A personalized outfit recommendation has emerged as a hot research topic in the fashion domain.However,existing recommendations do not fully exploit user style preferences.Typically,users prefer particular styles such...A personalized outfit recommendation has emerged as a hot research topic in the fashion domain.However,existing recommendations do not fully exploit user style preferences.Typically,users prefer particular styles such as casual and athletic styles,and consider attributes like color and texture when selecting outfits.To achieve personalized outfit recommendations in line with user style preferences,this paper proposes a personal style guided outfit recommendation with multi-modal fashion compatibility modeling,termed as PSGNet.Firstly,a style classifier is designed to categorize fashion images of various clothing types and attributes into distinct style categories.Secondly,a personal style prediction module extracts user style preferences by analyzing historical data.Then,to address the limitations of single-modal representations and enhance fashion compatibility,both fashion images and text data are leveraged to extract multi-modal features.Finally,PSGNet integrates these components through Bayesian personalized ranking(BPR)to unify the personal style and fashion compatibility,where the former is used as personal style features and guides the output of the personalized outfit recommendation tailored to the target user.Extensive experiments on large-scale datasets demonstrate that the proposed model is efficient on the personalized outfit recommendation.展开更多
Gesture recognition is used in many practical applications such as human-robot interaction, medical rehabilitation and sign language. With increasing motion sensor development, multiple data sources have become availa...Gesture recognition is used in many practical applications such as human-robot interaction, medical rehabilitation and sign language. With increasing motion sensor development, multiple data sources have become available, which leads to the rise of multi-modal gesture recognition. Since our previous approach to gesture recognition depends on a unimodal system, it is difficult to classify similar motion patterns. In order to solve this problem, a novel approach which integrates motion, audio and video models is proposed by using dataset captured by Kinect. The proposed system can recognize observed gestures by using three models. Recognition results of three models are integrated by using the proposed framework and the output becomes the final result. The motion and audio models are learned by using Hidden Markov Model. Random Forest which is the video classifier is used to learn the video model. In the experiments to test the performances of the proposed system, the motion and audio models most suitable for gesture recognition are chosen by varying feature vectors and learning methods. Additionally, the unimodal and multi-modal models are compared with respect to recognition accuracy. All the experiments are conducted on dataset provided by the competition organizer of MMGRC, which is a workshop for Multi-Modal Gesture Recognition Challenge. The comparison results show that the multi-modal model composed of three models scores the highest recognition rate. This improvement of recognition accuracy means that the complementary relationship among three models improves the accuracy of gesture recognition. The proposed system provides the application technology to understand human actions of daily life more precisely.展开更多
The improved version of Los Alamos model with the multi-modal fission approach is used to analyse the prompt fission neutron spectrum and multiplicity for the neutron-induced fission of 237Np. The spectra of neutrons ...The improved version of Los Alamos model with the multi-modal fission approach is used to analyse the prompt fission neutron spectrum and multiplicity for the neutron-induced fission of 237Np. The spectra of neutrons emitted from fragments for the three most dominant fission modes (standard Ⅰ, standard Ⅱ and superlong) are calculated separately and the total spectrum is synthesized. The multi-modal parameters contained in the spectrum model are determined on the basis of experimental data of fission fragment mass distributions. The calculated total prompt fission neutron spectrum and multiplicity are better agreement with the experimental data than those obtained from the conventional treatment of the Los Alamos model.展开更多
An attempt is made to improve the evaluation of the prompt fission neutron emis- sion from 233U(n, f) reaction for incident neutron energies below 6 MeV. The multi-modal fission approach is applied to the improved v...An attempt is made to improve the evaluation of the prompt fission neutron emis- sion from 233U(n, f) reaction for incident neutron energies below 6 MeV. The multi-modal fission approach is applied to the improved version of Los Alamos model and the point by point model. The prompt fission neutron spectra and the prompt fission neutron as a function of fragment mass (usually named "sawtooth" data) v(A) are calculated independently for the three most dominant fission modes (standard I, standard II and superlong), and the total spectra and v(A) are syn- thesized. The multi-modal parameters are determined on the basis of experimental data of fission fragment mass distributions. The present calculation results can describe the experimental data very well, and the proposed treatment is thus a useful tool for prompt fission neutron emission prediction.展开更多
Multi-modal Named Entity Recognition(MNER)aims to better identify meaningful textual entities by integrating information from images.Previous work has focused on extracting visual semantics at a fine-grained level,or ...Multi-modal Named Entity Recognition(MNER)aims to better identify meaningful textual entities by integrating information from images.Previous work has focused on extracting visual semantics at a fine-grained level,or obtaining entity related external knowledge from knowledge bases or Large Language Models(LLMs).However,these approaches ignore the poor semantic correlation between visual and textual modalities in MNER datasets and do not explore different multi-modal fusion approaches.In this paper,we present MMAVK,a multi-modal named entity recognition model with auxiliary visual knowledge and word-level fusion,which aims to leverage the Multi-modal Large Language Model(MLLM)as an implicit knowledge base.It also extracts vision-based auxiliary knowledge from the image formore accurate and effective recognition.Specifically,we propose vision-based auxiliary knowledge generation,which guides the MLLM to extract external knowledge exclusively derived from images to aid entity recognition by designing target-specific prompts,thus avoiding redundant recognition and cognitive confusion caused by the simultaneous processing of image-text pairs.Furthermore,we employ a word-level multi-modal fusion mechanism to fuse the extracted external knowledge with each word-embedding embedded from the transformerbased encoder.Extensive experimental results demonstrate that MMAVK outperforms or equals the state-of-the-art methods on the two classical MNER datasets,even when the largemodels employed have significantly fewer parameters than other baselines.展开更多
Topic modeling is a fundamental technique of content analysis in natural language processing,widely applied in domains such as social sciences and finance.In the era of digital communication,social scientists increasi...Topic modeling is a fundamental technique of content analysis in natural language processing,widely applied in domains such as social sciences and finance.In the era of digital communication,social scientists increasingly rely on large-scale social media data to explore public discourse,collective behavior,and emerging social concerns.However,traditional models like Latent Dirichlet Allocation(LDA)and neural topic models like BERTopic struggle to capture deep semantic structures in short-text datasets,especially in complex non-English languages like Chinese.This paper presents Generative Language Model Topic(GLMTopic)a novel hybrid topic modeling framework leveraging the capabilities of large language models,designed to support social science research by uncovering coherent and interpretable themes from Chinese social media platforms.GLMTopic integrates Adaptive Community-enhanced Graph Embedding for advanced semantic representation,Uniform Manifold Approximation and Projection-based(UMAP-based)dimensionality reduction,Hierarchical Density-Based Spatial Clustering of Applications with Noise(HDBSCAN)clustering,and large language model-powered(LLM-powered)representation tuning to generate more contextually relevant and interpretable topics.By reducing dependence on extensive text preprocessing and human expert intervention in post-analysis topic label annotation,GLMTopic facilitates a fully automated and user-friendly topic extraction process.Experimental evaluations on a social media dataset sourced from Weibo demonstrate that GLMTopic outperforms Latent Dirichlet Allocation(LDA)and BERTopic in coherence score and usability with automated interpretation,providing a more scalable and semantically accurate solution for Chinese topic modeling.Future research will explore optimizing computational efficiency,integrating knowledge graphs and sentiment analysis for more complicated workflows,and extending the framework for real-time and multilingual topic modeling.展开更多
[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-base...[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-based models that utilize either images data or environmental data.These methods fail to fully leverage multi-modal data to capture the diverse aspects of plant growth comprehensively.[Methods]To address this limitation,a two-stage phenotypic feature extraction(PFE)model based on deep learning algorithm of recurrent neural network(RNN)and long short-term memory(LSTM)was developed.The model integrated environment and plant information to provide a holistic understanding of the growth process,emploied phenotypic and temporal feature extractors to comprehensively capture both types of features,enabled a deeper understanding of the interaction between tomato plants and their environment,ultimately leading to highly accurate predictions of growth height.[Results and Discussions]The experimental results showed the model's ef‐fectiveness:When predicting the next two days based on the past five days,the PFE-based RNN and LSTM models achieved mean absolute percentage error(MAPE)of 0.81%and 0.40%,respectively,which were significantly lower than the 8.00%MAPE of the large language model(LLM)and 6.72%MAPE of the Transformer-based model.In longer-term predictions,the 10-day prediction for 4 days ahead and the 30-day prediction for 12 days ahead,the PFE-RNN model continued to outperform the other two baseline models,with MAPE of 2.66%and 14.05%,respectively.[Conclusions]The proposed method,which leverages phenotypic-temporal collaboration,shows great potential for intelligent,data-driven management of tomato cultivation,making it a promising approach for enhancing the efficiency and precision of smart tomato planting management.展开更多
In this work, we propose a new variational model for multi-modal image registration and present an efficient numerical implementation. The model minimizes a new functional based on using reformulated normalized gradie...In this work, we propose a new variational model for multi-modal image registration and present an efficient numerical implementation. The model minimizes a new functional based on using reformulated normalized gradients of the images as the fidelity term and higher-order derivatives as the regularizer. A key feature of the model is its ability of guaranteeing a diffeomorphic transformation which is achieved by a control term motivated by the quasi-conformal map and Beltrami coefficient. The existence of the solution of this model is established. To solve the model numerically, we design a Gauss-Newton method to solve the resulting discrete optimization problem and prove its convergence;a multilevel technique is employed to speed up the initialization and avoid likely local minima of the underlying functional. Finally, numerical experiments demonstrate that this new model can deliver good performances for multi-modal image registration and simultaneously generate an accurate diffeomorphic transformation.展开更多
Microblogs have become an important platform for people to publish,transform information and acquire knowledge.This paper focuses on the problem of discovering user interest in microblogs.In this paper,we propose a to...Microblogs have become an important platform for people to publish,transform information and acquire knowledge.This paper focuses on the problem of discovering user interest in microblogs.In this paper,we propose a topic mining model based on Latent Dirichlet Allocation(LDA) named user-topic model.For each user,the interests are divided into two parts by different ways to generate the microblogs:original interest and retweet interest.We represent a Gibbs sampling implementation for inference the parameters of our model,and discover not only user's original interest,but also retweet interest.Then we combine original interest and retweet interest to compute interest words for users.Experiments on a dataset of Sina microblogs demonstrate that our model is able to discover user interest effectively and outperforms existing topic models in this task.And we find that original interest and retweet interest are similar and the topics of interest contain user labels.The interest words discovered by our model reflect user labels,but range is much broader.展开更多
In this paper, we develop a new path search algorithm which considers all the degrees of freedom and apply it on our calculated five-dimensional potential energy surface(PES) of^(236) U. Asymmetric and symmetric fissi...In this paper, we develop a new path search algorithm which considers all the degrees of freedom and apply it on our calculated five-dimensional potential energy surface(PES) of^(236) U. Asymmetric and symmetric fission paths and barriers are obtained.展开更多
Topic models such as Latent Dirichlet Allocation(LDA) have been successfully applied to many text mining tasks for extracting topics embedded in corpora. However, existing topic models generally cannot discover bursty...Topic models such as Latent Dirichlet Allocation(LDA) have been successfully applied to many text mining tasks for extracting topics embedded in corpora. However, existing topic models generally cannot discover bursty topics that experience a sudden increase during a period of time. In this paper, we propose a new topic model named Burst-LDA, which simultaneously discovers topics and reveals their burstiness through explicitly modeling each topic's burst states with a first order Markov chain and using the chain to generate the topic proportion of documents in a Logistic Normal fashion. A Gibbs sampling algorithm is developed for the posterior inference of the proposed model. Experimental results on a news data set show our model can efficiently discover bursty topics, outperforming the state-of-the-art method.展开更多
Most research on anomaly detection has focused on event that is different from its spatial-temporal neighboring events.It is still a significant challenge to detect anomalies that involve multiple normal events intera...Most research on anomaly detection has focused on event that is different from its spatial-temporal neighboring events.It is still a significant challenge to detect anomalies that involve multiple normal events interacting in an unusual pattern.In this work,a novel unsupervised method based on sparse topic model was proposed to capture motion patterns and detect anomalies in traffic surveillance.scale-invariant feature transform(SIFT)flow was used to improve the dense trajectory in order to extract interest points and the corresponding descriptors with less interference.For the purpose of strengthening the relationship of interest points on the same trajectory,the fisher kernel method was applied to obtain the representation of trajectory which was quantized into visual word.Then the sparse topic model was proposed to explore the latent motion patterns and achieve a sparse representation for the video scene.Finally,two anomaly detection algorithms were compared based on video clip detection and visual word analysis respectively.Experiments were conducted on QMUL Junction dataset and AVSS dataset.The results demonstrated the superior efficiency of the proposed method.展开更多
基金Shanghai Frontier Science Research Center for Modern Textiles,Donghua University,ChinaOpen Project of Henan Key Laboratory of Intelligent Manufacturing of Mechanical Equipment,Zhengzhou University of Light Industry,China(No.IM202303)National Key Research and Development Program of China(No.2019YFB1706300)。
文摘A personalized outfit recommendation has emerged as a hot research topic in the fashion domain.However,existing recommendations do not fully exploit user style preferences.Typically,users prefer particular styles such as casual and athletic styles,and consider attributes like color and texture when selecting outfits.To achieve personalized outfit recommendations in line with user style preferences,this paper proposes a personal style guided outfit recommendation with multi-modal fashion compatibility modeling,termed as PSGNet.Firstly,a style classifier is designed to categorize fashion images of various clothing types and attributes into distinct style categories.Secondly,a personal style prediction module extracts user style preferences by analyzing historical data.Then,to address the limitations of single-modal representations and enhance fashion compatibility,both fashion images and text data are leveraged to extract multi-modal features.Finally,PSGNet integrates these components through Bayesian personalized ranking(BPR)to unify the personal style and fashion compatibility,where the former is used as personal style features and guides the output of the personalized outfit recommendation tailored to the target user.Extensive experiments on large-scale datasets demonstrate that the proposed model is efficient on the personalized outfit recommendation.
基金Supported by Grant-in-Aid for Young Scientists(A)(Grant No.26700021)Japan Society for the Promotion of Science and Strategic Information and Communications R&D Promotion Programme(Grant No.142103011)Ministry of Internal Affairs and Communications
文摘Gesture recognition is used in many practical applications such as human-robot interaction, medical rehabilitation and sign language. With increasing motion sensor development, multiple data sources have become available, which leads to the rise of multi-modal gesture recognition. Since our previous approach to gesture recognition depends on a unimodal system, it is difficult to classify similar motion patterns. In order to solve this problem, a novel approach which integrates motion, audio and video models is proposed by using dataset captured by Kinect. The proposed system can recognize observed gestures by using three models. Recognition results of three models are integrated by using the proposed framework and the output becomes the final result. The motion and audio models are learned by using Hidden Markov Model. Random Forest which is the video classifier is used to learn the video model. In the experiments to test the performances of the proposed system, the motion and audio models most suitable for gesture recognition are chosen by varying feature vectors and learning methods. Additionally, the unimodal and multi-modal models are compared with respect to recognition accuracy. All the experiments are conducted on dataset provided by the competition organizer of MMGRC, which is a workshop for Multi-Modal Gesture Recognition Challenge. The comparison results show that the multi-modal model composed of three models scores the highest recognition rate. This improvement of recognition accuracy means that the complementary relationship among three models improves the accuracy of gesture recognition. The proposed system provides the application technology to understand human actions of daily life more precisely.
基金Project supported by the State Key Development Program for Basic Research of China (Grant Nos 2008CB717803 and 2007ID103)the Research Fund for the Doctoral Program of Higher Education of China (Gant No 200610001023)
文摘The improved version of Los Alamos model with the multi-modal fission approach is used to analyse the prompt fission neutron spectrum and multiplicity for the neutron-induced fission of 237Np. The spectra of neutrons emitted from fragments for the three most dominant fission modes (standard Ⅰ, standard Ⅱ and superlong) are calculated separately and the total spectrum is synthesized. The multi-modal parameters contained in the spectrum model are determined on the basis of experimental data of fission fragment mass distributions. The calculated total prompt fission neutron spectrum and multiplicity are better agreement with the experimental data than those obtained from the conventional treatment of the Los Alamos model.
基金supported by the State Key Development Program for Basic Research of China (Nos. 2008CB717803, 2009GB107001, and2007CB209903)the Research Fund for the Doctoral Program of Higher Education of China (No. 200610011023)
文摘An attempt is made to improve the evaluation of the prompt fission neutron emis- sion from 233U(n, f) reaction for incident neutron energies below 6 MeV. The multi-modal fission approach is applied to the improved version of Los Alamos model and the point by point model. The prompt fission neutron spectra and the prompt fission neutron as a function of fragment mass (usually named "sawtooth" data) v(A) are calculated independently for the three most dominant fission modes (standard I, standard II and superlong), and the total spectra and v(A) are syn- thesized. The multi-modal parameters are determined on the basis of experimental data of fission fragment mass distributions. The present calculation results can describe the experimental data very well, and the proposed treatment is thus a useful tool for prompt fission neutron emission prediction.
基金funded by Research Project,grant number BHQ090003000X03.
文摘Multi-modal Named Entity Recognition(MNER)aims to better identify meaningful textual entities by integrating information from images.Previous work has focused on extracting visual semantics at a fine-grained level,or obtaining entity related external knowledge from knowledge bases or Large Language Models(LLMs).However,these approaches ignore the poor semantic correlation between visual and textual modalities in MNER datasets and do not explore different multi-modal fusion approaches.In this paper,we present MMAVK,a multi-modal named entity recognition model with auxiliary visual knowledge and word-level fusion,which aims to leverage the Multi-modal Large Language Model(MLLM)as an implicit knowledge base.It also extracts vision-based auxiliary knowledge from the image formore accurate and effective recognition.Specifically,we propose vision-based auxiliary knowledge generation,which guides the MLLM to extract external knowledge exclusively derived from images to aid entity recognition by designing target-specific prompts,thus avoiding redundant recognition and cognitive confusion caused by the simultaneous processing of image-text pairs.Furthermore,we employ a word-level multi-modal fusion mechanism to fuse the extracted external knowledge with each word-embedding embedded from the transformerbased encoder.Extensive experimental results demonstrate that MMAVK outperforms or equals the state-of-the-art methods on the two classical MNER datasets,even when the largemodels employed have significantly fewer parameters than other baselines.
基金funded by the Natural Science Foundation of Fujian Province,China,grant No.2022J05291.
文摘Topic modeling is a fundamental technique of content analysis in natural language processing,widely applied in domains such as social sciences and finance.In the era of digital communication,social scientists increasingly rely on large-scale social media data to explore public discourse,collective behavior,and emerging social concerns.However,traditional models like Latent Dirichlet Allocation(LDA)and neural topic models like BERTopic struggle to capture deep semantic structures in short-text datasets,especially in complex non-English languages like Chinese.This paper presents Generative Language Model Topic(GLMTopic)a novel hybrid topic modeling framework leveraging the capabilities of large language models,designed to support social science research by uncovering coherent and interpretable themes from Chinese social media platforms.GLMTopic integrates Adaptive Community-enhanced Graph Embedding for advanced semantic representation,Uniform Manifold Approximation and Projection-based(UMAP-based)dimensionality reduction,Hierarchical Density-Based Spatial Clustering of Applications with Noise(HDBSCAN)clustering,and large language model-powered(LLM-powered)representation tuning to generate more contextually relevant and interpretable topics.By reducing dependence on extensive text preprocessing and human expert intervention in post-analysis topic label annotation,GLMTopic facilitates a fully automated and user-friendly topic extraction process.Experimental evaluations on a social media dataset sourced from Weibo demonstrate that GLMTopic outperforms Latent Dirichlet Allocation(LDA)and BERTopic in coherence score and usability with automated interpretation,providing a more scalable and semantically accurate solution for Chinese topic modeling.Future research will explore optimizing computational efficiency,integrating knowledge graphs and sentiment analysis for more complicated workflows,and extending the framework for real-time and multilingual topic modeling.
文摘[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-based models that utilize either images data or environmental data.These methods fail to fully leverage multi-modal data to capture the diverse aspects of plant growth comprehensively.[Methods]To address this limitation,a two-stage phenotypic feature extraction(PFE)model based on deep learning algorithm of recurrent neural network(RNN)and long short-term memory(LSTM)was developed.The model integrated environment and plant information to provide a holistic understanding of the growth process,emploied phenotypic and temporal feature extractors to comprehensively capture both types of features,enabled a deeper understanding of the interaction between tomato plants and their environment,ultimately leading to highly accurate predictions of growth height.[Results and Discussions]The experimental results showed the model's ef‐fectiveness:When predicting the next two days based on the past five days,the PFE-based RNN and LSTM models achieved mean absolute percentage error(MAPE)of 0.81%and 0.40%,respectively,which were significantly lower than the 8.00%MAPE of the large language model(LLM)and 6.72%MAPE of the Transformer-based model.In longer-term predictions,the 10-day prediction for 4 days ahead and the 30-day prediction for 12 days ahead,the PFE-RNN model continued to outperform the other two baseline models,with MAPE of 2.66%and 14.05%,respectively.[Conclusions]The proposed method,which leverages phenotypic-temporal collaboration,shows great potential for intelligent,data-driven management of tomato cultivation,making it a promising approach for enhancing the efficiency and precision of smart tomato planting management.
文摘In this work, we propose a new variational model for multi-modal image registration and present an efficient numerical implementation. The model minimizes a new functional based on using reformulated normalized gradients of the images as the fidelity term and higher-order derivatives as the regularizer. A key feature of the model is its ability of guaranteeing a diffeomorphic transformation which is achieved by a control term motivated by the quasi-conformal map and Beltrami coefficient. The existence of the solution of this model is established. To solve the model numerically, we design a Gauss-Newton method to solve the resulting discrete optimization problem and prove its convergence;a multilevel technique is employed to speed up the initialization and avoid likely local minima of the underlying functional. Finally, numerical experiments demonstrate that this new model can deliver good performances for multi-modal image registration and simultaneously generate an accurate diffeomorphic transformation.
基金This work was supported by the National High Technology Research and Development Program of China(No. 2010AA012505, 2011AA010702, 2012AA01A401 and 2012AA01A402), Chinese National Science Foundation (No. 60933005, 91124002,61303265), National Technology Support Foundation (No. 2012BAH38B04) and National 242 Foundation (No. 2011A010)
文摘Microblogs have become an important platform for people to publish,transform information and acquire knowledge.This paper focuses on the problem of discovering user interest in microblogs.In this paper,we propose a topic mining model based on Latent Dirichlet Allocation(LDA) named user-topic model.For each user,the interests are divided into two parts by different ways to generate the microblogs:original interest and retweet interest.We represent a Gibbs sampling implementation for inference the parameters of our model,and discover not only user's original interest,but also retweet interest.Then we combine original interest and retweet interest to compute interest words for users.Experiments on a dataset of Sina microblogs demonstrate that our model is able to discover user interest effectively and outperforms existing topic models in this task.And we find that original interest and retweet interest are similar and the topics of interest contain user labels.The interest words discovered by our model reflect user labels,but range is much broader.
基金Supported by the Major Research plan of National Natural Science of China under Grant No.11790324the National Key Research and Development Program of China under Grant Nos.2016YY0200804 and 2017YFF0206205+1 种基金the National Magnetic Confinement Fusion Science Program of China under Grant Nos.2013GB106004 and 2012GB-101003the National Natural Science Foundation of China under No.1179320013
文摘In this paper, we develop a new path search algorithm which considers all the degrees of freedom and apply it on our calculated five-dimensional potential energy surface(PES) of^(236) U. Asymmetric and symmetric fission paths and barriers are obtained.
基金Supported by the National High Technology Research and Development Program of China(No.2012AA011005)
文摘Topic models such as Latent Dirichlet Allocation(LDA) have been successfully applied to many text mining tasks for extracting topics embedded in corpora. However, existing topic models generally cannot discover bursty topics that experience a sudden increase during a period of time. In this paper, we propose a new topic model named Burst-LDA, which simultaneously discovers topics and reveals their burstiness through explicitly modeling each topic's burst states with a first order Markov chain and using the chain to generate the topic proportion of documents in a Logistic Normal fashion. A Gibbs sampling algorithm is developed for the posterior inference of the proposed model. Experimental results on a news data set show our model can efficiently discover bursty topics, outperforming the state-of-the-art method.
基金Project(50808025)supported by the National Natural Science Foundation of ChinaProject(20090162110057)supported by the Doctoral Fund of Ministry of Education,China
文摘Most research on anomaly detection has focused on event that is different from its spatial-temporal neighboring events.It is still a significant challenge to detect anomalies that involve multiple normal events interacting in an unusual pattern.In this work,a novel unsupervised method based on sparse topic model was proposed to capture motion patterns and detect anomalies in traffic surveillance.scale-invariant feature transform(SIFT)flow was used to improve the dense trajectory in order to extract interest points and the corresponding descriptors with less interference.For the purpose of strengthening the relationship of interest points on the same trajectory,the fisher kernel method was applied to obtain the representation of trajectory which was quantized into visual word.Then the sparse topic model was proposed to explore the latent motion patterns and achieve a sparse representation for the video scene.Finally,two anomaly detection algorithms were compared based on video clip detection and visual word analysis respectively.Experiments were conducted on QMUL Junction dataset and AVSS dataset.The results demonstrated the superior efficiency of the proposed method.