Based on the modeling of robot working environment, the shortest distance matrix between points is solved by Floyd algorithm. With the objective of minimizing the sum of the fixed cost of robot and the cost of robot o...Based on the modeling of robot working environment, the shortest distance matrix between points is solved by Floyd algorithm. With the objective of minimizing the sum of the fixed cost of robot and the cost of robot operation, an integer programming model is established and a genetic algorithm for solving the model is designed. In order to make coordination to accomplish their respective tasks for each robot with high efficiency, this paper uses natural number encoding way. The objective function is based on penalty term constructed with the total number of collisions in the running path of robots. The fitness function is constructed by using the objective function with penalty term. Based on elitist retention strategy, a genetic algorithm with collision detection is designed. Using this algorithm for task allocation and path planning of multi-robot, it can effectively avoid or reduce the number of collisions in the process of multi-robot performing tasks. Finally, an example is used to validate the method.展开更多
This paper presents a singularity robust path planning for space manipulator to achieve base (satellite) attitude adjustment and end-effector task. The base attitude adjustment by the movement of manipulator will sa...This paper presents a singularity robust path planning for space manipulator to achieve base (satellite) attitude adjustment and end-effector task. The base attitude adjustment by the movement of manipulator will save propellant compared with conventional attitude control system. A task-priority reaction null-space control method is applied to achieve the primary task of adjusting attitude and secondary task of accomplishing end-effector task. Furthermore, the algorithm singularity is eliminated in the proposed algorithm compared with conventional reaction null-space algorithm. And the singular value filtering decomposition is introduced to dispose the dynamic singularity, the unit quaternion is also introduced to overcome representation singularity. Hence, a singularity robust path planning algorithm of space robot for base attitude adjustment is derived. A real time simulation system of the space robot under Linux/RTAl (realtime application interface) is developed to verify and test the feasibility and reliability of the method. The experimental results demonstrate the feasibility of online base attitude adjustment of space robot by the proposed algorithm.展开更多
With the development of operationally responsive space(ORS) and on-board processing techniques, the end users canreceive the observation data from the ORS satellite directly. Tosatisfy the demand for reducing the re...With the development of operationally responsive space(ORS) and on-board processing techniques, the end users canreceive the observation data from the ORS satellite directly. Tosatisfy the demand for reducing the requirements-tasking-effectscycle from one day to hours, the various resources of the wholedata acquisition chain (including satellites, ground stations, dataprocessing centers, users, etc.) should be taken into an overallconsideration, and the traditional batch task planning mode shouldbe transformed into the user-oriented task planning mode. Consideringthere are many approaches for data acquisition due tothe new techniques of ORS satellite, the data acquisition chaintask planning problem for ORS satellite can be seen as the multimodalroute planning problem. Thereby, a framework is presentedusing label-constrained shortest path technique with the conflictresolution. To apply this framework to solve the ORS satellite taskplanning problem, the preprocessing and the conflict resolutionstrategies are discussed in detail. Based on the above work, theuser-oriented data acquisition chain task planning algorithm forORS satellite is proposed. The exact solution can be obtainedin polynomial time using the proposed algorithm. The simulationexperiments validate the feasibility and the adaptability of the proposedapproach.展开更多
A new method for a cooperative multi-task allocation problem(CMTAP) is proposed in this paper,taking into account the multi-ship, multi-target, multi-task and multi-constraint characteristics in a multi-ship cooperati...A new method for a cooperative multi-task allocation problem(CMTAP) is proposed in this paper,taking into account the multi-ship, multi-target, multi-task and multi-constraint characteristics in a multi-ship cooperative driving(MCD) system. On the basis of the general CMTAP model, an MCD task assignment model is established. Furthermore, a genetic ant colony hybrid algorithm(GACHA) is proposed for this model using constraints, including timing constraints, multi-ship collaboration constraints and ship capacity constraints. This algorithm uses a genetic algorithm(GA) based on a task sequence, while the crossover and mutation operators are based on similar tasks. In order to reduce the dependence of the GA on the initial population, an ant colony algorithm(ACA) is used to produce the initial population. In order to meet the environmental constraints of ship navigation, the results of the task allocation and path planning are combined to generate an MCD task planning scheme. The results of a simulated experiment using simulated data show that the proposed method can make the assignment more optimized on the basis of satisfying the task assignment constraints and the ship navigation environment constraints. Moreover, the experimental results using real data also indicate that the proposed method can find the optimal solution rapidly, and thus improve the task allocation efficiency.展开更多
In recent years,sensor technology has been widely used in the defense and control of sensitive areas in cities,or in various scenarios such as early warning of forest fires,monitoring of forest pests and diseases,and ...In recent years,sensor technology has been widely used in the defense and control of sensitive areas in cities,or in various scenarios such as early warning of forest fires,monitoring of forest pests and diseases,and protection of endangered animals.Deploying sensors to collect data and then utilizing unmanned aerial vehicle(UAV)to collect the data stored in the sensors has replaced traditional manual data collection as the dominant method.The current strategies for efficient data collection in above scenarios are still imperfect,and the low quality of the collected data and the excessive energy consumed by UAV flights are still the main problems faced in data collection.With regards this,this paper proposes a multi-UAV mission planning method for self-organized sensor data acquisition by comprehensively utilizing the techniques of self-organized sensor clustering,multi-UAV mission area allocation,and sub-area data acquisition scheme optimization.The improvedα-hop clustering method utilizes the average transmission distance to reduce the size of the collection sensors,and the K-Dimensional method is used to form a multi-UAV cooperative workspace,and then,the genetic algorithm is used to trade-off the speed with the age of information(AoI)of the collected information and the energy consumption to form the multi-UAV data collection operation scheme.The combined optimization scheme in paper improves the performance by 95.56%and 58.21%,respectively,compared to the traditional baseline model.In order to verify the excellent generalization and applicability of the proposed method in real scenarios,the simulation test is conducted by introducing the digital elevation model data of the real terrain,and the results show that the relative error values of the proposed method and the performance test of the actual flight of the UAV are within the error interval of±10%.Then,the advantages and disadvantages of the present method with the existing mainstream schemes are tested,and the results show that the present method has a huge advantage in terms of space and time complexity,and at the same time,the accuracy for data extraction is relatively improved by 10.46%and 12.71%.Finally,by eliminating the clustering process and the subtask assignment process,the AoI performance decreases by 3.46×and 4.45×,and the energy performance decreases by 3.52×and 4.47×.This paper presents a comprehensive and detailed proactive optimization of the existing challenges faced in the field of data acquisition by means of a series of combinatorial optimizations.展开更多
Path planning and task allocation are the key technologies of multi-machine collaboration.Current approaches focus on field operations,but actually orchard operations are also a promising area.In order to improve the ...Path planning and task allocation are the key technologies of multi-machine collaboration.Current approaches focus on field operations,but actually orchard operations are also a promising area.In order to improve the efficiency of orchard mowing,a cooperative operation scheduling method was proposed for multiple mowing robots in the dwarf dense planting orchards.It aims to optimize the non-working time of the robot in the intra-plot paths and inter-plot routes.Firstly,a genetic algorithm with multi-mutation and improved circle algorithm(MC-GA)was proposed for path planning.Subsequently,an ant colony optimization algorithm with mixed operator(Mix-ACO)was proposed for task allocation.With regard to the shortage of robots,a local search algorithm was designed to reassign work routes.Simulation experiment results show that MC-GA can significantly reduce the total turning time and the number of reverses for the robot.Mix-ACO can effectively allocate tasks by generating multiple work routes and reduce the total transfer time for the robot fleet.When the number of work routes exceeds the number of mowing robots,the local search algorithm can reasonably reallocate multiple routes to robots,reducing the difference in task completion time of the robot fleet.Field experiment results indicate that compared with the reciprocating method,SADG,and GA,MC-GA can reduce fuel consumption rate by 1.55%-8.69%and operation time by 84-776 s.Compared with ACO,Mix-ACO can reduce the total transfer time by 130 s.The research results provide a more reasonable scheduling method for the cooperative operation of multiple mowing robots.展开更多
The overall performance of multi-robot collaborative systems is significantly affected by the multi-robot task allocation.To improve the effectiveness,robustness,and safety of multi-robot collaborative systems,a multi...The overall performance of multi-robot collaborative systems is significantly affected by the multi-robot task allocation.To improve the effectiveness,robustness,and safety of multi-robot collaborative systems,a multimodal multi-objective evolutionary algorithm based on deep reinforcement learning is proposed in this paper.The improved multimodal multi-objective evolutionary algorithm is used to solve multi-robot task allo-cation problems.Moreover,a deep reinforcement learning strategy is used in the last generation to provide a high-quality path for each assigned robot via an end-to-end manner.Comparisons with three popular multimodal multi-objective evolutionary algorithms on three different scenarios of multi-robot task allocation problems are carried out to verify the performance of the proposed algorithm.The experimental test results show that the proposed algorithm can generate sufficient equivalent schemes to improve the availability and robustness of multi-robot collaborative systems in uncertain environments,and also produce the best scheme to improve the overall task execution efficiency of multi-robot collaborative systems.展开更多
Power consumption and accuracy are main aspects to be taken into account in the movement executed by high performance robots. The first aspect is important from the economical point of view, while the second is reques...Power consumption and accuracy are main aspects to be taken into account in the movement executed by high performance robots. The first aspect is important from the economical point of view, while the second is requested to satisfy technical specifications. Aiming at increasing the robot performance, a strategy that maximizes the manipulator accuracy and minimizes the mechanical power consumption is considered in this work. The end-effector is constrained to follow a predefined path during the optimal task positioning. The proposed strategy defines a relation between mechanical power and manipulability as a key element of the manipulator analysis, establishing a performance index for a rigid body transformation. This transformation is used to compute the optimal task positioning through the optimization of a multicriteria objective function. Numerical simulations regarding a serial robot manipulator demonstrate the viability of the proposed methodology.展开更多
The popularity of mobile devices with sensors is captivating the attention of researchers to modern techniques,such as the internet of things(IoT)and mobile crowdsensing(MCS).The core concept behind MCS is to use the ...The popularity of mobile devices with sensors is captivating the attention of researchers to modern techniques,such as the internet of things(IoT)and mobile crowdsensing(MCS).The core concept behind MCS is to use the power of mobile sensors to accomplish a difficult task collaboratively,with each mobile user completing much simpler micro-tasks.This paper discusses the task assignment problem in mobile crowdsensing,which is dependent on sensing time and path planning with the constraints of participant travel distance budgets and sensing time intervals.The goal is to minimize aggregate sensing time for mobile users,which reduces energy consumption to encourage more participants to engage in sensing activities and maximize total task quality.This paper introduces a two-phase task assignment framework called location time-based algorithm(LTBA).LTBA is a framework that enhances task assignment in MCS,whereas assigning tasks requires overlapping time intervals between tasks and mobile users’tasks and the location of tasks and mobile users’paths.The process of assigning the nearest task to the mobile user’s current path depends on the ant colony optimization algorithm(ACO)and Euclidean distance.LTBA combines two algorithms:(1)greedy online allocation algorithm and(2)bio-inspired traveldistance-balance-based algorithm(B-DBA).The greedy algorithm was sensing time interval-based and worked on reducing the overall sensing time of the mobile user.B-DBA was location-based and worked on maximizing total task quality.The results demonstrate that the average task quality is 0.8158,0.7093,and 0.7733 for LTBA,B-DBA,and greedy,respectively.The sensing time was reduced to 644,1782,and 685 time units for LTBA,B-DBA,and greedy,respectively.Combining the algorithms improves task assignment in MCS for both total task quality and sensing time.The results demonstrate that combining the two algorithms in LTBA is the best performance for total task quality and total sensing time,and the greedy algorithm follows it then B-DBA.展开更多
文摘Based on the modeling of robot working environment, the shortest distance matrix between points is solved by Floyd algorithm. With the objective of minimizing the sum of the fixed cost of robot and the cost of robot operation, an integer programming model is established and a genetic algorithm for solving the model is designed. In order to make coordination to accomplish their respective tasks for each robot with high efficiency, this paper uses natural number encoding way. The objective function is based on penalty term constructed with the total number of collisions in the running path of robots. The fitness function is constructed by using the objective function with penalty term. Based on elitist retention strategy, a genetic algorithm with collision detection is designed. Using this algorithm for task allocation and path planning of multi-robot, it can effectively avoid or reduce the number of collisions in the process of multi-robot performing tasks. Finally, an example is used to validate the method.
基金supported by National Program on Key Basic Research Project(973 Program,No.2013CB733103)the Program for New Century Excellent Talents in University(No.NCET-10-0058)
文摘This paper presents a singularity robust path planning for space manipulator to achieve base (satellite) attitude adjustment and end-effector task. The base attitude adjustment by the movement of manipulator will save propellant compared with conventional attitude control system. A task-priority reaction null-space control method is applied to achieve the primary task of adjusting attitude and secondary task of accomplishing end-effector task. Furthermore, the algorithm singularity is eliminated in the proposed algorithm compared with conventional reaction null-space algorithm. And the singular value filtering decomposition is introduced to dispose the dynamic singularity, the unit quaternion is also introduced to overcome representation singularity. Hence, a singularity robust path planning algorithm of space robot for base attitude adjustment is derived. A real time simulation system of the space robot under Linux/RTAl (realtime application interface) is developed to verify and test the feasibility and reliability of the method. The experimental results demonstrate the feasibility of online base attitude adjustment of space robot by the proposed algorithm.
基金supported by the National Natural Science Foundation of China(6110118461174159)
文摘With the development of operationally responsive space(ORS) and on-board processing techniques, the end users canreceive the observation data from the ORS satellite directly. Tosatisfy the demand for reducing the requirements-tasking-effectscycle from one day to hours, the various resources of the wholedata acquisition chain (including satellites, ground stations, dataprocessing centers, users, etc.) should be taken into an overallconsideration, and the traditional batch task planning mode shouldbe transformed into the user-oriented task planning mode. Consideringthere are many approaches for data acquisition due tothe new techniques of ORS satellite, the data acquisition chaintask planning problem for ORS satellite can be seen as the multimodalroute planning problem. Thereby, a framework is presentedusing label-constrained shortest path technique with the conflictresolution. To apply this framework to solve the ORS satellite taskplanning problem, the preprocessing and the conflict resolutionstrategies are discussed in detail. Based on the above work, theuser-oriented data acquisition chain task planning algorithm forORS satellite is proposed. The exact solution can be obtainedin polynomial time using the proposed algorithm. The simulationexperiments validate the feasibility and the adaptability of the proposedapproach.
基金the National Science and Technology Support Program(No.2015BAG20B05)
文摘A new method for a cooperative multi-task allocation problem(CMTAP) is proposed in this paper,taking into account the multi-ship, multi-target, multi-task and multi-constraint characteristics in a multi-ship cooperative driving(MCD) system. On the basis of the general CMTAP model, an MCD task assignment model is established. Furthermore, a genetic ant colony hybrid algorithm(GACHA) is proposed for this model using constraints, including timing constraints, multi-ship collaboration constraints and ship capacity constraints. This algorithm uses a genetic algorithm(GA) based on a task sequence, while the crossover and mutation operators are based on similar tasks. In order to reduce the dependence of the GA on the initial population, an ant colony algorithm(ACA) is used to produce the initial population. In order to meet the environmental constraints of ship navigation, the results of the task allocation and path planning are combined to generate an MCD task planning scheme. The results of a simulated experiment using simulated data show that the proposed method can make the assignment more optimized on the basis of satisfying the task assignment constraints and the ship navigation environment constraints. Moreover, the experimental results using real data also indicate that the proposed method can find the optimal solution rapidly, and thus improve the task allocation efficiency.
基金National Key R&D Program of China(2022YFF1302700)Xiong’an New Area Science and Technology Innovation Special Project of Ministry of Science and Technology of China(2023XAGG0065)+2 种基金Ant Group through CCF-Ant Research Fund(CCF-AFSG RF20220214)Outstanding Youth Team Project of Central Universities(QNTD202308)Beijing Forestry University National Training Program of Innovation and Entrepreneurship for Undergraduates(202310022097).
文摘In recent years,sensor technology has been widely used in the defense and control of sensitive areas in cities,or in various scenarios such as early warning of forest fires,monitoring of forest pests and diseases,and protection of endangered animals.Deploying sensors to collect data and then utilizing unmanned aerial vehicle(UAV)to collect the data stored in the sensors has replaced traditional manual data collection as the dominant method.The current strategies for efficient data collection in above scenarios are still imperfect,and the low quality of the collected data and the excessive energy consumed by UAV flights are still the main problems faced in data collection.With regards this,this paper proposes a multi-UAV mission planning method for self-organized sensor data acquisition by comprehensively utilizing the techniques of self-organized sensor clustering,multi-UAV mission area allocation,and sub-area data acquisition scheme optimization.The improvedα-hop clustering method utilizes the average transmission distance to reduce the size of the collection sensors,and the K-Dimensional method is used to form a multi-UAV cooperative workspace,and then,the genetic algorithm is used to trade-off the speed with the age of information(AoI)of the collected information and the energy consumption to form the multi-UAV data collection operation scheme.The combined optimization scheme in paper improves the performance by 95.56%and 58.21%,respectively,compared to the traditional baseline model.In order to verify the excellent generalization and applicability of the proposed method in real scenarios,the simulation test is conducted by introducing the digital elevation model data of the real terrain,and the results show that the relative error values of the proposed method and the performance test of the actual flight of the UAV are within the error interval of±10%.Then,the advantages and disadvantages of the present method with the existing mainstream schemes are tested,and the results show that the present method has a huge advantage in terms of space and time complexity,and at the same time,the accuracy for data extraction is relatively improved by 10.46%and 12.71%.Finally,by eliminating the clustering process and the subtask assignment process,the AoI performance decreases by 3.46×and 4.45×,and the energy performance decreases by 3.52×and 4.47×.This paper presents a comprehensive and detailed proactive optimization of the existing challenges faced in the field of data acquisition by means of a series of combinatorial optimizations.
基金funded by the earmarked fund for CARS(CARS-27)supported by the Earmarked Fund for the Hebei Apple Innovation Team of the Modern Agro-industry Technology Research System(Grant No.HBCT2024150202).
文摘Path planning and task allocation are the key technologies of multi-machine collaboration.Current approaches focus on field operations,but actually orchard operations are also a promising area.In order to improve the efficiency of orchard mowing,a cooperative operation scheduling method was proposed for multiple mowing robots in the dwarf dense planting orchards.It aims to optimize the non-working time of the robot in the intra-plot paths and inter-plot routes.Firstly,a genetic algorithm with multi-mutation and improved circle algorithm(MC-GA)was proposed for path planning.Subsequently,an ant colony optimization algorithm with mixed operator(Mix-ACO)was proposed for task allocation.With regard to the shortage of robots,a local search algorithm was designed to reassign work routes.Simulation experiment results show that MC-GA can significantly reduce the total turning time and the number of reverses for the robot.Mix-ACO can effectively allocate tasks by generating multiple work routes and reduce the total transfer time for the robot fleet.When the number of work routes exceeds the number of mowing robots,the local search algorithm can reasonably reallocate multiple routes to robots,reducing the difference in task completion time of the robot fleet.Field experiment results indicate that compared with the reciprocating method,SADG,and GA,MC-GA can reduce fuel consumption rate by 1.55%-8.69%and operation time by 84-776 s.Compared with ACO,Mix-ACO can reduce the total transfer time by 130 s.The research results provide a more reasonable scheduling method for the cooperative operation of multiple mowing robots.
基金the Shanghai Pujiang Program (No.22PJD030),the National Natural Science Foundation of China (Nos.61603244 and 71904116)the National Natural Science Foundation of China-Shandong Joint Fund (No.U2006228)。
文摘The overall performance of multi-robot collaborative systems is significantly affected by the multi-robot task allocation.To improve the effectiveness,robustness,and safety of multi-robot collaborative systems,a multimodal multi-objective evolutionary algorithm based on deep reinforcement learning is proposed in this paper.The improved multimodal multi-objective evolutionary algorithm is used to solve multi-robot task allo-cation problems.Moreover,a deep reinforcement learning strategy is used in the last generation to provide a high-quality path for each assigned robot via an end-to-end manner.Comparisons with three popular multimodal multi-objective evolutionary algorithms on three different scenarios of multi-robot task allocation problems are carried out to verify the performance of the proposed algorithm.The experimental test results show that the proposed algorithm can generate sufficient equivalent schemes to improve the availability and robustness of multi-robot collaborative systems in uncertain environments,and also produce the best scheme to improve the overall task execution efficiency of multi-robot collaborative systems.
文摘Power consumption and accuracy are main aspects to be taken into account in the movement executed by high performance robots. The first aspect is important from the economical point of view, while the second is requested to satisfy technical specifications. Aiming at increasing the robot performance, a strategy that maximizes the manipulator accuracy and minimizes the mechanical power consumption is considered in this work. The end-effector is constrained to follow a predefined path during the optimal task positioning. The proposed strategy defines a relation between mechanical power and manipulability as a key element of the manipulator analysis, establishing a performance index for a rigid body transformation. This transformation is used to compute the optimal task positioning through the optimization of a multicriteria objective function. Numerical simulations regarding a serial robot manipulator demonstrate the viability of the proposed methodology.
文摘The popularity of mobile devices with sensors is captivating the attention of researchers to modern techniques,such as the internet of things(IoT)and mobile crowdsensing(MCS).The core concept behind MCS is to use the power of mobile sensors to accomplish a difficult task collaboratively,with each mobile user completing much simpler micro-tasks.This paper discusses the task assignment problem in mobile crowdsensing,which is dependent on sensing time and path planning with the constraints of participant travel distance budgets and sensing time intervals.The goal is to minimize aggregate sensing time for mobile users,which reduces energy consumption to encourage more participants to engage in sensing activities and maximize total task quality.This paper introduces a two-phase task assignment framework called location time-based algorithm(LTBA).LTBA is a framework that enhances task assignment in MCS,whereas assigning tasks requires overlapping time intervals between tasks and mobile users’tasks and the location of tasks and mobile users’paths.The process of assigning the nearest task to the mobile user’s current path depends on the ant colony optimization algorithm(ACO)and Euclidean distance.LTBA combines two algorithms:(1)greedy online allocation algorithm and(2)bio-inspired traveldistance-balance-based algorithm(B-DBA).The greedy algorithm was sensing time interval-based and worked on reducing the overall sensing time of the mobile user.B-DBA was location-based and worked on maximizing total task quality.The results demonstrate that the average task quality is 0.8158,0.7093,and 0.7733 for LTBA,B-DBA,and greedy,respectively.The sensing time was reduced to 644,1782,and 685 time units for LTBA,B-DBA,and greedy,respectively.Combining the algorithms improves task assignment in MCS for both total task quality and sensing time.The results demonstrate that combining the two algorithms in LTBA is the best performance for total task quality and total sensing time,and the greedy algorithm follows it then B-DBA.