期刊文献+
共找到2,469篇文章
< 1 2 124 >
每页显示 20 50 100
Personal Style Guided Outfit Recommendation with Multi-Modal Fashion Compatibility Modeling 被引量:1
1
作者 WANG Kexin ZHANG Jie +3 位作者 ZHANG Peng SUN Kexin ZHAN Jiamei WEI Meng 《Journal of Donghua University(English Edition)》 2025年第2期156-167,共12页
A personalized outfit recommendation has emerged as a hot research topic in the fashion domain.However,existing recommendations do not fully exploit user style preferences.Typically,users prefer particular styles such... A personalized outfit recommendation has emerged as a hot research topic in the fashion domain.However,existing recommendations do not fully exploit user style preferences.Typically,users prefer particular styles such as casual and athletic styles,and consider attributes like color and texture when selecting outfits.To achieve personalized outfit recommendations in line with user style preferences,this paper proposes a personal style guided outfit recommendation with multi-modal fashion compatibility modeling,termed as PSGNet.Firstly,a style classifier is designed to categorize fashion images of various clothing types and attributes into distinct style categories.Secondly,a personal style prediction module extracts user style preferences by analyzing historical data.Then,to address the limitations of single-modal representations and enhance fashion compatibility,both fashion images and text data are leveraged to extract multi-modal features.Finally,PSGNet integrates these components through Bayesian personalized ranking(BPR)to unify the personal style and fashion compatibility,where the former is used as personal style features and guides the output of the personalized outfit recommendation tailored to the target user.Extensive experiments on large-scale datasets demonstrate that the proposed model is efficient on the personalized outfit recommendation. 展开更多
关键词 personalized outfit recommendation fashion compatibility modeling style preference multi-modal representation Bayesian personalized ranking(BPR) style classifier
暂未订购
Multi-modal Gesture Recognition using Integrated Model of Motion, Audio and Video 被引量:3
2
作者 GOUTSU Yusuke KOBAYASHI Takaki +4 位作者 OBARA Junya KUSAJIMA Ikuo TAKEICHI Kazunari TAKANO Wataru NAKAMURA Yoshihiko 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第4期657-665,共9页
Gesture recognition is used in many practical applications such as human-robot interaction, medical rehabilitation and sign language. With increasing motion sensor development, multiple data sources have become availa... Gesture recognition is used in many practical applications such as human-robot interaction, medical rehabilitation and sign language. With increasing motion sensor development, multiple data sources have become available, which leads to the rise of multi-modal gesture recognition. Since our previous approach to gesture recognition depends on a unimodal system, it is difficult to classify similar motion patterns. In order to solve this problem, a novel approach which integrates motion, audio and video models is proposed by using dataset captured by Kinect. The proposed system can recognize observed gestures by using three models. Recognition results of three models are integrated by using the proposed framework and the output becomes the final result. The motion and audio models are learned by using Hidden Markov Model. Random Forest which is the video classifier is used to learn the video model. In the experiments to test the performances of the proposed system, the motion and audio models most suitable for gesture recognition are chosen by varying feature vectors and learning methods. Additionally, the unimodal and multi-modal models are compared with respect to recognition accuracy. All the experiments are conducted on dataset provided by the competition organizer of MMGRC, which is a workshop for Multi-Modal Gesture Recognition Challenge. The comparison results show that the multi-modal model composed of three models scores the highest recognition rate. This improvement of recognition accuracy means that the complementary relationship among three models improves the accuracy of gesture recognition. The proposed system provides the application technology to understand human actions of daily life more precisely. 展开更多
关键词 gesture recognition multi-modal integration hidden Markov model random forests
在线阅读 下载PDF
Analysis of prompt fission neutron spectrum and multiplicity for ^(237)Np(n, f) in the frame of multi-modal Los Alamos model 被引量:1
3
作者 郑娜 丁毅 +2 位作者 钟春来 陈金象 樊铁栓 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第4期1413-1420,共8页
The improved version of Los Alamos model with the multi-modal fission approach is used to analyse the prompt fission neutron spectrum and multiplicity for the neutron-induced fission of 237Np. The spectra of neutrons ... The improved version of Los Alamos model with the multi-modal fission approach is used to analyse the prompt fission neutron spectrum and multiplicity for the neutron-induced fission of 237Np. The spectra of neutrons emitted from fragments for the three most dominant fission modes (standard Ⅰ, standard Ⅱ and superlong) are calculated separately and the total spectrum is synthesized. The multi-modal parameters contained in the spectrum model are determined on the basis of experimental data of fission fragment mass distributions. The calculated total prompt fission neutron spectrum and multiplicity are better agreement with the experimental data than those obtained from the conventional treatment of the Los Alamos model. 展开更多
关键词 237Np(n f) prompt neutron spectrum neutron multiplicity multi-modal model LosAlamos model
原文传递
Calculation of Prompt Fission Neutron from ^(233)U(n, f) Reaction byMulti-Modal Los Alamos Model 被引量:1
4
作者 郑娜 钟春来 樊铁栓 《Plasma Science and Technology》 SCIE EI CAS CSCD 2012年第6期521-525,共5页
An attempt is made to improve the evaluation of the prompt fission neutron emis- sion from 233U(n, f) reaction for incident neutron energies below 6 MeV. The multi-modal fission approach is applied to the improved v... An attempt is made to improve the evaluation of the prompt fission neutron emis- sion from 233U(n, f) reaction for incident neutron energies below 6 MeV. The multi-modal fission approach is applied to the improved version of Los Alamos model and the point by point model. The prompt fission neutron spectra and the prompt fission neutron as a function of fragment mass (usually named "sawtooth" data) v(A) are calculated independently for the three most dominant fission modes (standard I, standard II and superlong), and the total spectra and v(A) are syn- thesized. The multi-modal parameters are determined on the basis of experimental data of fission fragment mass distributions. The present calculation results can describe the experimental data very well, and the proposed treatment is thus a useful tool for prompt fission neutron emission prediction. 展开更多
关键词 233U(n f) prompt fission neutron multi-modal model Los Alamos model
在线阅读 下载PDF
Multi-Modal Named Entity Recognition with Auxiliary Visual Knowledge and Word-Level Fusion
5
作者 Huansha Wang Ruiyang Huang +1 位作者 Qinrang Liu Xinghao Wang 《Computers, Materials & Continua》 2025年第6期5747-5760,共14页
Multi-modal Named Entity Recognition(MNER)aims to better identify meaningful textual entities by integrating information from images.Previous work has focused on extracting visual semantics at a fine-grained level,or ... Multi-modal Named Entity Recognition(MNER)aims to better identify meaningful textual entities by integrating information from images.Previous work has focused on extracting visual semantics at a fine-grained level,or obtaining entity related external knowledge from knowledge bases or Large Language Models(LLMs).However,these approaches ignore the poor semantic correlation between visual and textual modalities in MNER datasets and do not explore different multi-modal fusion approaches.In this paper,we present MMAVK,a multi-modal named entity recognition model with auxiliary visual knowledge and word-level fusion,which aims to leverage the Multi-modal Large Language Model(MLLM)as an implicit knowledge base.It also extracts vision-based auxiliary knowledge from the image formore accurate and effective recognition.Specifically,we propose vision-based auxiliary knowledge generation,which guides the MLLM to extract external knowledge exclusively derived from images to aid entity recognition by designing target-specific prompts,thus avoiding redundant recognition and cognitive confusion caused by the simultaneous processing of image-text pairs.Furthermore,we employ a word-level multi-modal fusion mechanism to fuse the extracted external knowledge with each word-embedding embedded from the transformerbased encoder.Extensive experimental results demonstrate that MMAVK outperforms or equals the state-of-the-art methods on the two classical MNER datasets,even when the largemodels employed have significantly fewer parameters than other baselines. 展开更多
关键词 multi-modal named entity recognition large language model multi-modal fusion
在线阅读 下载PDF
GLMTopic:A Hybrid Chinese Topic Model Leveraging Large Language Models
6
作者 Weisi Chen Walayat Hussain Junjie Chen 《Computers, Materials & Continua》 2025年第10期1559-1583,共25页
Topic modeling is a fundamental technique of content analysis in natural language processing,widely applied in domains such as social sciences and finance.In the era of digital communication,social scientists increasi... Topic modeling is a fundamental technique of content analysis in natural language processing,widely applied in domains such as social sciences and finance.In the era of digital communication,social scientists increasingly rely on large-scale social media data to explore public discourse,collective behavior,and emerging social concerns.However,traditional models like Latent Dirichlet Allocation(LDA)and neural topic models like BERTopic struggle to capture deep semantic structures in short-text datasets,especially in complex non-English languages like Chinese.This paper presents Generative Language Model Topic(GLMTopic)a novel hybrid topic modeling framework leveraging the capabilities of large language models,designed to support social science research by uncovering coherent and interpretable themes from Chinese social media platforms.GLMTopic integrates Adaptive Community-enhanced Graph Embedding for advanced semantic representation,Uniform Manifold Approximation and Projection-based(UMAP-based)dimensionality reduction,Hierarchical Density-Based Spatial Clustering of Applications with Noise(HDBSCAN)clustering,and large language model-powered(LLM-powered)representation tuning to generate more contextually relevant and interpretable topics.By reducing dependence on extensive text preprocessing and human expert intervention in post-analysis topic label annotation,GLMTopic facilitates a fully automated and user-friendly topic extraction process.Experimental evaluations on a social media dataset sourced from Weibo demonstrate that GLMTopic outperforms Latent Dirichlet Allocation(LDA)and BERTopic in coherence score and usability with automated interpretation,providing a more scalable and semantically accurate solution for Chinese topic modeling.Future research will explore optimizing computational efficiency,integrating knowledge graphs and sentiment analysis for more complicated workflows,and extending the framework for real-time and multilingual topic modeling. 展开更多
关键词 topic modeling large language model deep learning natural language processing text mining
在线阅读 下载PDF
Tomato Growth Height Prediction Method by Phenotypic Feature Extraction Using Multi-modal Data
7
作者 GONG Yu WANG Ling +3 位作者 ZHAO Rongqiang YOU Haibo ZHOU Mo LIU Jie 《智慧农业(中英文)》 2025年第1期97-110,共14页
[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-base... [Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-based models that utilize either images data or environmental data.These methods fail to fully leverage multi-modal data to capture the diverse aspects of plant growth comprehensively.[Methods]To address this limitation,a two-stage phenotypic feature extraction(PFE)model based on deep learning algorithm of recurrent neural network(RNN)and long short-term memory(LSTM)was developed.The model integrated environment and plant information to provide a holistic understanding of the growth process,emploied phenotypic and temporal feature extractors to comprehensively capture both types of features,enabled a deeper understanding of the interaction between tomato plants and their environment,ultimately leading to highly accurate predictions of growth height.[Results and Discussions]The experimental results showed the model's ef‐fectiveness:When predicting the next two days based on the past five days,the PFE-based RNN and LSTM models achieved mean absolute percentage error(MAPE)of 0.81%and 0.40%,respectively,which were significantly lower than the 8.00%MAPE of the large language model(LLM)and 6.72%MAPE of the Transformer-based model.In longer-term predictions,the 10-day prediction for 4 days ahead and the 30-day prediction for 12 days ahead,the PFE-RNN model continued to outperform the other two baseline models,with MAPE of 2.66%and 14.05%,respectively.[Conclusions]The proposed method,which leverages phenotypic-temporal collaboration,shows great potential for intelligent,data-driven management of tomato cultivation,making it a promising approach for enhancing the efficiency and precision of smart tomato planting management. 展开更多
关键词 tomato growth prediction deep learning phenotypic feature extraction multi-modal data recurrent neural net‐work long short-term memory large language model
在线阅读 下载PDF
On a New Diffeomorphic Multi-Modality Image Registration Model and Its Convergent Gauss-Newton Solver
8
作者 Daoping ZHANG Anis THELJANI Ke CHEN 《Journal of Mathematical Research with Applications》 CSCD 2019年第6期633-656,共24页
In this work, we propose a new variational model for multi-modal image registration and present an efficient numerical implementation. The model minimizes a new functional based on using reformulated normalized gradie... In this work, we propose a new variational model for multi-modal image registration and present an efficient numerical implementation. The model minimizes a new functional based on using reformulated normalized gradients of the images as the fidelity term and higher-order derivatives as the regularizer. A key feature of the model is its ability of guaranteeing a diffeomorphic transformation which is achieved by a control term motivated by the quasi-conformal map and Beltrami coefficient. The existence of the solution of this model is established. To solve the model numerically, we design a Gauss-Newton method to solve the resulting discrete optimization problem and prove its convergence;a multilevel technique is employed to speed up the initialization and avoid likely local minima of the underlying functional. Finally, numerical experiments demonstrate that this new model can deliver good performances for multi-modal image registration and simultaneously generate an accurate diffeomorphic transformation. 展开更多
关键词 multi-modal image registration VARIATIONAL model diffeomorphic transformation
原文传递
基于Topic Model的我国档案学主题结构与演化研究 被引量:4
9
作者 董克 韩宇姝 《信息资源管理学报》 CSSCI 2017年第3期97-105,共9页
文本内容分析能够有效揭示学科研究的主题结构与知识的发展过程。本文运用主题模型与时间序列分析等方法,以档案学领域的两种CSSCI源刊近10年刊载的论文为分析对象进行文本内容挖掘。分析结果表明,上述方法的结合能够有效识别学科领域... 文本内容分析能够有效揭示学科研究的主题结构与知识的发展过程。本文运用主题模型与时间序列分析等方法,以档案学领域的两种CSSCI源刊近10年刊载的论文为分析对象进行文本内容挖掘。分析结果表明,上述方法的结合能够有效识别学科领域研究的主题,并揭示学科主题的发展过程;中国档案学领域近10年的研究主要集中在学科范式研究、电子文件管理、档案信息服务等12个研究主题;通过对不同主题的时间分布分析,揭示了这些主题的演化过程,进一步归纳总结了相关方法使用的主要注意事项并给出了对应建议。 展开更多
关键词 主题模型 学科结构 主题结构 主题演化档案学研究
在线阅读 下载PDF
基于BERTopic的科技人才政策文本主题识别与量化分析——以东北三省为例 被引量:6
10
作者 苗宏慧 全情爽 舒心 《现代情报》 北大核心 2025年第4期110-121,共12页
[目的/意义]新时代东北全面振兴取决于科技人才的有力支撑,科技人才政策是推动科技创新与人才发展的重要制度保障。通过对科技人才政策进行系统的量化分析,旨在准确把握区域科技人才政策的框架结构和动态特征,为深化政策供给侧改革提供... [目的/意义]新时代东北全面振兴取决于科技人才的有力支撑,科技人才政策是推动科技创新与人才发展的重要制度保障。通过对科技人才政策进行系统的量化分析,旨在准确把握区域科技人才政策的框架结构和动态特征,为深化政策供给侧改革提供决策参考。[方法/过程]本研究以黑龙江省、吉林省、辽宁省三省的科技人才政策文本为研究对象,运用BERTopic模型对其政策文本进行主题识别、关键词提取、相似度计算等,在此基础上开展各省政策主题的纵横向比较,并与粤苏浙鲁等发达省份的政策进行对比分析。[结果/结论]东北三省科技人才政策已形成了以人才引进、培养、使用、评价、激励、服务为主线的政策体系,但与发达省份相比,在政策供给、需求牵引、针对性等方面还存在不足。据此,本研究提出,东北三省应立足区域实际,提升人才政策的系统性、精准性、时效性,聚焦政策供给、需求牵引、区域特色等关键问题,在人才政策的集成优化、创新发展上持续发力,以新时代人才政策变革引领和保障全面振兴、高质量发展。 展开更多
关键词 科技人才政策 主题识别 BERtopic模型 对比分析 东北振兴 政策供给
在线阅读 下载PDF
融合BERTopic和大语言模型的大数据安全与治理主题演化研究
11
作者 邓胜利 贾瑞琪 王少辉 《情报科学》 北大核心 2025年第9期12-18,30,共8页
【目的/意义】数智时代,大数据安全与治理的统筹研究成为当前的研究热点与重点问题。本文通过对大数据安全与治理领域中的研究主题进行挖掘,探究该领域的核心议题、发展趋势以及演化轨迹。【方法/过程】梳理考证该领域已有文献,利用中... 【目的/意义】数智时代,大数据安全与治理的统筹研究成为当前的研究热点与重点问题。本文通过对大数据安全与治理领域中的研究主题进行挖掘,探究该领域的核心议题、发展趋势以及演化轨迹。【方法/过程】梳理考证该领域已有文献,利用中国知网(CNKI)数据,对2012—2024年间大数据安全与治理相关核心期刊文献,采用改进BERTopic主题模型与GPT-4协同分析框架,挖掘文本隐含的研究主题及重要性,展示主题内容的动态演化过程与趋势。【结果/结论】研究发现大数据安全与治理领域呈现出理论与实践交互演进、多维安全深化拓展、安全与发展动态平衡三个主要演化特征,以此为基础提出完善大数据领域特色化发展的未来展望。【创新/局限】本研究引入大语言模型来深入挖掘出大数据安全与治理领域研究主题及其演化特征,未来将着眼于新兴技术治理与安全领域,以期实现大数据“善治”。 展开更多
关键词 大数据安全 数据治理 主题建模 主题演化 大语言模型
原文传递
基于BERTopic模型的我国医学人工智能领域的主题识别与内容分析 被引量:1
12
作者 袁永旭 王涟 +2 位作者 殷彩明 孙一凡 陈俊冶 《中国数字医学》 2025年第4期89-96,共8页
目的:从主题识别和发展演化两个角度对我国医学人工智能的研究现状进行梳理分析,为学者进行相关研究提供借鉴和参考。方法:首先从中国知网、万方数据和维普网三大数据库中获取2012年-2023年我国医学人工智能领域的相关文献,再利用BERTo... 目的:从主题识别和发展演化两个角度对我国医学人工智能的研究现状进行梳理分析,为学者进行相关研究提供借鉴和参考。方法:首先从中国知网、万方数据和维普网三大数据库中获取2012年-2023年我国医学人工智能领域的相关文献,再利用BERTopic模型挖掘医学人工智能领域的研究主题和发展演化趋势。结果:研究主题覆盖基础医学至临床实践的完整链条,体现学科复杂性与多维性;核心方向聚焦医学教育与基础研究、临床技术创新、医疗数据挖掘及公共卫生管理四大领域;热点呈分化趋势,医学影像与网络模型研究、医学人工智能教育研究热度显著,精准医学与医疗数据挖掘具备发展潜能。结论:本研究揭示了医学人工智能领域主题动态与前沿方向,为优化学科布局、引导资源投入及推动技术转化提供参考依据。 展开更多
关键词 医学人工智能 BERtopic模型 主题分析 主题挖掘
在线阅读 下载PDF
基于BERTopic模型的美国国防部关键科技资助项目主题挖掘与演化分析
13
作者 杨阳 郑禧潓 +1 位作者 张雯 李刚 《图书与情报》 北大核心 2025年第5期34-46,共13页
美国作为全球科技和军事强国,其科技研发资助策略和方向对全球科技格局具有深远影响。文章基于BERTopic主题模型对2015年-2024年美国国防部关键科技资助项目进行主题挖掘和演化趋势分析,从主题分布及动态演化趋势角度对美国关键科技资... 美国作为全球科技和军事强国,其科技研发资助策略和方向对全球科技格局具有深远影响。文章基于BERTopic主题模型对2015年-2024年美国国防部关键科技资助项目进行主题挖掘和演化趋势分析,从主题分布及动态演化趋势角度对美国关键科技资助的战略布局及其构成因素进行了实证分析和系统梳理。美国国防部关键科技资助项目涵盖83个主题,大多数主题在时间维度上的频率变化相对平稳,仅少数主题呈现出显著波动或快速增长态势,体现了美国“集中资源突破核心领域,广泛布局孕育未来方向”的关键技术资助战略。总体来看,美国国防部在推进科技创新的过程中实现了基础研究与应用研究的协同并进,构建起以国家安全为导向的前沿技术生态体系。 展开更多
关键词 美国国防部 关键科技资助项目 主题挖掘 动态演化分析 BERtopic主题模型
在线阅读 下载PDF
基于BERTopic的生成式人工智能主题图谱与演化分析
14
作者 冯丹娃 王金舟 《情报科学》 北大核心 2025年第6期71-81,共11页
【目的/意义】自2022年底OpenAI发布ChatGPT以来,生成式人工智能在多个领域有了快速发展。厘清生成式人工智能在学术界的研究主题结构及其演化趋势,以揭示该领域研究热点的动态变化规律与未来发展方向。【方法/过程】运用BERTopic主题... 【目的/意义】自2022年底OpenAI发布ChatGPT以来,生成式人工智能在多个领域有了快速发展。厘清生成式人工智能在学术界的研究主题结构及其演化趋势,以揭示该领域研究热点的动态变化规律与未来发展方向。【方法/过程】运用BERTopic主题模型进行文本语义嵌入、UMAP降维与HDBSCAN密度聚类,并结合动态主题分析,精准识别研究主题并绘制主题演化路径。【结果/结论】识别出智能教育技术、风险与技术治理、智能内容服务等20个具体研究主题并绘制主题图谱,呈现出研究热点由技术探索逐步转向应用细化的演化趋势。其中,智能教育领域长期处于研究热点中心,风险治理主题稳步升温。动态分析发现,主题演化存在明显的聚合与分化路径,体现了跨学科融合与主题专业化的双重特征。【创新/局限】技术与方法的双重创新,提高了研究结果的可视性与解释力。然而,研究数据来源的单一性可能导致某些研究主题未被充分覆盖。 展开更多
关键词 生成式人工智能 BERtopic模型 动态主题分析 主题图谱 演化分析
原文传递
基于BERTOPIC模型的数据要素领域主题挖掘与内容分析
15
作者 杨智勇 王慧 《图书馆理论与实践》 2025年第6期78-89,126,共13页
文章以中国知网数据库中数据要素研究文献为例,利用BERTopic模型系统解构国内数据要素的核心研究主题与研究方向。研究发现该领域在数据产权、数据交易、数据治理等微观主题上表现出由表及里的深化研究态势;整体研究趋势变化受政策和社... 文章以中国知网数据库中数据要素研究文献为例,利用BERTopic模型系统解构国内数据要素的核心研究主题与研究方向。研究发现该领域在数据产权、数据交易、数据治理等微观主题上表现出由表及里的深化研究态势;整体研究趋势变化受政策和社会发展需求驱动特征明显,在“顶层设计—实施路径”的双向互动中形成了多层次分析框架;学科交叉属性显著,未来学者开展相关研究可采用跨学科式研究,整合多元方法论,推动数据要素领域研究向多维化、系统化方向深化发展。 展开更多
关键词 数据要素 研究主题 BERtopic 主题模型
在线阅读 下载PDF
Mining User Interest in Microblogs with a User-Topic Model 被引量:17
16
作者 HE Li JIA Yan +1 位作者 HAN Weihong DING Zhaoyun 《China Communications》 SCIE CSCD 2014年第8期131-144,共14页
Microblogs have become an important platform for people to publish,transform information and acquire knowledge.This paper focuses on the problem of discovering user interest in microblogs.In this paper,we propose a to... Microblogs have become an important platform for people to publish,transform information and acquire knowledge.This paper focuses on the problem of discovering user interest in microblogs.In this paper,we propose a topic mining model based on Latent Dirichlet Allocation(LDA) named user-topic model.For each user,the interests are divided into two parts by different ways to generate the microblogs:original interest and retweet interest.We represent a Gibbs sampling implementation for inference the parameters of our model,and discover not only user's original interest,but also retweet interest.Then we combine original interest and retweet interest to compute interest words for users.Experiments on a dataset of Sina microblogs demonstrate that our model is able to discover user interest effectively and outperforms existing topic models in this task.And we find that original interest and retweet interest are similar and the topics of interest contain user labels.The interest words discovered by our model reflect user labels,but range is much broader. 展开更多
关键词 MICROBLOGS topic mining userinterest LDA user-topic model
在线阅读 下载PDF
基于有监督Topic Model的图像分类 被引量:1
17
作者 付勋 宋俊德 《软件》 2013年第12期253-255,共3页
近年来,以LDA为代表的话题模型在图像和文本处理中均得到了广泛的应用。与传统的机器学习方法相比,LDA模型具有参数少,表达能力强等优点,同时作为一种生成模型,它可以有效模拟人类学习的方式,便利地加入先验知识。有监督的LDA模型则将... 近年来,以LDA为代表的话题模型在图像和文本处理中均得到了广泛的应用。与传统的机器学习方法相比,LDA模型具有参数少,表达能力强等优点,同时作为一种生成模型,它可以有效模拟人类学习的方式,便利地加入先验知识。有监督的LDA模型则将生成模型与判别模型结合在一起,是一种通用的分类方法。Dense-SIFT特征被作为底层特征,在词袋模型的框架下,以k-means算法构建词典,用有监督的LDA模型训练,并在通用的图像数据集上进行评测,根据评测结果证明其在图像分类任务中具有很好的性能。 展开更多
关键词 图像分类 话题模型 有监督模型词
在线阅读 下载PDF
^(236)U Multi-modal Fission Paths on a Five-dimensional Deformation Surface 被引量:5
18
作者 Zhi-Ming Wang Wen-Jie Zhu +2 位作者 Xin Zhu Chun-Lai Zhong Tie-Shuan Fan 《Communications in Theoretical Physics》 SCIE CAS CSCD 2019年第4期417-420,共4页
In this paper, we develop a new path search algorithm which considers all the degrees of freedom and apply it on our calculated five-dimensional potential energy surface(PES) of^(236) U. Asymmetric and symmetric fissi... In this paper, we develop a new path search algorithm which considers all the degrees of freedom and apply it on our calculated five-dimensional potential energy surface(PES) of^(236) U. Asymmetric and symmetric fission paths and barriers are obtained. 展开更多
关键词 236U multi-modal FISSION macroscopic-microscopic model
原文传递
BURST-LDA: A NEW TOPIC MODEL FOR DETECTING BURSTY TOPICS FROM STREAM TEXT 被引量:3
19
作者 Qi Xiang Huang Yu +4 位作者 Chen Ziyan Liu Xiaoyan Tian Jing Huang Tinglei Wang Hongqi 《Journal of Electronics(China)》 2014年第6期565-575,共11页
Topic models such as Latent Dirichlet Allocation(LDA) have been successfully applied to many text mining tasks for extracting topics embedded in corpora. However, existing topic models generally cannot discover bursty... Topic models such as Latent Dirichlet Allocation(LDA) have been successfully applied to many text mining tasks for extracting topics embedded in corpora. However, existing topic models generally cannot discover bursty topics that experience a sudden increase during a period of time. In this paper, we propose a new topic model named Burst-LDA, which simultaneously discovers topics and reveals their burstiness through explicitly modeling each topic's burst states with a first order Markov chain and using the chain to generate the topic proportion of documents in a Logistic Normal fashion. A Gibbs sampling algorithm is developed for the posterior inference of the proposed model. Experimental results on a news data set show our model can efficiently discover bursty topics, outperforming the state-of-the-art method. 展开更多
关键词 Text mining Burst detection topic model Graphical model Bayesian inference
在线阅读 下载PDF
Anomaly detection in traffic surveillance with sparse topic model 被引量:5
20
作者 XIA Li-min HU Xiang-jie WANG Jun 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第9期2245-2257,共13页
Most research on anomaly detection has focused on event that is different from its spatial-temporal neighboring events.It is still a significant challenge to detect anomalies that involve multiple normal events intera... Most research on anomaly detection has focused on event that is different from its spatial-temporal neighboring events.It is still a significant challenge to detect anomalies that involve multiple normal events interacting in an unusual pattern.In this work,a novel unsupervised method based on sparse topic model was proposed to capture motion patterns and detect anomalies in traffic surveillance.scale-invariant feature transform(SIFT)flow was used to improve the dense trajectory in order to extract interest points and the corresponding descriptors with less interference.For the purpose of strengthening the relationship of interest points on the same trajectory,the fisher kernel method was applied to obtain the representation of trajectory which was quantized into visual word.Then the sparse topic model was proposed to explore the latent motion patterns and achieve a sparse representation for the video scene.Finally,two anomaly detection algorithms were compared based on video clip detection and visual word analysis respectively.Experiments were conducted on QMUL Junction dataset and AVSS dataset.The results demonstrated the superior efficiency of the proposed method. 展开更多
关键词 motion pattern sparse topic model SIFT flow dense trajectory fisher kernel
在线阅读 下载PDF
上一页 1 2 124 下一页 到第
使用帮助 返回顶部