference signals reach maximum in value.While that of single mode laser is integral times of half of the effective cavity length,the measuring precision of displacement of single mode laser is λ/2.A conclusion can be drawn from the above results that the measuring precision of displacement of multi-mode laser is higher than that of single mode laser.展开更多
This paper studies the application of mathematical models to analyze the vortex-induced vibrations of the tendons of a given TLP along the Indian coastline, by using an analytical approach, using MATLAB. The tendon is...This paper studies the application of mathematical models to analyze the vortex-induced vibrations of the tendons of a given TLP along the Indian coastline, by using an analytical approach, using MATLAB. The tendon is subjected to a steady current load, which causes vortex-shedding downstream, leading to cross-flow vibrations. The magnitude of the excitation(lift and drag coefficients) depends on the vortex-shedding frequency. The resulting vibration is studied for possible resonant behavior. The excitation force is quantified empirically, the added mass by potential flow hydrodynamics, and the vibration by normal mode summation method. Non-linear viscous damping of the water is considered. The non-linear oscillations are studied by the phase-plane method, investigating the limit-cycle oscillations. The stable/unstable regions of the dynamic behavior are demarcated. The modal contribution to the total deflection is studied to establish the possibility of resonance of one of the wet modes with the vortex-shedding frequency.展开更多
Based on the analysis of B3G evolution, the base-band processing chips for mobile terminals are introduced. Key technologies for multi-mode mobile terminal base-band chips are discussed. Terminal technologies are thou...Based on the analysis of B3G evolution, the base-band processing chips for mobile terminals are introduced. Key technologies for multi-mode mobile terminal base-band chips are discussed. Terminal technologies are thought to be the key of B3G, and terminal base-band chips are regarded as the core of terminal technologies. Therefore, a unified wireless development platform is required for the R&D of multi-mode mobile terminal base-band processing chips.展开更多
Albumin has been widely applied for rational design of drug delivery complexes as natural carriers in cancer therapy due to its distinct advantages of biocompatibility,abundance,low toxicity and versatile property.Hen...Albumin has been widely applied for rational design of drug delivery complexes as natural carriers in cancer therapy due to its distinct advantages of biocompatibility,abundance,low toxicity and versatile property.Hence,various types of multifunctional albumin-based nanoplatforms(MAlb-NPs)that adopt multiple imaging and therapeutic techniques have been developed for cancer diagnosis and treatment.Stimuli-responsive release,including reduction-sensitive,p H-responsive,concentration-dependent and photodynamic-triggered,is important to achieve low-toxicity cancer therapy.Several types of imaging techniques can synergistically improve the effectiveness of cancer therapy.Therefore,combinational theranostic is considered to be a prospective strategy to improve treatment efficiency,minimize side effects and reduce drug resistance,which has received tremendous attentions in recent years.In this review,we highlight several stimuli-responsive albumin nanoplatforms for combinational theranostic.展开更多
基金supported by the National Natural Science Foundation of China(No.22288101)the 111 Project(No.B17020)。
文摘Carbon dots(CDs)-based composites have shown impressive performance in fields of information encryption and sensing,however,a great challenge is to simultaneously implement multi-mode luminescence and room-temperature phosphorescence(RTP)detection in single system due to the formidable synthesis.Herein,a multifunctional composite of Eu&CDs@p RHO has been designed by co-assembly strategy and prepared via a facile calcination and impregnation treatment.Eu&CDs@p RHO exhibits intense fluorescence(FL)and RTP coming from two individual luminous centers,Eu3+in the free pores and CDs in the interrupted structure of RHO zeolite.Unique four-mode color outputs including pink(Eu^(3+),ex.254 nm),light violet(CDs,ex.365 nm),blue(CDs,254 nm off),and green(CDs,365 nm off)could be realized,on the basis of it,a preliminary application of advanced information encoding has been demonstrated.Given the free pores of matrix and stable RTP in water of confined CDs,a visual RTP detection of Fe^(3+)ions is achieved with the detection limit as low as 9.8μmol/L.This work has opened up a new perspective for the strategic amalgamation of luminous vips with porous zeolite to construct the advanced functional materials.
基金supported by Natural Science Foundation of Jilin Province(No.SKL202302002)Key Research and Development project of Jilin Provincial Science and Technology Department(No.20210204142YY)+2 种基金The Science and Technology Development Program of Jilin Province(No.2020122256JC)Beijing Kechuang Medical Development Foundation Fund of China(No.KC2023-JX-0186BQ079)Talent Reserve Program(TRP),the First Hospital of Jilin University(No.JDYY-TRP-2024007)。
文摘Prostate cancer(PCa)is characterized by high incidence and propensity for easy metastasis,presenting significant challenges in clinical diagnosis and treatment.Tumor microenvironment(TME)-responsive nanomaterials provide a promising prospect for imaging-guided precision therapy.Considering that tumor-derived alkaline phosphatase(ALP)is over-expressed in metastatic PCa,it makes a great chance to develop a theranostics system with ALP responsive in the TME.Herein,an ALP-responsive aggregationinduced emission luminogens(AIEgens)nanoprobe AMNF self-assembly was designed for enhancing the diagnosis and treatment of metastatic PCa.The nanoprobe exhibited self-aggregation in the presence of ALP resulted in aggregation-induced fluorescence,and enhanced accumulation and prolonged retention period at the tumor site.In terms of detection,the fluorescence(FL)/computed tomography(CT)/magnetic resonance(MR)multi-mode imaging effect of nanoprobe was significantly improved post-aggregation,enabling precise diagnosis through the amalgamation of multiple imaging modes.Enhanced CT/MR imaging can achieve assist preoperative tumor diagnosis,and enhanced FL imaging technology can achieve“intraoperative visual navigation”,showing its potential application value in clinical tumor detection and surgical guidance.In terms of treatment,AMNF showed strong absorption in the near infrared region after aggregation,which improved the photothermal treatment effect.Overall,our work developed an effective aggregation-enhanced theranostic strategy for ALP-related cancers.
基金supported by the Science and Technology Project of State Grid Corporation of China under grant 52094021N010(5400-202199534A-0-5-ZN)。
文摘Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power line communication(DC-PLC)enables real-time data transmission on DC power lines.With traffic adaptation,DC-PLC can be integrated with other complementary media such as 5G to reduce transmission delay and improve reliability.However,traffic adaptation for DC-PLC and 5G integration still faces the challenges such as coupling between traffic admission control and traffic partition,dimensionality curse,and the ignorance of extreme event occurrence.To address these challenges,we propose a deep reinforcement learning(DRL)-based delay sensitive and reliable traffic adaptation algorithm(DSRTA)to minimize the total queuing delay under the constraints of traffic admission control,queuing delay,and extreme events occurrence probability.DSRTA jointly optimizes traffic admission control and traffic partition,and enables learning-based intelligent traffic adaptation.The long-term constraints are incorporated into both state and bound of drift-pluspenalty to achieve delay awareness and enforce reliability guarantee.Simulation results show that DSRTA has lower queuing delay and more reliable quality of service(QoS)guarantee than other state-of-the-art algorithms.
基金Supported by Hebei Provincial Natural Science Foundation of China(Grant Nos.E2020203174,E2020203078)S&T Program of Hebei Province of China(Grant No.226Z2202G)Science Research Project of Hebei Provincial Education Department of China(Grant No.ZD2022029).
文摘The all-wheel drive(AWD)hybrid system is a research focus on high-performance new energy vehicles that can meet the demands of dynamic performance and passing ability.Simultaneous optimization of the power and economy of hybrid vehicles becomes an issue.A unique multi-mode coupling(MMC)AWD hybrid system is presented to realize the distributed and centralized driving of the front and rear axles to achieve vectored distribution and full utilization of the system power between the axles of vehicles.Based on the parameters of the benchmarking model of a hybrid vehicle,the best model-predictive control-based energy management strategy is proposed.First,the drive system model was built after the analysis of the MMC-AWD’s drive modes.Next,three fundamental strategies were established to address power distribution adjustment and battery SOC maintenance when the SOC changed,which was followed by the design of a road driving force observer.Then,the energy consumption rate in the average time domain was processed before designing the minimum fuel consumption controller based on the equivalent fuel consumption coefficient.Finally,the advantage of the MMC-AWD was confirmed by comparison with the dynamic performance and economy of the BYD Song PLUS DMI-AWD.The findings indicate that,in comparison to the comparative hybrid system at road adhesion coefficients of 0.8 and 0.6,the MMC-AWD’s capacity to accelerate increases by 5.26%and 7.92%,respectively.When the road adhesion coefficient is 0.8,0.6,and 0.4,the maximum climbing ability increases by 14.22%,12.88%,and 4.55%,respectively.As a result,the dynamic performance is greatly enhanced,and the fuel savings rate per 100 km of mileage reaches 12.06%,which is also very economical.The proposed control strategies for the new hybrid AWD vehicle can optimize the power and economy simultaneously.
基金co-supported by the National Key R&D Program of China(No.2022YFB3402200)the National Natural Science Foundation of China(Nos.12372123,12272305 and 12372156)+2 种基金the Key Project of NSFC,China(Nos.92271205,12032018 and 12220101002)the Fundamental Research Funds for the Central Universities of China(No.G2022KY0606)the Basic Research Program of China(No.JCKY2022603C016).
文摘This work evaluates the viability of a cutting-edge flexible wing prototype actuated by Shape Memory Alloy(SMA)wire actuators.Such flexible wings have garnered significant interest for their potential to enhance aerodynamic efficiency by mitigating noise and delaying flow separation.SMA actuators are particularly advantageous due to their superior power-to-weight ratio and adaptive response,making them increasingly favored in morphing aircraft applications.Our methodology begins with a detailed delineation of the fishbone camber morphing wing rib structure,followed by the construction of a multi-mode morphing wing segment through 3D-printed rib assembly.Comprehensive testing of the SMA wire actuators’actuation capacity and efficiency was conducted to establish their operational parameters.Subsequent experimental analyses focused on the bi-directional and reciprocating morphing performance of the fishbone wing rib,which incorporates SMA wires on the upper and lower sides.These experiments confirmed the segment’s multi-mode morphing abilities.Aerodynamic assessments have demonstrated that our design substantially improves the Lift-to-Drag ratio(L/D)when compared to conventional rigid wings.Finally,two phases of flight tests demonstrated the feasibility of SMA as an aircraft actuator and the validity of flexible wing structures to adjust the aircraft attitude,respectively.
基金Project supported by the Heilongjiang Provincial Key Laboratory of Micro-nano Sensitive Devices and SystemsBasic Research Project for Outstanding Young Teachers of Heilongjiang Province (YQJH2023128)Cultivation Project of Double First-class Initiative Discipline by Heilongjiang Province(LJGXCG2022-061)。
文摘Lanthanum-doped double halide perovskite has attracted increasing interest due to its distinctive upconversion and near-infrared(NIR) luminous characteristics.Here,erbium ion(Er^(3+)) doped Cs_(2)(Na/Ag)BiCl_(6) microcrystals(MCs) were synthesized and proved to be one of the most prospective candidates for optical thermometry.The enhancement of both white light from self-trapped exciton emission and NIR emission from Er^(3+) ion of Cs_(2)AgBiCl_(6) microcrystals is caused by lattice distortion due to Na^(+) ion doping.Fluorescence intensity ratio and lifetime methods provide self-referenced and sensitive thermometry under 405 and/or 980 nm laser excitation at the temperatures from 80 to 480 K.Besides,the maximum values of relative and absolute sensitivity of 3.62%/K and 27//K can be achieved in the low to high temperature range under 980 and 405 nm laser co-excitation.Through the experimental analysis,Er^(3+)doped Cs_(2)(Na/Ag)BiCl_(6) double perovskite is considered to be an ideal self-calibrating thermometric material due to its good long-term stability and multi-mode function of excitation and detection.
基金This research was funded by the General Project of Philosophy and Social Science of Heilongjiang Province,Grant Number:20SHB080.
文摘In recent years,how to efficiently and accurately identify multi-model fake news has become more challenging.First,multi-model data provides more evidence but not all are equally important.Secondly,social structure information has proven to be effective in fake news detection and how to combine it while reducing the noise information is critical.Unfortunately,existing approaches fail to handle these problems.This paper proposes a multi-model fake news detection framework based on Tex-modal Dominance and fusing Multiple Multi-model Cues(TD-MMC),which utilizes three valuable multi-model clues:text-model importance,text-image complementary,and text-image inconsistency.TD-MMC is dominated by textural content and assisted by image information while using social network information to enhance text representation.To reduce the irrelevant social structure’s information interference,we use a unidirectional cross-modal attention mechanism to selectively learn the social structure’s features.A cross-modal attention mechanism is adopted to obtain text-image cross-modal features while retaining textual features to reduce the loss of important information.In addition,TD-MMC employs a new multi-model loss to improve the model’s generalization ability.Extensive experiments have been conducted on two public real-world English and Chinese datasets,and the results show that our proposed model outperforms the state-of-the-art methods on classification evaluation metrics.
基金The National High Technology Research and Development Program of China (863 Program) (No. 2007AA11Z202)the National Key Technology R & D Program of China during the 11th Five-Year Plan Period(No. 2006BAJ18B03)the Fundamental Research Funds for the Central Universities (No. DUT10RC(3) 112)
文摘This paper considers the problem of time varying congestion pricing to determine optimal time-varying tolls at peak periods for a queuing network with the interactions between buses and private cars.Through the combined applications of the space-time expanded network(STEN) and the conventional network equilibrium modeling techniques,a multi-class,multi-mode and multi-criteria traffic network equilibrium model is developed.Travelers of different classes have distinctive value of times(VOTs),and travelers from the same class perceive their travel disutility or generalized costs on a route according to different weights of travel time and travel costs.Moreover,the symmetric cost function model is extended to deal with the interactions between buses and private cars.It is found that there exists a uniform(anonymous) link toll pattern which can drive a multi-class,multi-mode and multi-criteria user equilibrium flow pattern to a system optimum when the system's objective function is measured in terms of money.It is also found that the marginal cost pricing models with a symmetric travel cost function do not reflect the interactions between traffic flows of different road sections,and the obtained congestion pricing toll is smaller than the real value.
基金financially co-supported by Fond de Recherche Nature et Technologies (FRQNT) from the Quebec government in Canadathe Natural Sciences and Engineering Research Council (NSERC) of CanadaLife Prediction Technologies Inc. (LPTi) in Ottawa, Canada
文摘Gas Turbine Engines (GTEs) are vastly used for generation of mechanical power in a wide range of applications from airplane propulsion systems to stationary power plants. The gaspath components of a GTE are exposed to harsh operating and ambient conditions, leading to several degradation mechanisms. Because GTE components are mostly inaccessible for direct measure- ments and their degradation levels must be inferred from the measurements of accessible parameters, it is a challenge to acquire reliable information on the degradation conditions of the parts in different fault modes. In this work, a data-driven fault detection and degradation estima- tion scheme is developed for GTE diagnostics based on an Adaptive Neuro-Fuzzy Inference System (ANFIS). To verify the performance and accuracy of the developed diagnostic framework on GTE data, an ensemble of measurable gas path parameters has been generated by a high-fidelity GTE model under (a) diverse ambient conditions and control settings, (b) every possible combination of degradation symptoms, and (c) a broad range of signal to noise ratios. The results prove the competency of the developed framework in fault diagnostics and reveal the sensitivity of diagnostic results to measurement noise for different degradation symptoms.
基金supported by the National Natural Science Foundation of China(61371172)the International S&T Cooperation Program of China(2015DFR10220)+1 种基金the Ocean Engineering Project of National Key Laboratory Foundation(1213)the Fundamental Research Funds for the Central Universities(HEUCF1608)
文摘For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to process intercepted signals,which has a negative effect on signal classification. A classificationmethod based on spatial data mining is presented to address theabove challenge. Inspired by the idea of spatial data mining, theclassification method applies nuclear field to depicting the distributioninformation of pulse samples in feature space, and digs out thehidden cluster information by analyzing distribution characteristics.In addition, a membership-degree criterion to quantify the correlationamong all classes is established, which ensures classificationaccuracy of signal samples. Numerical experiments show that thepresented method can effectively prevent different working statesof multi-mode emitter from being classified as several emitters,and achieve higher classification accuracy.
基金Project(61374140)supported by the National Natural Science Foundation of China
文摘There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring.
基金sponsored by Study on High-Precision Logging While Drilling Imaging Technology of Low-Permeability Reservoirs(No.2016ZX05021-002)
文摘A new multi-mode resistivity imaging sonde, with toroidal coils as source, can conduct three resistivity measurements: azimuthal resistivity, lateral resistivity, and bit resistivity measurements. Thus, the logging time and cost are greatly saved. The toroidal coils are simplified as an extended voltage dipole and the response equations are derived for a homogenous formation. Based on 3D FEM, the depth of investigation(DOI), vertical resolution, circumferential azimuthal capacity, borehole diameter, mud resistivity, thickness of target formation, and the resistivity of the surrounding formation and mud invasion are simulated. The results suggest that the three measurement modes of the new sonde are different in vertical resolutions and DOIs. The circumferential detection ability of the azimuth button depends on the contrast between the anomaly and formation resistivity and the open angle of the anomaly. Whether the borehole is truncated at the bit or not has a great influence on the simulation results. The borehole and mud invasion affect the apparent resistivity in all modes, but the effects of resistivity of surrounding formation and thickness of the target formation are only corrected for lateral resistivity measurement.
基金supported by the Science and Technology Project of State Grid Corporation of China under Grant Number 52094021N010 (5400202199534A-0-5-ZN)
文摘Multi-mode power internet of things(PIoT)combines various communication media to provide spatio-temporal coverage for low-carbon operation in smart park.Edge-end collaboration is feasible to achieve the full utilization of heterogeneous resources and anti-eavesdropping.However,edge-end collaboration-based multi-mode PIoT faces challenges of mutual contradiction in communication and security quality of service(QoS)guarantee,inadaptability of resource management,and multi-mode access conflict.We propose an Adaptive learning based delAysensitive and seCure Edge-End Collaboration algorithm(ACE_(2))to optimize multi-mode channel selection and split device power into artificial noise(AN)transmission and data transmission for secure data delivery.ACE_(2) can achieve multi-attribute QoS guarantee,adaptive resource management and security enhancement,and access conflict elimination with the combined power of deep actor-critic(DAC),“win or learn fast(WoLF)”mechanism,and edge-end collaboration.Simulations demonstrate its superior performance in queuing delay,energy consumption,secrecy capacity,and adaptability to differentiated low-carbon services.
基金National Key Research and Development Program of China(Grant No.2020YFB2009702)National Natural Science Foundation of China(Grant Nos.52075055,U21A20124 and 52111530069)Chongqing Natural Science Foundation of China(Grant No.cstc2020jcyj-msxmX0780)。
文摘In mobile machinery,hydro-mechanical pumps are increasingly replaced by electronically controlled pumps to improve the automation level,but diversified control functions(e.g.,power limitation and pressure cut-off)are integrated into the electronic controller only from the pump level,leading to the potential instability of the overall system.To solve this problem,a multi-mode electrohydraulic load sensing(MELS)control scheme is proposed especially considering the switching stability from the system level,which includes four working modes of flow control,load sensing,power limitation,and pressure control.Depending on the actual working requirements,the switching rules for the different modes and the switching direction(i.e.,the modes can be switched bilaterally or unilaterally)are defined.The priority of different modes is also defined,from high to low:pressure control,power limitation,load sensing,and flow control.When multiple switching rules are satisfied at the same time,the system switches to the control mode with the highest priority.In addition,the switching stability between flow control and pressure control modes is analyzed,and the controller parameters that guarantee the switching stability are obtained.A comparative study is carried out based on a test rig with a 2-ton hydraulic excavator.The results show that the MELS controller can achieve the control functions of proper flow supplement,power limitation,and pressure cut-off,which has good stability performance when switching between different control modes.This research proposes the MELS control method that realizes the stability of multi-mode switching of the hydraulic system of mobile machinery under different working conditions.
基金The project supported by Natural Science Foundation of Jiangsu Province of China under Grant No.BK2001138
文摘The digital communication in a system of two multi-mode solid state chaotic lasers is investigated theoretically. If the usual method working well in a single-mode laser system is applied to a multi-mode laser system, the memory effect of the two nearest digits can cause high rate of mistakes when the digits are decoded through the subtraction of receiver output from the transmittal. By introducing the deviations of two nearest maximum and minimum fluctuationsof the signal to decode the digit, the message can be decoded correctly. Also, this communication method does not critically depend on the quality of the chaotic synchronization of the two multi-mode lasers.
文摘Based on the effective structure of the self-mixing interference effects,a general model for the self-mixing interference effects in the LD pumped solid-state laser has been established for the first time.The numerical simulation of the self-mixing interference signal has been done,the results show that when the external cavity length is integral times of 1/2,1/3,2/3,1/4,3/4 of the effective cavity length,the intensity of the self-mixing interference signals reach maximum in value.While that of single mode laser is integral times of half of the effective cavity length,the measuring precision of displacement of single mode laser is λ/2.A conclusion can be drawn from the above results that the measuring precision of displacement of multi-mode laser is higher than that of single mode laser.
文摘This paper studies the application of mathematical models to analyze the vortex-induced vibrations of the tendons of a given TLP along the Indian coastline, by using an analytical approach, using MATLAB. The tendon is subjected to a steady current load, which causes vortex-shedding downstream, leading to cross-flow vibrations. The magnitude of the excitation(lift and drag coefficients) depends on the vortex-shedding frequency. The resulting vibration is studied for possible resonant behavior. The excitation force is quantified empirically, the added mass by potential flow hydrodynamics, and the vibration by normal mode summation method. Non-linear viscous damping of the water is considered. The non-linear oscillations are studied by the phase-plane method, investigating the limit-cycle oscillations. The stable/unstable regions of the dynamic behavior are demarcated. The modal contribution to the total deflection is studied to establish the possibility of resonance of one of the wet modes with the vortex-shedding frequency.
文摘Based on the analysis of B3G evolution, the base-band processing chips for mobile terminals are introduced. Key technologies for multi-mode mobile terminal base-band chips are discussed. Terminal technologies are thought to be the key of B3G, and terminal base-band chips are regarded as the core of terminal technologies. Therefore, a unified wireless development platform is required for the R&D of multi-mode mobile terminal base-band processing chips.
文摘Albumin has been widely applied for rational design of drug delivery complexes as natural carriers in cancer therapy due to its distinct advantages of biocompatibility,abundance,low toxicity and versatile property.Hence,various types of multifunctional albumin-based nanoplatforms(MAlb-NPs)that adopt multiple imaging and therapeutic techniques have been developed for cancer diagnosis and treatment.Stimuli-responsive release,including reduction-sensitive,p H-responsive,concentration-dependent and photodynamic-triggered,is important to achieve low-toxicity cancer therapy.Several types of imaging techniques can synergistically improve the effectiveness of cancer therapy.Therefore,combinational theranostic is considered to be a prospective strategy to improve treatment efficiency,minimize side effects and reduce drug resistance,which has received tremendous attentions in recent years.In this review,we highlight several stimuli-responsive albumin nanoplatforms for combinational theranostic.