期刊文献+
共找到62篇文章
< 1 2 4 >
每页显示 20 50 100
Tomato Growth Height Prediction Method by Phenotypic Feature Extraction Using Multi-modal Data
1
作者 GONG Yu WANG Ling +3 位作者 ZHAO Rongqiang YOU Haibo ZHOU Mo LIU Jie 《智慧农业(中英文)》 2025年第1期97-110,共14页
[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-base... [Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-based models that utilize either images data or environmental data.These methods fail to fully leverage multi-modal data to capture the diverse aspects of plant growth comprehensively.[Methods]To address this limitation,a two-stage phenotypic feature extraction(PFE)model based on deep learning algorithm of recurrent neural network(RNN)and long short-term memory(LSTM)was developed.The model integrated environment and plant information to provide a holistic understanding of the growth process,emploied phenotypic and temporal feature extractors to comprehensively capture both types of features,enabled a deeper understanding of the interaction between tomato plants and their environment,ultimately leading to highly accurate predictions of growth height.[Results and Discussions]The experimental results showed the model's ef‐fectiveness:When predicting the next two days based on the past five days,the PFE-based RNN and LSTM models achieved mean absolute percentage error(MAPE)of 0.81%and 0.40%,respectively,which were significantly lower than the 8.00%MAPE of the large language model(LLM)and 6.72%MAPE of the Transformer-based model.In longer-term predictions,the 10-day prediction for 4 days ahead and the 30-day prediction for 12 days ahead,the PFE-RNN model continued to outperform the other two baseline models,with MAPE of 2.66%and 14.05%,respectively.[Conclusions]The proposed method,which leverages phenotypic-temporal collaboration,shows great potential for intelligent,data-driven management of tomato cultivation,making it a promising approach for enhancing the efficiency and precision of smart tomato planting management. 展开更多
关键词 tomato growth prediction deep learning phenotypic feature extraction multi-modal data recurrent neural net‐work long short-term memory large language model
在线阅读 下载PDF
TLCNN:Tabular data-based lightweight convolutional neural network for electricity energy demand prediction
2
作者 Nazmul Huda Badhon Imrus Salehin +3 位作者 Md Tomal Ahmed Sajib Md Sakibul Hassan Rifat S.M.Noman Nazmun Nessa Moon 《Global Energy Interconnection》 2025年第6期1010-1029,共20页
Forecasting energy demand is essential for optimizing energy generation and effectively predicting power system needs.Recently,many researchers have developed various models on tabular datasets to enhance the effectiv... Forecasting energy demand is essential for optimizing energy generation and effectively predicting power system needs.Recently,many researchers have developed various models on tabular datasets to enhance the effectiveness of demand prediction,including neural networks,machine learning,deep learning,and advanced architectures such as CNN and LSTM.However,research on the CNN models has struggled to provide reliable outcomes due to insufficient dataset sizes,repeated investigations,and inappropriate baseline selection.To address these challenges,we propose a Tabular data-based Lightweight Convolutional Neural Network(TLCNN)model for predicting energy demand.It frames the problem as a regression task that effectively captures complex data trends for accurate forecasting.The BanE-16 dataset is preprocessed using normalization techniques for categorical and numerical data before training the model.The proposed approach dynamically selects relevant features through a two-dimensional convolutional structure that improves adaptability.The model’s performance is evaluated using MSE,MAE,and Accuracy metrics.Experimental results show that TLCNN achieves a 10.89%lower MSE than traditional ML algorithms,demonstrating superior predictive capability.Additionally,TLCNN’s lightweight structure enhances generalization while reducing computational costs,making it suitable for real-world energy forecasting tasks.This study contributes to energy informatics by introducing an optimized deep-learning framework that improves demand prediction by ensuring robustness and adaptability for tabular data. 展开更多
关键词 CNN tabular data ENERGY Deep learning ELECTRICITY
在线阅读 下载PDF
Signal classification method based on data mining formulti-mode radar 被引量:10
3
作者 qiang guo pulong nan jian wan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第5期1010-1017,共8页
For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to p... For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to process intercepted signals,which has a negative effect on signal classification. A classificationmethod based on spatial data mining is presented to address theabove challenge. Inspired by the idea of spatial data mining, theclassification method applies nuclear field to depicting the distributioninformation of pulse samples in feature space, and digs out thehidden cluster information by analyzing distribution characteristics.In addition, a membership-degree criterion to quantify the correlationamong all classes is established, which ensures classificationaccuracy of signal samples. Numerical experiments show that thepresented method can effectively prevent different working statesof multi-mode emitter from being classified as several emitters,and achieve higher classification accuracy. 展开更多
关键词 multi-mode radar signal classification data mining nuclear field cloud model membership.
在线阅读 下载PDF
Multi-mode process monitoring based on a novel weighted local standardization strategy and support vector data description 被引量:9
4
作者 赵付洲 宋冰 侍洪波 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2896-2905,共10页
There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because the... There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring. 展开更多
关键词 multiple operating modes weighted local standardization support vector data description multi-mode monitoring
在线阅读 下载PDF
Multi-dimension and multi-modal rolling mill vibration prediction model based on multi-level network fusion
5
作者 CHEN Shu-zong LIU Yun-xiao +3 位作者 WANG Yun-long QIAN Cheng HUA Chang-chun SUN Jie 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3329-3348,共20页
Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction mode... Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction models do not consider the features contained in the data,resulting in limited improvement of model accuracy.To address these challenges,this paper proposes a multi-dimensional multi-modal cold rolling vibration time series prediction model(MDMMVPM)based on the deep fusion of multi-level networks.In the model,the long-term and short-term modal features of multi-dimensional data are considered,and the appropriate prediction algorithms are selected for different data features.Based on the established prediction model,the effects of tension and rolling force on mill vibration are analyzed.Taking the 5th stand of a cold mill in a steel mill as the research object,the innovative model is applied to predict the mill vibration for the first time.The experimental results show that the correlation coefficient(R^(2))of the model proposed in this paper is 92.5%,and the root-mean-square error(RMSE)is 0.0011,which significantly improves the modeling accuracy compared with the existing models.The proposed model is also suitable for the hot rolling process,which provides a new method for the prediction of strip rolling vibration. 展开更多
关键词 rolling mill vibration multi-dimension data multi-modal data convolutional neural network time series prediction
在线阅读 下载PDF
Adaptive multi-modal feature fusion for far and hard object detection
6
作者 LI Yang GE Hongwei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第2期232-241,共10页
In order to solve difficult detection of far and hard objects due to the sparseness and insufficient semantic information of LiDAR point cloud,a 3D object detection network with multi-modal data adaptive fusion is pro... In order to solve difficult detection of far and hard objects due to the sparseness and insufficient semantic information of LiDAR point cloud,a 3D object detection network with multi-modal data adaptive fusion is proposed,which makes use of multi-neighborhood information of voxel and image information.Firstly,design an improved ResNet that maintains the structure information of far and hard objects in low-resolution feature maps,which is more suitable for detection task.Meanwhile,semantema of each image feature map is enhanced by semantic information from all subsequent feature maps.Secondly,extract multi-neighborhood context information with different receptive field sizes to make up for the defect of sparseness of point cloud which improves the ability of voxel features to represent the spatial structure and semantic information of objects.Finally,propose a multi-modal feature adaptive fusion strategy which uses learnable weights to express the contribution of different modal features to the detection task,and voxel attention further enhances the fused feature expression of effective target objects.The experimental results on the KITTI benchmark show that this method outperforms VoxelNet with remarkable margins,i.e.increasing the AP by 8.78%and 5.49%on medium and hard difficulty levels.Meanwhile,our method achieves greater detection performance compared with many mainstream multi-modal methods,i.e.outperforming the AP by 1%compared with that of MVX-Net on medium and hard difficulty levels. 展开更多
关键词 3D object detection adaptive fusion multi-modal data fusion attention mechanism multi-neighborhood features
在线阅读 下载PDF
Method of Multi-Mode Sensor Data Fusion with an Adaptive Deep Coupling Convolutional Auto-Encoder
7
作者 Xiaoxiong Feng Jianhua Liu 《Journal of Sensor Technology》 2023年第4期69-85,共17页
To address the difficulties in fusing multi-mode sensor data for complex industrial machinery, an adaptive deep coupling convolutional auto-encoder (ADCCAE) fusion method was proposed. First, the multi-mode features e... To address the difficulties in fusing multi-mode sensor data for complex industrial machinery, an adaptive deep coupling convolutional auto-encoder (ADCCAE) fusion method was proposed. First, the multi-mode features extracted synchronously by the CCAE were stacked and fed to the multi-channel convolution layers for fusion. Then, the fused data was passed to all connection layers for compression and fed to the Softmax module for classification. Finally, the coupling loss function coefficients and the network parameters were optimized through an adaptive approach using the gray wolf optimization (GWO) algorithm. Experimental comparisons showed that the proposed ADCCAE fusion model was superior to existing models for multi-mode data fusion. 展开更多
关键词 multi-mode data Fusion Coupling Convolutional Auto-Encoder Adaptive Optimization Deep Learning
在线阅读 下载PDF
A Traffic Scheduling Strategy in SDN Data Center Based on Fibonacci Tree Optimization Algorithm
8
作者 Wang Yaomin Hu Ping +3 位作者 Zeng Jing Li Donghong Yuan Lu Long Hua 《China Communications》 2025年第11期176-191,共16页
To improve the traffic scheduling capability in operator data center networks,an analysis prediction and online scheduling mechanism(APOS)is designed,considering both the network structure and the network traffic in t... To improve the traffic scheduling capability in operator data center networks,an analysis prediction and online scheduling mechanism(APOS)is designed,considering both the network structure and the network traffic in the operator data center.Fibonacci tree optimization algorithm(FTO)is embedded into the analysis prediction and the online scheduling stages,the FTO traffic scheduling strategy is proposed.By taking the global optimal and the multi-modal optimization advantage of FTO,the traffic scheduling optimal solution and many suboptimal solutions can be obtained.The experiment results show that the FTO traffic scheduling strategy can schedule traffic in data center networks reasonably,and improve the load balancing in the operator data center network effectively. 展开更多
关键词 Fibonacci tree optimization algorithm(FTO) multi-modal optimization SDN data center traffic scheduling
在线阅读 下载PDF
Visual Basic中Data Report的报表设计 被引量:4
9
作者 耿玉水 鲁芹 +2 位作者 董云峰 潘岩 王新刚 《计算机应用与软件》 CSCD 北大核心 2005年第2期139-141,共3页
文章专门讨论关于MIS系统中对报表的静态和动态打印 ,主要使用当今较为广泛应用的VB开发工具 ,为MIS的开发和应用提供了有效的应用工具。该文详细介绍了基于VB中的DataReport的报表打印的设计方法和编程要点等。
关键词 VISUAL Basic 程序设计 报表设计 dataReport 管理信息系统
在线阅读 下载PDF
面向Tabular库的数据模型及其查询问题 被引量:1
10
作者 黄冬梅 孙乐 +2 位作者 石少华 苏诚 赵丹枫 《中国科学技术大学学报》 CAS CSCD 北大核心 2016年第1期56-65,共10页
信息化的发展使得数据存储及表示形式呈现出分布性、异构性的特点,不仅包括关系数据库、面向对象数据库等传统结构化数据,还包括Excel、CSV等不具有明确结构的特殊非结构化数据等,与此同时,其数据呈现了量大、更新快、可用性弱等大数据... 信息化的发展使得数据存储及表示形式呈现出分布性、异构性的特点,不仅包括关系数据库、面向对象数据库等传统结构化数据,还包括Excel、CSV等不具有明确结构的特殊非结构化数据等,与此同时,其数据呈现了量大、更新快、可用性弱等大数据特点.然而使用无结构和半结构化文档组织和管理Excel等表单数据,存在着数据弱可控、弱可用、及访问效率差的问题.针对该类问题,本文以Excel文本为数据源,提出了一种新的面向Tabular库的关系数据模型并讨论了其上的查询及优化问题.首先,给出了Tabular表单数据的形式化定义,其次,设计PartiPath划分树实现表格的关系划分及结构转换,在关系模型的基础上,给出其数据模型及数据模式,再者,定义了表单数据上的基本查询问题及融合用户兴趣指数改进查询相似度指标,最后给出实验分析并作出总结. 展开更多
关键词 tabular 查询 数据模型 PartiPath划分树 关系模型
在线阅读 下载PDF
Geology and Mineral Deposits of Saraikistan (South Punjab, Koh Sulaiman Range) of Pakistan: A Tabular Review of Recently Discovered Biotas from Pakistan and Paleobiogeographic Link: Phylogeny and Hypodigm of Poripuchian Titanosaurs from Indo-Pakistan
11
作者 Muhammad Sadiq Malkani 《Open Journal of Geology》 2023年第8期900-958,共59页
Saraikistan (South Punjab and surrounding) area of Pakistan is located in the central Pakistan. This area represents Triassic-Jurassic to Recent sedimentary marine and terrestrial strata. Most of the Mesozoic and Earl... Saraikistan (South Punjab and surrounding) area of Pakistan is located in the central Pakistan. This area represents Triassic-Jurassic to Recent sedimentary marine and terrestrial strata. Most of the Mesozoic and Early Cenozoic are represented by marine strata with rare terrestrial deposits, while the Late Cenozoic is represented by continental fluvial deposits. This area hosts significant mineral deposits and their development can play a significant role in the development of Saraikistan region and ultimately for Pakistan. The data of recently discovered biotas from Cambrian to Miocene age are tabulated for quick view. Mesozoic biotas show a prominent paleobiogeographic link with Gondwana and Cenozoic show Eurasian. Phylogeny and hypodigm of Poripuchian titanosaurs from India and Pakistan are hinted at here. 展开更多
关键词 GEOLOGY Minerals Cement Dams Biota tabular data Paleobiogeography Saraikistan South Punjab Sulaiman Range Pakistan Titanosaurs Indo-Pakistan
在线阅读 下载PDF
矿物岩石地球化学表格数据的存储和分析:从本地到云端
12
作者 吕洋 何灿 +1 位作者 赵健铭 张舟 《矿物岩石地球化学通报》 北大核心 2025年第3期542-556,I0002,共16页
随着分析测试仪器的迅速发展,地球化学数据的规模急剧增大。大型数据集的应用成为推动地球化学研究进步的新动力。目前,有机地球化学、矿床地球化学、水文地球化学、大气地球化学、矿物岩石地球化学等细分方向均涌现出一批数据驱动型研... 随着分析测试仪器的迅速发展,地球化学数据的规模急剧增大。大型数据集的应用成为推动地球化学研究进步的新动力。目前,有机地球化学、矿床地球化学、水文地球化学、大气地球化学、矿物岩石地球化学等细分方向均涌现出一批数据驱动型研究新成果。矿物岩石地球化学作为地球化学的一个重要分支,其表格数据集的存储和分析,对地球化学数据驱动型研究具有重要意义。现阶段,矿物岩石地球化学领域的数据存储正向着共享、规范、高效、可再利用的方向发展,其存储架构正在从传统的本地文件系统迁移至云端的分布式数据库存储。目前,需要构建一个具备严格数据治理和数据安全协议的数据共享平台,促进领域数据的标准化管理。数据分析沿着从本地到云端的路径,正向着智能化的方向发展。 展开更多
关键词 矿物岩石地球化学 表格数据 数据存储 数据分析 云计算
原文传递
基于CTGAN的自动驾驶车辆交通事故关键诱因识别
13
作者 张志清 于晓正 +2 位作者 朱雷鹏 孙玉凤 李祎昕 《华南理工大学学报(自然科学版)》 北大核心 2025年第10期14-28,共15页
明晰自动驾驶车辆交通事故机理是有效防控安全风险的重要前提。自动驾驶车辆交通事故诱因分析通常基于小样本和不平衡数据进行建模,但这类模型对于少数类预测精度低。基于数据增强的分析框架可以提高模型对于少数类的预测精度。通过条... 明晰自动驾驶车辆交通事故机理是有效防控安全风险的重要前提。自动驾驶车辆交通事故诱因分析通常基于小样本和不平衡数据进行建模,但这类模型对于少数类预测精度低。基于数据增强的分析框架可以提高模型对于少数类的预测精度。通过条件表格生成对抗网络(CTGAN)、联合生成对抗网络(CopulaGAN)以及合成少数过采样(SMOTE)、自适应过采样(ADASYN)技术增加样本量,平衡数据集,对比不同方法的合成数据质量;基于合成数据,对逻辑回归(LR)、决策树(DT)、随机森林(RF)、极端梯度提升(XGB)、支持向量机(SVM)5种分类算法进行评估,采用召回率、特异性、加权F_1分数及曲线下面积(AUC)等指标确定最优组合;最后结合沙普利可加解释(SHAP)框架量化事故关键诱因重要度。结果表明:CTGAN生成数据的边际分布得分(0.96)和相关性得分(0.92)最高,合成数据的平均质量为0.94,显著优于其他方法;CTGAN与随机森林算法结合时,模型在召回率(0.82)、特异性(0.84)、AUC(0.86)等指标上均表现优异,在包含10%标签噪声的测试集中仍保持鲁棒性(召回率提升至0.88),进一步验证了其在复杂场景中的适用性。关键诱因分析表明,路面状况(潮湿状态显著增加受伤风险)、夜间行车(低光照导致传感器性能下降)、交叉口及街道化程度(复杂场景增加检测延迟)是导致事故的核心因素。该研究为自动驾驶测试场景搭建及道路基础设施改造提供了关键依据。 展开更多
关键词 自动驾驶车辆 小样本量 数据不平衡 条件表格生成对抗网络 事故预测
在线阅读 下载PDF
基于合成数据预训练基础模型的表格数据聚类方法 被引量:1
14
作者 李培文 李飞江 +1 位作者 王婕婷 钱宇华 《计算机研究与发展》 北大核心 2025年第9期2139-2151,共13页
随着数据采集与数据存储技术的飞速发展,各行业收集并存储了大量无标记的表格数据.聚类分析是挖掘这类数据潜在分组结构的重要方法.目前,处理表格数据的聚类方法多数仍然是传统聚类算法.深度学习技术和大模型技术主要用于处理非结构化... 随着数据采集与数据存储技术的飞速发展,各行业收集并存储了大量无标记的表格数据.聚类分析是挖掘这类数据潜在分组结构的重要方法.目前,处理表格数据的聚类方法多数仍然是传统聚类算法.深度学习技术和大模型技术主要用于处理非结构化的图像、文本、语音等数据类型,其强大的表示能力和推理能力在结构化的表格数据处理中仍难以发挥优势. 2025年,《Nature》刊发的TabPFN是一种可用于高效处理分类和回归任务的表格数据基础模型,为表格数据学习提供了新的基础.受此启发,提出了一种基于合成数据预训练基础模型的表格数据聚类方法,主要包括预训练阶段和迭代推理阶段.其中,预训练阶段基于传统数据聚类算法和TabPFN模型获得无标记表格数据的初始伪标签,迭代推理阶段基于微调后的TabPFN模型循环更新伪标签以得到聚类结果.在基准数据集上的大量实验分析表明,改进方法显著提高了7种代表性聚类算法的性能. 展开更多
关键词 聚类分析 表格数据学习 基础模型 迭代推理 无监督学习
在线阅读 下载PDF
基于多模态数据对比学习的重度抑郁症表征学习方法
15
作者 顾恒 马迪 +2 位作者 马越 邵伟 张礼 《陕西师范大学学报(自然科学版)》 北大核心 2025年第1期12-21,共10页
影像基因组学认为神经影像与基因之间存在着一定程度的相关性,利用遗传变异与影像数据进行疾病分析愈发受研究人员重视。在实践中,临床医生拥有的数据规模往往较小,但仍然希望使用深度学习来解决现实问题。考虑到不断扩大的数据规模与... 影像基因组学认为神经影像与基因之间存在着一定程度的相关性,利用遗传变异与影像数据进行疾病分析愈发受研究人员重视。在实践中,临床医生拥有的数据规模往往较小,但仍然希望使用深度学习来解决现实问题。考虑到不断扩大的数据规模与昂贵的标注成本,构建能够利用多模态数据的无监督学习方法十分必要。为了满足上述需求,提出了一种基于影像与基因多模态表格数据对比学习的表征学习方法(multimodal tabular data with contrastive learning,MTCL),该模型利用了静息态功能磁共振成像(rs-fMRI)和单核苷酸多态性(single nucleotide polymorphisms,SNP)数据,无需数据的任何标签信息。为了增强可解释性,模型先通过特征提取模块将rs-fMRI和SNP数据转换为表格类型结构,再通过多模态表格数据对比学习模块对多模态数据进行融合,并获得融合后的数据表征。在重度抑郁症(major depression disorder,MDD)数据上,文中提出的方法能够有效提升MDD诊断性能。此外,MTCL方法结合了模型归因方法挖掘与MDD相关的影像和遗传生物标记物,提高了模型的可解释性,有助于研究人员对疾病发病机制的理解。 展开更多
关键词 对比学习 多模态数据 模型归因 重度抑郁症 诊断模型
在线阅读 下载PDF
基于权力信号的跨表格迁移学习方法研究
16
作者 张广发 陈加乐 方金云 《高技术通讯》 北大核心 2025年第5期451-460,共10页
为了有效监督和审计政府行使公权力,本文提出了一种基于权力信号的跨表格迁移学习方法,目的是从政务信息系统的表格数据(简称政务表格数据)中自动检测出权力滥用问题。权力信号是公权力行使过程中的关键特征,由关键人、决策、资金、项... 为了有效监督和审计政府行使公权力,本文提出了一种基于权力信号的跨表格迁移学习方法,目的是从政务信息系统的表格数据(简称政务表格数据)中自动检测出权力滥用问题。权力信号是公权力行使过程中的关键特征,由关键人、决策、资金、项目和物资5个要素构成。这些权力信号分布在不同的政务表格数据中,政务表格数据结构多样,对权力信号跨表格学习带来挑战。本文设计了一种基于权力信号的跨表格迁移学习框架PowerTab(power tabular transformer),旨在引导模型在政务表格数据上学习通用的权力信号表征,并使用迁移学习将其应用到目标任务的检测模型中。该框架实现了一种在政务表格数据中提取词元级权力特征的方法,使得检测模型具有零样本学习能力。在5个数据集上的实验结果表明本文方法优于基线方法,为政务表格数据的大数据监督提供了一种有效的手段。 展开更多
关键词 大数据监督 政务数据 权力信号 表格学习 迁移学习
在线阅读 下载PDF
TabPFN与SHAP融合的LF精炼Si元素收得率预测模型
17
作者 信自成 张江山 +1 位作者 张军国 刘青 《中国冶金》 北大核心 2025年第11期178-186,共9页
在钢包炉(LF)精炼过程中,准确预测合金元素收得率对于控制钢水成分、提高合金利用率及降低冶炼成本具有重要意义。近年来机器学习方法被广泛应用于冶金过程建模,但多数机器学习模型在实际应用中通常依赖复杂的超参数调优过程,且引入新... 在钢包炉(LF)精炼过程中,准确预测合金元素收得率对于控制钢水成分、提高合金利用率及降低冶炼成本具有重要意义。近年来机器学习方法被广泛应用于冶金过程建模,但多数机器学习模型在实际应用中通常依赖复杂的超参数调优过程,且引入新数据后往往需要重新调优超参数,建模效率有待提高。针对上述问题,首先,结合LF精炼实际生产数据,构建了基于表格先验数据拟合网络(TabPFN)的Si元素收得率预测模型;然后,利用多种模型评价指标,将TabPFN模型与已有研究的参考炉次法、多元线性回归模型以及多种机器学习模型进行了对比分析;最后,融合沙普利加性解释(SHAP)方法对TabPFN模型进行了全局与局部层面的解释分析。结果表明,TabPFN模型在无需大量超参数调优的情况下,在拟合优度(R^(2))、平均绝对误差(E_(MA))、均方根误差(E_(RMS))、命中率和模型推理时间等关键性能指标上均优于已有模型,各项指标分别达到了0.83、1.59、2.03、98.4%和0.430 s。同时,融合SHAP分析从全局层面揭示了各输入特征变量对Si元素收得率的影响大小,从局部层面量化了各输入特征变量对Si元素收得率预测值的影响程度,实现了LF精炼合金元素收得率的高效、高精度和可解释性预测,为钢铁工业在智能制造背景下的冶金过程建模提供了新的研究思路与技术路径。 展开更多
关键词 LF精炼 Si元素收得率 机器学习 表格先验数据拟合网络 沙普利加性解释
在线阅读 下载PDF
基于加速扩散模型的缺失值插补算法
18
作者 王圣举 张赞 《浙江大学学报(工学版)》 北大核心 2025年第7期1471-1480,1503,共11页
为了解决表格数据中数据缺失对后续任务产生的不利影响,提出使用扩散模型进行缺失值插补的方法.针对原始扩散模型在生成过程中耗时过长的问题,设计基于加速扩散模型的数据插补方法(PNDM_Tab).扩散模型的前向过程通过高斯加噪方法实现,... 为了解决表格数据中数据缺失对后续任务产生的不利影响,提出使用扩散模型进行缺失值插补的方法.针对原始扩散模型在生成过程中耗时过长的问题,设计基于加速扩散模型的数据插补方法(PNDM_Tab).扩散模型的前向过程通过高斯加噪方法实现,采用基于扩散模型的伪数值方法进行反向过程加速.使用U-Net与注意力机制相结合的网络结构从数据中高效提取显著特征,实现噪声的准确预测.为了使模型在训练阶段有监督目标,使用随机掩码处理训练数据以生成新的缺失数据.在9个数据集中的插补方法对比实验结果表明:相较其他插补方法,PNDM_Tab在6个数据集中的均方根误差最低.实验结果证明,相较于原始的扩散模型,反向过程使用扩散模型的伪数值方法能够在减少采样步数的同时保持生成性能不变. 展开更多
关键词 表格数据 扩散模型 数据插补 注意力机制 深度学习
在线阅读 下载PDF
融合nmODE的术后肺部并发症预测模型
19
作者 熊立鹏 徐修远 +2 位作者 牛颢 陈楠 章毅 《智能系统学报》 北大核心 2025年第1期198-205,共8页
为了准确预测病人肺部手术后并发症的发生,提出了一种融合神经记忆常微分方程(neural memory ordinary differential equation,nmODE)的并发症预测模型。首先,利用极限梯度提升(extreme gradient boosting,XGBoost)树结构对数据进行编码... 为了准确预测病人肺部手术后并发症的发生,提出了一种融合神经记忆常微分方程(neural memory ordinary differential equation,nmODE)的并发症预测模型。首先,利用极限梯度提升(extreme gradient boosting,XGBoost)树结构对数据进行编码,并提取其特征重要性。然后,使用长短时记忆神经网络对数据的相关特征依赖性进行分析,并提取处理后的特征。最后,利用nmODE的记忆和学习能力,对提取的特征进行深入分析,并得出最终的预测结果。通过实验评估,在肺部术后并发症数据集中,证明了提出模型的效果优于现有模型,同时可以为预测肺部手术后并发症的发生提供更准确的结果。 展开更多
关键词 疾病预测 异构表格数据 神经记忆常微分方程 极限梯度提升 长短时记忆神经网络 合成少数过采样技术 类别不平衡 病人预后
在线阅读 下载PDF
In-service aircraft engines turbine blades life prediction based on multi-modal operation and maintenance data 被引量:5
20
作者 He Liu Jianzhong Sun +1 位作者 Shiying Lei Shungang Ning 《Propulsion and Power Research》 SCIE 2021年第4期360-373,共14页
The in-service life of turbine blades directly affects the on-wing lifetime and operating cost of aircraft engines.It would be essential to accurately evaluate the remaining useful life of turbine blades for safe engi... The in-service life of turbine blades directly affects the on-wing lifetime and operating cost of aircraft engines.It would be essential to accurately evaluate the remaining useful life of turbine blades for safe engine operation and reasonable maintenance decision-making.In this paper,a machine learning-based mechanism with multiple information fusion is proposed to predict the remaining useful life of high-pressure turbine blades.The developed method takes account of the in-service operating factors such as the high-pressure rotor speed and exhaust gas temperature,as well as the engine operating environments and performance degradation.The effectiveness of this method is demonstrated on simulated test cases generated by an integrated blade creep-life assessment model,which comprises engine performance,blade stress,thermal,and creep life estimation models.The results show that the proposed method provides a prospective result for in-service life evaluation of turbine blades and is of significance to evaluating the engine on-wing lifetime and making a reasonable maintenance plan. 展开更多
关键词 multi-modal operating data fusion High pressure turbine blade Remaining useful life prediction Operating condition Creep life
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部