With the increasing of the elderly population and the growing hearth care cost, the role of service robots in aiding the disabled and the elderly is becoming important. Many researchers in the world have paid much att...With the increasing of the elderly population and the growing hearth care cost, the role of service robots in aiding the disabled and the elderly is becoming important. Many researchers in the world have paid much attention to heaRthcare robots and rehabilitation robots. To get natural and harmonious communication between the user and a service robot, the information perception/feedback ability, and interaction ability for service robots become more important in many key issues.展开更多
This article examines the complex relationship between disease perception,negative emotions,and their impact on postoperative recovery in patients with perianal diseases.These conditions not only cause physical discom...This article examines the complex relationship between disease perception,negative emotions,and their impact on postoperative recovery in patients with perianal diseases.These conditions not only cause physical discomfort,but also carry a significant emotional burden,often exacerbated by social stigma.Psycho-logical factors,including stress,anxiety,and depression,activate neuroendocrine pathways,such as the hypothalamic–pituitary–adrenal axis,disrupting the gut microbiota and leading to dysbiosis.This disruption can delay wound healing,prolong hospital stay,and intensify pain.Drawing on the findings of Hou et al,our article highlights the critical role of illness perception and negative emotions in shaping recovery outcomes.It advocates for a holistic approach that integrates psychological support and gut microbiota modulation,to enhance healing and improve overall patient outcomes.展开更多
Objectives Diabetes remains a major global health challenge in China.Artificial intelligence(AI)has demonstrated considerable potential in improving diabetes management.This study aimed to assess healthcare providers...Objectives Diabetes remains a major global health challenge in China.Artificial intelligence(AI)has demonstrated considerable potential in improving diabetes management.This study aimed to assess healthcare providers’perceptions regarding AI in diabetes care across China.Methods A cross-sectional survey was conducted using snowball sampling from November 12 to November 24,2024.We selected 514 physicians and nurses by a snowball sampling method from healthcare providers across 30 cities or provinces in China.The self-developed questionnaire comprised five sections with 19 questions assessing medical workers’demographic characteristics,AI-related experience and interest,awareness,attitudes,and concerns regarding AI in diabetes care.Statistical analysis was performed using t-test,analysis of variance(ANOVA),and linear regression.Results Among them,20.0%and 48.1%of respondents had participated in AI-related research and training,while 85.4%expressed moderate to high interest in AI training for diabetes care.Most respondents reported partial awareness of AI in diabetes care,and only 12.6%exhibited a comprehensive or substantial understanding.Attitudes toward AI in diabetes care were generally positive,with a mean score of 24.50±3.38.Nurses demonstrated significantly higher scores than physicians(P<0.05).Greater awareness,prior AI training experience,and higher interest in AI training in diabetes care were strongly associated with more positive attitudes(P<0.05).Key concerns regarding AI included trust issues from AI-clinician inconsistencies(77.2%),increased workload and clinical workflow disruptions(63.4%),and incomplete legal and regulatory frameworks(60.3%).Only 34.2%of respondents expressed concerns about job displacement,indicating general confidence in their professional roles.Conclusions While Chinese healthcare providers show moderate awareness of AI in diabetes care,their attitudes are generally positive,and they are considerably interested in future training.Tailored,role-specific AI training is essential for equitable and effective integration into clinical practice.Additionally,transparent,reliable,ethical AI models must be prioritized to alleviate practitioners’concerns.展开更多
Objective To develop a non-invasive predictive model for coronary artery stenosis severity based on adaptive multi-modal integration of traditional Chinese and western medicine data.Methods Clinical indicators,echocar...Objective To develop a non-invasive predictive model for coronary artery stenosis severity based on adaptive multi-modal integration of traditional Chinese and western medicine data.Methods Clinical indicators,echocardiographic data,traditional Chinese medicine(TCM)tongue manifestations,and facial features were collected from patients who underwent coro-nary computed tomography angiography(CTA)in the Cardiac Care Unit(CCU)of Shanghai Tenth People's Hospital between May 1,2023 and May 1,2024.An adaptive weighted multi-modal data fusion(AWMDF)model based on deep learning was constructed to predict the severity of coronary artery stenosis.The model was evaluated using metrics including accura-cy,precision,recall,F1 score,and the area under the receiver operating characteristic(ROC)curve(AUC).Further performance assessment was conducted through comparisons with six ensemble machine learning methods,data ablation,model component ablation,and various decision-level fusion strategies.Results A total of 158 patients were included in the study.The AWMDF model achieved ex-cellent predictive performance(AUC=0.973,accuracy=0.937,precision=0.937,recall=0.929,and F1 score=0.933).Compared with model ablation,data ablation experiments,and various traditional machine learning models,the AWMDF model demonstrated superior per-formance.Moreover,the adaptive weighting strategy outperformed alternative approaches,including simple weighting,averaging,voting,and fixed-weight schemes.Conclusion The AWMDF model demonstrates potential clinical value in the non-invasive prediction of coronary artery disease and could serve as a tool for clinical decision support.展开更多
Traditional Chinese medicine(TCM)demonstrates distinctive advantages in disease prevention and treatment.However,analyzing its biological mechanisms through the modern medical research paradigm of“single drug,single ...Traditional Chinese medicine(TCM)demonstrates distinctive advantages in disease prevention and treatment.However,analyzing its biological mechanisms through the modern medical research paradigm of“single drug,single target”presents significant challenges due to its holistic approach.Network pharmacology and its core theory of network targets connect drugs and diseases from a holistic and systematic perspective based on biological networks,overcoming the limitations of reductionist research models and showing considerable value in TCM research.Recent integration of network target computational and experimental methods with artificial intelligence(AI)and multi-modal multi-omics technologies has substantially enhanced network pharmacology methodology.The advancement in computational and experimental techniques provides complementary support for network target theory in decoding TCM principles.This review,centered on network targets,examines the progress of network target methods combined with AI in predicting disease molecular mechanisms and drug-target relationships,alongside the application of multi-modal multi-omics technologies in analyzing TCM formulae,syndromes,and toxicity.Looking forward,network target theory is expected to incorporate emerging technologies while developing novel approaches aligned with its unique characteristics,potentially leading to significant breakthroughs in TCM research and advancing scientific understanding and innovation in TCM.展开更多
Spatial computing and augmented reality are advancing rapidly,with the goal of seamlessly blending virtual and physical worlds.However,traditional depth-sensing systems are bulky and energy-intensive,limiting their us...Spatial computing and augmented reality are advancing rapidly,with the goal of seamlessly blending virtual and physical worlds.However,traditional depth-sensing systems are bulky and energy-intensive,limiting their use in wearable devices.To overcome this,recent research by X.Liu et al.presents a compact binocular metalens-based depth perception system that integrates efficient edge detection through an advanced neural network.This system enables accurate,realtime depth mapping even in complex environments,enhancing potential applications in augmented reality,robotics,and autonomous systems.展开更多
With the advent of the next-generation Air Traffic Control(ATC)system,there is growing interest in using Artificial Intelligence(AI)techniques to enhance Situation Awareness(SA)for ATC Controllers(ATCOs),i.e.,Intellig...With the advent of the next-generation Air Traffic Control(ATC)system,there is growing interest in using Artificial Intelligence(AI)techniques to enhance Situation Awareness(SA)for ATC Controllers(ATCOs),i.e.,Intelligent SA(ISA).However,the existing AI-based SA approaches often rely on unimodal data and lack a comprehensive description and benchmark of the ISA tasks utilizing multi-modal data for real-time ATC environments.To address this gap,by analyzing the situation awareness procedure of the ATCOs,the ISA task is refined to the processing of the two primary elements,i.e.,spoken instructions and flight trajectories.Subsequently,the ISA is further formulated into Controlling Intent Understanding(CIU)and Flight Trajectory Prediction(FTP)tasks.For the CIU task,an innovative automatic speech recognition and understanding framework is designed to extract the controlling intent from unstructured and continuous ATC communications.For the FTP task,the single-and multi-horizon FTP approaches are investigated to support the high-precision prediction of the situation evolution.A total of 32 unimodal/multi-modal advanced methods with extensive evaluation metrics are introduced to conduct the benchmarks on the real-world multi-modal ATC situation dataset.Experimental results demonstrate the effectiveness of AI-based techniques in enhancing ISA for the ATC environment.展开更多
A personalized outfit recommendation has emerged as a hot research topic in the fashion domain.However,existing recommendations do not fully exploit user style preferences.Typically,users prefer particular styles such...A personalized outfit recommendation has emerged as a hot research topic in the fashion domain.However,existing recommendations do not fully exploit user style preferences.Typically,users prefer particular styles such as casual and athletic styles,and consider attributes like color and texture when selecting outfits.To achieve personalized outfit recommendations in line with user style preferences,this paper proposes a personal style guided outfit recommendation with multi-modal fashion compatibility modeling,termed as PSGNet.Firstly,a style classifier is designed to categorize fashion images of various clothing types and attributes into distinct style categories.Secondly,a personal style prediction module extracts user style preferences by analyzing historical data.Then,to address the limitations of single-modal representations and enhance fashion compatibility,both fashion images and text data are leveraged to extract multi-modal features.Finally,PSGNet integrates these components through Bayesian personalized ranking(BPR)to unify the personal style and fashion compatibility,where the former is used as personal style features and guides the output of the personalized outfit recommendation tailored to the target user.Extensive experiments on large-scale datasets demonstrate that the proposed model is efficient on the personalized outfit recommendation.展开更多
With the increasing importance of multimodal data in emotional expression on social media,mainstream methods for sentiment analysis have shifted from unimodal to multimodal approaches.However,the challenges of extract...With the increasing importance of multimodal data in emotional expression on social media,mainstream methods for sentiment analysis have shifted from unimodal to multimodal approaches.However,the challenges of extracting high-quality emotional features and achieving effective interaction between different modalities remain two major obstacles in multimodal sentiment analysis.To address these challenges,this paper proposes a Text-Gated Interaction Network with Inter-Sample Commonality Perception(TGICP).Specifically,we utilize a Inter-sample Commonality Perception(ICP)module to extract common features from similar samples within the same modality,and use these common features to enhance the original features of each modality,thereby obtaining a richer and more complete multimodal sentiment representation.Subsequently,in the cross-modal interaction stage,we design a Text-Gated Interaction(TGI)module,which is text-driven.By calculating the mutual information difference between the text modality and nonverbal modalities,the TGI module dynamically adjusts the influence of emotional information from the text modality on nonverbal modalities.This helps to reduce modality information asymmetry while enabling full cross-modal interaction.Experimental results show that the proposed model achieves outstanding performance on both the CMU-MOSI and CMU-MOSEI baseline multimodal sentiment analysis datasets,validating its effectiveness in emotion recognition tasks.展开更多
Introduction: Uterine fibroids are benign tumors that develop from the connective and muscular tissues of the uterus. Common among African-American women, patients suffering from them often arrive late to the hospital...Introduction: Uterine fibroids are benign tumors that develop from the connective and muscular tissues of the uterus. Common among African-American women, patients suffering from them often arrive late to the hospital in our African regions. This study aimed to investigate the knowledge and perception of uterine fibroids among women who came to the gynecology-obstetrics department of the Regional Hospital Center (CHR) Tsévié. Methodology: It was a cross-sectional descriptive study, with data collection conducted from May 7th to 20th, 2024, using systematic sampling. The study included all women present in the Gynecology-Obstetrics Department of CHR Tsévié during the study period who willingly and informedly consented to participate in the survey. Results: 362 women participated in the study. Among them, 36.8% had a secondary level, and 72.9% were Christians. About 97.5% had heard of uterine fibroids. In 63.5% of cases, their entourage was the principal source of information. The diagnostic methods mentioned by the women were ultrasound in 94.6% of cases, while prayers and occultism were also cited in 28% and 33.3% of cases, respectively. While 91.9% of the women considered the hospital, the place for treatment, some indicated that treatment would require plant-based approaches (46.8%) and prayers (26%). The cost of treatment was an obstacle for 85.4% of women, and 61.3% expressed fear of dying during surgery. There was a statistically significant relationship between treatment choice and religion. Conclusion: The majority of women had heard of uterine fibroids but had incorrect information about the treatment.展开更多
The evacuation of people under threat is an effective disaster prevention and mitigation measure in response to flash floods and geological hazards,and it is also an essential element of pre-disaster planning.However,...The evacuation of people under threat is an effective disaster prevention and mitigation measure in response to flash floods and geological hazards,and it is also an essential element of pre-disaster planning.However,the effect of the interactions between perception factors on residents'willingness to evacuate is an urgent problem to be solved.Therefore,this paper introduces risk,stakeholder,and protective action perceptions from the protective action decision model as the main explanatory variables.These three core perceptions are subdivided into affective risk perception,cognitive risk perception,government perception,other-stakeholder perception,resourcerelated attributes,and hazard-related attributes.A questionnaire survey was conducted from June to July 2023 among residents of mountainous communities in nine villages in three towns in Sichuan Province,China.359 cross-sectional data were analyzed using structural equation modeling to explore the effects of six perception factors on evacuation intentions.The results of the study showed that:(1)affective risk perception,government perception,other-stakeholder perception,and hazard-related attributes all directly and positively influence residents'intentions to evacuate;(2)cognitive risk perception is mediated by stakeholder and protective action perceptions,which indirectly and positively affect residents'intentions to evacuate.Based on the hypothesized paths,strategies to improve residents'willingness to evacuate are discussed from the perspective of three core perceptions:strengthening disaster risk education,improving residents'cohesion,and building government credibility.The results of this study can provide theoretical support and practical suggestions for emergency management departments to formulate emergency evacuation strategies,which can aid decision-makers in better understanding residents'intentions to evacuate,optimizing evacuation information dissemination pathways,and strengthening disaster risk management capabilities.展开更多
The subcortical visual pathway is generally thought to be involved in dangerous information processing,such as fear processing and defensive behavior.A recent study,published in Human Brain Mapping,shows a new functio...The subcortical visual pathway is generally thought to be involved in dangerous information processing,such as fear processing and defensive behavior.A recent study,published in Human Brain Mapping,shows a new function of the subcortical pathway involved in the fast processing of non-emotional object perception.Rapid object processing is a critical function of visual system.Topological perception theory proposes that the initial perception of objects begins with the extraction of topological property(TP).However,the mechanism of rapid TP processing remains unclear.The researchers investigated the subcortical mechanism of TP processing with transcranial magnetic stimulation(TMS).They find that a subcortical magnocellular pathway is responsible for the early processing of TP,and this subcortical processing of TP accelerates object recognition.Based on their findings,we propose a novel training approach called subcortical magnocellular pathway training(SMPT),aimed at improving the efficiency of the subcortical M pathway to restore visual and attentional functions in disorders associated with subcortical pathway dysfunction.展开更多
Tephritid fruit flies are considered one of the world’s most notorious pests of horticultural crops, including mango (Mangefera indica L.) in Sierra Leone, causing extensive direct and indirect damage. A survey was c...Tephritid fruit flies are considered one of the world’s most notorious pests of horticultural crops, including mango (Mangefera indica L.) in Sierra Leone, causing extensive direct and indirect damage. A survey was conducted among 60 mango farmers in 7 districts in Sierra Leone between June and August, 2022, to assess their perceptions regarding fruit fly pest status and the current management options adopted for the control of this pest. Semi-structured questions designed in an open and closed-ended fashion were used for the study. The majority (83%) of the farmers were already aware of the fruit fly problem in the country with 62% perceiving it to be very severe. The majority (60%) of farmers, however, demonstrated poor knowledge of identifying fruit fly species, especially Bactrocera dorsalis, Ceratitis capitata, and Ceratitis cosyra. Farmers were more conversant about the direct damage symptoms to host fruits and the economic impact of fruit flies. A total of 32% of growers took no action to control fruit flies on their farms. Sixty-nine percent (69%) of the farmers adopted cultural control measures, like practicing prompt harvesting, collection and disposal of infested fruits, and weeding to maintain better sanitary conditions on their farms. Recommended fruit fly management strategies such as the use of botanicals and resistant varieties were either unknown or inaccessible to growers. A total of 52% applied chemicals that were not recommended for the control of fruit flies without considering their environmental and health risks. It is important to train fruit growers to improve their capabilities for fruit fly management through extension agents that are appropriate for helping them acquire basic knowledge of fruit fly pests and their management.展开更多
SARS-CoV-2,particularly the Omicron variant,often leads to flavor perception dysfunction in infected individuals,making a comprehensive understanding of its duration and recovery patterns a critical part of disease ma...SARS-CoV-2,particularly the Omicron variant,often leads to flavor perception dysfunction in infected individuals,making a comprehensive understanding of its duration and recovery patterns a critical part of disease management.This study surveyed a cohort of 199 mildly-to-moderately affected SARS-CoV-2 Omicron-infected patients,focusing on the alterations in their olfaction,taste,and chemesthesis perception.Further,a subset of 36 participants(18 healthy and 18 infected)underwent sensory evaluations to check the variation of umami taste sensitivity.The results demonstrated that most of the infected cohort experienced chemosensory disorders,with the recovery period varying between one week and over a month.Intriguingly,the severity of flavor perception changes during infection significantly correlated with the length of the recovery period.Furthermore,this study explored the specific manifestations of flavor perception dysfunction,potential contributing factors,and potential mechanistic explanations for chemosensory disorders.These include local damage,inflammatory responses,and virus-induced neural damage.However,this study revealed no significant change(P>0.05)in umami taste sensitivity among infected patients 55 days post-infection.While this research faces limitations related to its self-reported,cross-sectional design,and regional focus,it offers valuable insights into the multifaceted impact of COVID-19,particularly the Omicron variant,on chemosensory perception.展开更多
Multi-modal Named Entity Recognition(MNER)aims to better identify meaningful textual entities by integrating information from images.Previous work has focused on extracting visual semantics at a fine-grained level,or ...Multi-modal Named Entity Recognition(MNER)aims to better identify meaningful textual entities by integrating information from images.Previous work has focused on extracting visual semantics at a fine-grained level,or obtaining entity related external knowledge from knowledge bases or Large Language Models(LLMs).However,these approaches ignore the poor semantic correlation between visual and textual modalities in MNER datasets and do not explore different multi-modal fusion approaches.In this paper,we present MMAVK,a multi-modal named entity recognition model with auxiliary visual knowledge and word-level fusion,which aims to leverage the Multi-modal Large Language Model(MLLM)as an implicit knowledge base.It also extracts vision-based auxiliary knowledge from the image formore accurate and effective recognition.Specifically,we propose vision-based auxiliary knowledge generation,which guides the MLLM to extract external knowledge exclusively derived from images to aid entity recognition by designing target-specific prompts,thus avoiding redundant recognition and cognitive confusion caused by the simultaneous processing of image-text pairs.Furthermore,we employ a word-level multi-modal fusion mechanism to fuse the extracted external knowledge with each word-embedding embedded from the transformerbased encoder.Extensive experimental results demonstrate that MMAVK outperforms or equals the state-of-the-art methods on the two classical MNER datasets,even when the largemodels employed have significantly fewer parameters than other baselines.展开更多
Multi-modal knowledge graph completion(MMKGC)aims to complete missing entities or relations in multi-modal knowledge graphs,thereby discovering more previously unknown triples.Due to the continuous growth of data and ...Multi-modal knowledge graph completion(MMKGC)aims to complete missing entities or relations in multi-modal knowledge graphs,thereby discovering more previously unknown triples.Due to the continuous growth of data and knowledge and the limitations of data sources,the visual knowledge within the knowledge graphs is generally of low quality,and some entities suffer from the issue of missing visual modality.Nevertheless,previous studies of MMKGC have primarily focused on how to facilitate modality interaction and fusion while neglecting the problems of low modality quality and modality missing.In this case,mainstream MMKGC models only use pre-trained visual encoders to extract features and transfer the semantic information to the joint embeddings through modal fusion,which inevitably suffers from problems such as error propagation and increased uncertainty.To address these problems,we propose a Multi-modal knowledge graph Completion model based on Super-resolution and Detailed Description Generation(MMCSD).Specifically,we leverage a pre-trained residual network to enhance the resolution and improve the quality of the visual modality.Moreover,we design multi-level visual semantic extraction and entity description generation,thereby further extracting entity semantics from structural triples and visual images.Meanwhile,we train a variational multi-modal auto-encoder and utilize a pre-trained multi-modal language model to complement the missing visual features.We conducted experiments on FB15K-237 and DB13K,and the results showed that MMCSD can effectively perform MMKGC and achieve state-of-the-art performance.展开更多
Integrating multiple medical imaging techniques,including Magnetic Resonance Imaging(MRI),Computed Tomography,Positron Emission Tomography(PET),and ultrasound,provides a comprehensive view of the patient health status...Integrating multiple medical imaging techniques,including Magnetic Resonance Imaging(MRI),Computed Tomography,Positron Emission Tomography(PET),and ultrasound,provides a comprehensive view of the patient health status.Each of these methods contributes unique diagnostic insights,enhancing the overall assessment of patient condition.Nevertheless,the amalgamation of data from multiple modalities presents difficulties due to disparities in resolution,data collection methods,and noise levels.While traditional models like Convolutional Neural Networks(CNNs)excel in single-modality tasks,they struggle to handle multi-modal complexities,lacking the capacity to model global relationships.This research presents a novel approach for examining multi-modal medical imagery using a transformer-based system.The framework employs self-attention and cross-attention mechanisms to synchronize and integrate features across various modalities.Additionally,it shows resilience to variations in noise and image quality,making it adaptable for real-time clinical use.To address the computational hurdles linked to transformer models,particularly in real-time clinical applications in resource-constrained environments,several optimization techniques have been integrated to boost scalability and efficiency.Initially,a streamlined transformer architecture was adopted to minimize the computational load while maintaining model effectiveness.Methods such as model pruning,quantization,and knowledge distillation have been applied to reduce the parameter count and enhance the inference speed.Furthermore,efficient attention mechanisms such as linear or sparse attention were employed to alleviate the substantial memory and processing requirements of traditional self-attention operations.For further deployment optimization,researchers have implemented hardware-aware acceleration strategies,including the use of TensorRT and ONNX-based model compression,to ensure efficient execution on edge devices.These optimizations allow the approach to function effectively in real-time clinical settings,ensuring viability even in environments with limited resources.Future research directions include integrating non-imaging data to facilitate personalized treatment and enhancing computational efficiency for implementation in resource-limited environments.This study highlights the transformative potential of transformer models in multi-modal medical imaging,offering improvements in diagnostic accuracy and patient care outcomes.展开更多
To address the challenge of missing modal information in entity alignment and to mitigate information loss or bias arising frommodal heterogeneity during fusion,while also capturing shared information acrossmodalities...To address the challenge of missing modal information in entity alignment and to mitigate information loss or bias arising frommodal heterogeneity during fusion,while also capturing shared information acrossmodalities,this paper proposes a Multi-modal Pre-synergistic Entity Alignmentmodel based on Cross-modalMutual Information Strategy Optimization(MPSEA).The model first employs independent encoders to process multi-modal features,including text,images,and numerical values.Next,a multi-modal pre-synergistic fusion mechanism integrates graph structural and visual modal features into the textual modality as preparatory information.This pre-fusion strategy enables unified perception of heterogeneous modalities at the model’s initial stage,reducing discrepancies during the fusion process.Finally,using cross-modal deep perception reinforcement learning,the model achieves adaptive multilevel feature fusion between modalities,supporting learningmore effective alignment strategies.Extensive experiments on multiple public datasets show that the MPSEA method achieves gains of up to 7% in Hits@1 and 8.2% in MRR on the FBDB15K dataset,and up to 9.1% in Hits@1 and 7.7% in MRR on the FBYG15K dataset,compared to existing state-of-the-art methods.These results confirm the effectiveness of the proposed model.展开更多
Background: Sickle cell anemia(SCA), a genetic hemoglobin disorder, suggests essential inner ear compromise and poor auditory processing. In humans, auditory processing differs physiologically between males and female...Background: Sickle cell anemia(SCA), a genetic hemoglobin disorder, suggests essential inner ear compromise and poor auditory processing. In humans, auditory processing differs physiologically between males and females, possibly true for SCA due to gender-specific disease pathophysiological changes. Objective: To investigate gender differences in psychoacoustical abilities, and speech perception in noise in SCA individuals and further compare with normal healthy(NH) population. Methods: 80 SCA and 80 NH normal-hearing participants aged 15-40 years were included and further grouped based on gender. Auditory discrimination for frequency, intensity, and duration at 500Hz and 4000Hz;temporal processing(Gap detection threshold & Modulation Detection Threshold) and Speech Perception In Noise(SPIN) at 0d BSNR tests were evaluated and compared between males and females of SCA and NH population. Results: SCA performed poorer compared to NH for all experimental measures. In the NH population, males performed poorer than females in psychoacoustical measures whereas within the SCA population, the reverse was true. Female participants performed better in the SPIN test in both populations. Conclusions: The adverse impact of SCA on the auditory system due to circulatory changes might cause poorer performance in SCA. Poorer performance by Female SCA is possibly due to the contrary impact of lower Hb level overlying Sickle disease.Estrogen levels and gender preference in auditory processing might lead to better performance by females within the NH population. SPIN performance depends on different attentional demands and sensorimotor processing strategies in noise beyond psychoacoustical processing may lead to better female performance in both populations.展开更多
Intelligent perception,as a cutting-edge field of modern science and technology,is profoundly changing our understanding and interaction with the world.With the rapid development of artificial intelligence,the Interne...Intelligent perception,as a cutting-edge field of modern science and technology,is profoundly changing our understanding and interaction with the world.With the rapid development of artificial intelligence,the Internet of things,big data,and other technologies,intelligent perception systems have shown great potential in non-destructive testing,safety monitoring,human-computer interaction,and precision measurement.Traditional sensing technologies face many challenges in complex scenarios or specific needs,while intelligent perception provides a new path for innovation and breakthroughs in instrumentation and sensing technologies through multidisciplinary integration.展开更多
文摘With the increasing of the elderly population and the growing hearth care cost, the role of service robots in aiding the disabled and the elderly is becoming important. Many researchers in the world have paid much attention to heaRthcare robots and rehabilitation robots. To get natural and harmonious communication between the user and a service robot, the information perception/feedback ability, and interaction ability for service robots become more important in many key issues.
文摘This article examines the complex relationship between disease perception,negative emotions,and their impact on postoperative recovery in patients with perianal diseases.These conditions not only cause physical discomfort,but also carry a significant emotional burden,often exacerbated by social stigma.Psycho-logical factors,including stress,anxiety,and depression,activate neuroendocrine pathways,such as the hypothalamic–pituitary–adrenal axis,disrupting the gut microbiota and leading to dysbiosis.This disruption can delay wound healing,prolong hospital stay,and intensify pain.Drawing on the findings of Hou et al,our article highlights the critical role of illness perception and negative emotions in shaping recovery outcomes.It advocates for a holistic approach that integrates psychological support and gut microbiota modulation,to enhance healing and improve overall patient outcomes.
基金supported by the Jiangsu Provincial Department of Science and Technology Social Development Project(No.BE2020787)。
文摘Objectives Diabetes remains a major global health challenge in China.Artificial intelligence(AI)has demonstrated considerable potential in improving diabetes management.This study aimed to assess healthcare providers’perceptions regarding AI in diabetes care across China.Methods A cross-sectional survey was conducted using snowball sampling from November 12 to November 24,2024.We selected 514 physicians and nurses by a snowball sampling method from healthcare providers across 30 cities or provinces in China.The self-developed questionnaire comprised five sections with 19 questions assessing medical workers’demographic characteristics,AI-related experience and interest,awareness,attitudes,and concerns regarding AI in diabetes care.Statistical analysis was performed using t-test,analysis of variance(ANOVA),and linear regression.Results Among them,20.0%and 48.1%of respondents had participated in AI-related research and training,while 85.4%expressed moderate to high interest in AI training for diabetes care.Most respondents reported partial awareness of AI in diabetes care,and only 12.6%exhibited a comprehensive or substantial understanding.Attitudes toward AI in diabetes care were generally positive,with a mean score of 24.50±3.38.Nurses demonstrated significantly higher scores than physicians(P<0.05).Greater awareness,prior AI training experience,and higher interest in AI training in diabetes care were strongly associated with more positive attitudes(P<0.05).Key concerns regarding AI included trust issues from AI-clinician inconsistencies(77.2%),increased workload and clinical workflow disruptions(63.4%),and incomplete legal and regulatory frameworks(60.3%).Only 34.2%of respondents expressed concerns about job displacement,indicating general confidence in their professional roles.Conclusions While Chinese healthcare providers show moderate awareness of AI in diabetes care,their attitudes are generally positive,and they are considerably interested in future training.Tailored,role-specific AI training is essential for equitable and effective integration into clinical practice.Additionally,transparent,reliable,ethical AI models must be prioritized to alleviate practitioners’concerns.
基金Construction Program of the Key Discipline of State Administration of Traditional Chinese Medicine of China(ZYYZDXK-2023069)Research Project of Shanghai Municipal Health Commission (2024QN018)Shanghai University of Traditional Chinese Medicine Science and Technology Development Program (23KFL005)。
文摘Objective To develop a non-invasive predictive model for coronary artery stenosis severity based on adaptive multi-modal integration of traditional Chinese and western medicine data.Methods Clinical indicators,echocardiographic data,traditional Chinese medicine(TCM)tongue manifestations,and facial features were collected from patients who underwent coro-nary computed tomography angiography(CTA)in the Cardiac Care Unit(CCU)of Shanghai Tenth People's Hospital between May 1,2023 and May 1,2024.An adaptive weighted multi-modal data fusion(AWMDF)model based on deep learning was constructed to predict the severity of coronary artery stenosis.The model was evaluated using metrics including accura-cy,precision,recall,F1 score,and the area under the receiver operating characteristic(ROC)curve(AUC).Further performance assessment was conducted through comparisons with six ensemble machine learning methods,data ablation,model component ablation,and various decision-level fusion strategies.Results A total of 158 patients were included in the study.The AWMDF model achieved ex-cellent predictive performance(AUC=0.973,accuracy=0.937,precision=0.937,recall=0.929,and F1 score=0.933).Compared with model ablation,data ablation experiments,and various traditional machine learning models,the AWMDF model demonstrated superior per-formance.Moreover,the adaptive weighting strategy outperformed alternative approaches,including simple weighting,averaging,voting,and fixed-weight schemes.Conclusion The AWMDF model demonstrates potential clinical value in the non-invasive prediction of coronary artery disease and could serve as a tool for clinical decision support.
文摘Traditional Chinese medicine(TCM)demonstrates distinctive advantages in disease prevention and treatment.However,analyzing its biological mechanisms through the modern medical research paradigm of“single drug,single target”presents significant challenges due to its holistic approach.Network pharmacology and its core theory of network targets connect drugs and diseases from a holistic and systematic perspective based on biological networks,overcoming the limitations of reductionist research models and showing considerable value in TCM research.Recent integration of network target computational and experimental methods with artificial intelligence(AI)and multi-modal multi-omics technologies has substantially enhanced network pharmacology methodology.The advancement in computational and experimental techniques provides complementary support for network target theory in decoding TCM principles.This review,centered on network targets,examines the progress of network target methods combined with AI in predicting disease molecular mechanisms and drug-target relationships,alongside the application of multi-modal multi-omics technologies in analyzing TCM formulae,syndromes,and toxicity.Looking forward,network target theory is expected to incorporate emerging technologies while developing novel approaches aligned with its unique characteristics,potentially leading to significant breakthroughs in TCM research and advancing scientific understanding and innovation in TCM.
基金financially supported by the POSCO-POSTECH-RIST Convergence Research Center program funded by POSCOthe National Research Foundation (NRF) grants (RS-2024-00462912, RS-2024-00416272, RS-2024-00337012, RS-2024-00408446) funded by the Ministry of Science and ICT (MSIT) of the Korean government+2 种基金the Korea Evaluation Institute of Industrial Technology (KEIT) grant (No. 1415185027/20019169, Alchemist project) funded by the Ministry of Trade, Industry and Energy (MOTIE) of the Korean governmentthe Soseon Science fellowship funded by Community Chest of Koreathe NRF PhD fellowship (RS-2023-00275565) funded by the Ministry of Education (MOE) of the Korean government。
文摘Spatial computing and augmented reality are advancing rapidly,with the goal of seamlessly blending virtual and physical worlds.However,traditional depth-sensing systems are bulky and energy-intensive,limiting their use in wearable devices.To overcome this,recent research by X.Liu et al.presents a compact binocular metalens-based depth perception system that integrates efficient edge detection through an advanced neural network.This system enables accurate,realtime depth mapping even in complex environments,enhancing potential applications in augmented reality,robotics,and autonomous systems.
基金supported by the National Natural Science Foundation of China(Nos.62371323,62401380,U2433217,U2333209,and U20A20161)Natural Science Foundation of Sichuan Province,China(Nos.2025ZNSFSC1476)+2 种基金Sichuan Science and Technology Program,China(Nos.2024YFG0010 and 2024ZDZX0046)the Institutional Research Fund from Sichuan University(Nos.2024SCUQJTX030)the Open Fund of Key Laboratory of Flight Techniques and Flight Safety,CAAC(Nos.GY2024-01A).
文摘With the advent of the next-generation Air Traffic Control(ATC)system,there is growing interest in using Artificial Intelligence(AI)techniques to enhance Situation Awareness(SA)for ATC Controllers(ATCOs),i.e.,Intelligent SA(ISA).However,the existing AI-based SA approaches often rely on unimodal data and lack a comprehensive description and benchmark of the ISA tasks utilizing multi-modal data for real-time ATC environments.To address this gap,by analyzing the situation awareness procedure of the ATCOs,the ISA task is refined to the processing of the two primary elements,i.e.,spoken instructions and flight trajectories.Subsequently,the ISA is further formulated into Controlling Intent Understanding(CIU)and Flight Trajectory Prediction(FTP)tasks.For the CIU task,an innovative automatic speech recognition and understanding framework is designed to extract the controlling intent from unstructured and continuous ATC communications.For the FTP task,the single-and multi-horizon FTP approaches are investigated to support the high-precision prediction of the situation evolution.A total of 32 unimodal/multi-modal advanced methods with extensive evaluation metrics are introduced to conduct the benchmarks on the real-world multi-modal ATC situation dataset.Experimental results demonstrate the effectiveness of AI-based techniques in enhancing ISA for the ATC environment.
基金Shanghai Frontier Science Research Center for Modern Textiles,Donghua University,ChinaOpen Project of Henan Key Laboratory of Intelligent Manufacturing of Mechanical Equipment,Zhengzhou University of Light Industry,China(No.IM202303)National Key Research and Development Program of China(No.2019YFB1706300)。
文摘A personalized outfit recommendation has emerged as a hot research topic in the fashion domain.However,existing recommendations do not fully exploit user style preferences.Typically,users prefer particular styles such as casual and athletic styles,and consider attributes like color and texture when selecting outfits.To achieve personalized outfit recommendations in line with user style preferences,this paper proposes a personal style guided outfit recommendation with multi-modal fashion compatibility modeling,termed as PSGNet.Firstly,a style classifier is designed to categorize fashion images of various clothing types and attributes into distinct style categories.Secondly,a personal style prediction module extracts user style preferences by analyzing historical data.Then,to address the limitations of single-modal representations and enhance fashion compatibility,both fashion images and text data are leveraged to extract multi-modal features.Finally,PSGNet integrates these components through Bayesian personalized ranking(BPR)to unify the personal style and fashion compatibility,where the former is used as personal style features and guides the output of the personalized outfit recommendation tailored to the target user.Extensive experiments on large-scale datasets demonstrate that the proposed model is efficient on the personalized outfit recommendation.
基金supported by the Natural Science Foundation of Henan under Grant 242300421220the Henan Provincial Science and Technology Research Project under Grants 252102211047 and 252102211062+3 种基金the Jiangsu Provincial Scheme Double Initiative Plan JSS-CBS20230474the XJTLU RDF-21-02-008the Science and Technology Innovation Project of Zhengzhou University of Light Industry under Grant 23XNKJTD0205the Higher Education Teaching Reform Research and Practice Project of Henan Province under Grant 2024SJGLX0126.
文摘With the increasing importance of multimodal data in emotional expression on social media,mainstream methods for sentiment analysis have shifted from unimodal to multimodal approaches.However,the challenges of extracting high-quality emotional features and achieving effective interaction between different modalities remain two major obstacles in multimodal sentiment analysis.To address these challenges,this paper proposes a Text-Gated Interaction Network with Inter-Sample Commonality Perception(TGICP).Specifically,we utilize a Inter-sample Commonality Perception(ICP)module to extract common features from similar samples within the same modality,and use these common features to enhance the original features of each modality,thereby obtaining a richer and more complete multimodal sentiment representation.Subsequently,in the cross-modal interaction stage,we design a Text-Gated Interaction(TGI)module,which is text-driven.By calculating the mutual information difference between the text modality and nonverbal modalities,the TGI module dynamically adjusts the influence of emotional information from the text modality on nonverbal modalities.This helps to reduce modality information asymmetry while enabling full cross-modal interaction.Experimental results show that the proposed model achieves outstanding performance on both the CMU-MOSI and CMU-MOSEI baseline multimodal sentiment analysis datasets,validating its effectiveness in emotion recognition tasks.
文摘Introduction: Uterine fibroids are benign tumors that develop from the connective and muscular tissues of the uterus. Common among African-American women, patients suffering from them often arrive late to the hospital in our African regions. This study aimed to investigate the knowledge and perception of uterine fibroids among women who came to the gynecology-obstetrics department of the Regional Hospital Center (CHR) Tsévié. Methodology: It was a cross-sectional descriptive study, with data collection conducted from May 7th to 20th, 2024, using systematic sampling. The study included all women present in the Gynecology-Obstetrics Department of CHR Tsévié during the study period who willingly and informedly consented to participate in the survey. Results: 362 women participated in the study. Among them, 36.8% had a secondary level, and 72.9% were Christians. About 97.5% had heard of uterine fibroids. In 63.5% of cases, their entourage was the principal source of information. The diagnostic methods mentioned by the women were ultrasound in 94.6% of cases, while prayers and occultism were also cited in 28% and 33.3% of cases, respectively. While 91.9% of the women considered the hospital, the place for treatment, some indicated that treatment would require plant-based approaches (46.8%) and prayers (26%). The cost of treatment was an obstacle for 85.4% of women, and 61.3% expressed fear of dying during surgery. There was a statistically significant relationship between treatment choice and religion. Conclusion: The majority of women had heard of uterine fibroids but had incorrect information about the treatment.
基金supported by the National Natural Science Foundation of China(U20A20111)the National key R&D Program(2022YFC3080100)。
文摘The evacuation of people under threat is an effective disaster prevention and mitigation measure in response to flash floods and geological hazards,and it is also an essential element of pre-disaster planning.However,the effect of the interactions between perception factors on residents'willingness to evacuate is an urgent problem to be solved.Therefore,this paper introduces risk,stakeholder,and protective action perceptions from the protective action decision model as the main explanatory variables.These three core perceptions are subdivided into affective risk perception,cognitive risk perception,government perception,other-stakeholder perception,resourcerelated attributes,and hazard-related attributes.A questionnaire survey was conducted from June to July 2023 among residents of mountainous communities in nine villages in three towns in Sichuan Province,China.359 cross-sectional data were analyzed using structural equation modeling to explore the effects of six perception factors on evacuation intentions.The results of the study showed that:(1)affective risk perception,government perception,other-stakeholder perception,and hazard-related attributes all directly and positively influence residents'intentions to evacuate;(2)cognitive risk perception is mediated by stakeholder and protective action perceptions,which indirectly and positively affect residents'intentions to evacuate.Based on the hypothesized paths,strategies to improve residents'willingness to evacuate are discussed from the perspective of three core perceptions:strengthening disaster risk education,improving residents'cohesion,and building government credibility.The results of this study can provide theoretical support and practical suggestions for emergency management departments to formulate emergency evacuation strategies,which can aid decision-makers in better understanding residents'intentions to evacuate,optimizing evacuation information dissemination pathways,and strengthening disaster risk management capabilities.
文摘The subcortical visual pathway is generally thought to be involved in dangerous information processing,such as fear processing and defensive behavior.A recent study,published in Human Brain Mapping,shows a new function of the subcortical pathway involved in the fast processing of non-emotional object perception.Rapid object processing is a critical function of visual system.Topological perception theory proposes that the initial perception of objects begins with the extraction of topological property(TP).However,the mechanism of rapid TP processing remains unclear.The researchers investigated the subcortical mechanism of TP processing with transcranial magnetic stimulation(TMS).They find that a subcortical magnocellular pathway is responsible for the early processing of TP,and this subcortical processing of TP accelerates object recognition.Based on their findings,we propose a novel training approach called subcortical magnocellular pathway training(SMPT),aimed at improving the efficiency of the subcortical M pathway to restore visual and attentional functions in disorders associated with subcortical pathway dysfunction.
文摘Tephritid fruit flies are considered one of the world’s most notorious pests of horticultural crops, including mango (Mangefera indica L.) in Sierra Leone, causing extensive direct and indirect damage. A survey was conducted among 60 mango farmers in 7 districts in Sierra Leone between June and August, 2022, to assess their perceptions regarding fruit fly pest status and the current management options adopted for the control of this pest. Semi-structured questions designed in an open and closed-ended fashion were used for the study. The majority (83%) of the farmers were already aware of the fruit fly problem in the country with 62% perceiving it to be very severe. The majority (60%) of farmers, however, demonstrated poor knowledge of identifying fruit fly species, especially Bactrocera dorsalis, Ceratitis capitata, and Ceratitis cosyra. Farmers were more conversant about the direct damage symptoms to host fruits and the economic impact of fruit flies. A total of 32% of growers took no action to control fruit flies on their farms. Sixty-nine percent (69%) of the farmers adopted cultural control measures, like practicing prompt harvesting, collection and disposal of infested fruits, and weeding to maintain better sanitary conditions on their farms. Recommended fruit fly management strategies such as the use of botanicals and resistant varieties were either unknown or inaccessible to growers. A total of 52% applied chemicals that were not recommended for the control of fruit flies without considering their environmental and health risks. It is important to train fruit growers to improve their capabilities for fruit fly management through extension agents that are appropriate for helping them acquire basic knowledge of fruit fly pests and their management.
基金supported by the National Natural Science Foundation of China(32001824,31901813,32001827)。
文摘SARS-CoV-2,particularly the Omicron variant,often leads to flavor perception dysfunction in infected individuals,making a comprehensive understanding of its duration and recovery patterns a critical part of disease management.This study surveyed a cohort of 199 mildly-to-moderately affected SARS-CoV-2 Omicron-infected patients,focusing on the alterations in their olfaction,taste,and chemesthesis perception.Further,a subset of 36 participants(18 healthy and 18 infected)underwent sensory evaluations to check the variation of umami taste sensitivity.The results demonstrated that most of the infected cohort experienced chemosensory disorders,with the recovery period varying between one week and over a month.Intriguingly,the severity of flavor perception changes during infection significantly correlated with the length of the recovery period.Furthermore,this study explored the specific manifestations of flavor perception dysfunction,potential contributing factors,and potential mechanistic explanations for chemosensory disorders.These include local damage,inflammatory responses,and virus-induced neural damage.However,this study revealed no significant change(P>0.05)in umami taste sensitivity among infected patients 55 days post-infection.While this research faces limitations related to its self-reported,cross-sectional design,and regional focus,it offers valuable insights into the multifaceted impact of COVID-19,particularly the Omicron variant,on chemosensory perception.
基金funded by Research Project,grant number BHQ090003000X03.
文摘Multi-modal Named Entity Recognition(MNER)aims to better identify meaningful textual entities by integrating information from images.Previous work has focused on extracting visual semantics at a fine-grained level,or obtaining entity related external knowledge from knowledge bases or Large Language Models(LLMs).However,these approaches ignore the poor semantic correlation between visual and textual modalities in MNER datasets and do not explore different multi-modal fusion approaches.In this paper,we present MMAVK,a multi-modal named entity recognition model with auxiliary visual knowledge and word-level fusion,which aims to leverage the Multi-modal Large Language Model(MLLM)as an implicit knowledge base.It also extracts vision-based auxiliary knowledge from the image formore accurate and effective recognition.Specifically,we propose vision-based auxiliary knowledge generation,which guides the MLLM to extract external knowledge exclusively derived from images to aid entity recognition by designing target-specific prompts,thus avoiding redundant recognition and cognitive confusion caused by the simultaneous processing of image-text pairs.Furthermore,we employ a word-level multi-modal fusion mechanism to fuse the extracted external knowledge with each word-embedding embedded from the transformerbased encoder.Extensive experimental results demonstrate that MMAVK outperforms or equals the state-of-the-art methods on the two classical MNER datasets,even when the largemodels employed have significantly fewer parameters than other baselines.
基金funded by Research Project,grant number BHQ090003000X03。
文摘Multi-modal knowledge graph completion(MMKGC)aims to complete missing entities or relations in multi-modal knowledge graphs,thereby discovering more previously unknown triples.Due to the continuous growth of data and knowledge and the limitations of data sources,the visual knowledge within the knowledge graphs is generally of low quality,and some entities suffer from the issue of missing visual modality.Nevertheless,previous studies of MMKGC have primarily focused on how to facilitate modality interaction and fusion while neglecting the problems of low modality quality and modality missing.In this case,mainstream MMKGC models only use pre-trained visual encoders to extract features and transfer the semantic information to the joint embeddings through modal fusion,which inevitably suffers from problems such as error propagation and increased uncertainty.To address these problems,we propose a Multi-modal knowledge graph Completion model based on Super-resolution and Detailed Description Generation(MMCSD).Specifically,we leverage a pre-trained residual network to enhance the resolution and improve the quality of the visual modality.Moreover,we design multi-level visual semantic extraction and entity description generation,thereby further extracting entity semantics from structural triples and visual images.Meanwhile,we train a variational multi-modal auto-encoder and utilize a pre-trained multi-modal language model to complement the missing visual features.We conducted experiments on FB15K-237 and DB13K,and the results showed that MMCSD can effectively perform MMKGC and achieve state-of-the-art performance.
基金supported by the Deanship of Research and Graduate Studies at King Khalid University under Small Research Project grant number RGP1/139/45.
文摘Integrating multiple medical imaging techniques,including Magnetic Resonance Imaging(MRI),Computed Tomography,Positron Emission Tomography(PET),and ultrasound,provides a comprehensive view of the patient health status.Each of these methods contributes unique diagnostic insights,enhancing the overall assessment of patient condition.Nevertheless,the amalgamation of data from multiple modalities presents difficulties due to disparities in resolution,data collection methods,and noise levels.While traditional models like Convolutional Neural Networks(CNNs)excel in single-modality tasks,they struggle to handle multi-modal complexities,lacking the capacity to model global relationships.This research presents a novel approach for examining multi-modal medical imagery using a transformer-based system.The framework employs self-attention and cross-attention mechanisms to synchronize and integrate features across various modalities.Additionally,it shows resilience to variations in noise and image quality,making it adaptable for real-time clinical use.To address the computational hurdles linked to transformer models,particularly in real-time clinical applications in resource-constrained environments,several optimization techniques have been integrated to boost scalability and efficiency.Initially,a streamlined transformer architecture was adopted to minimize the computational load while maintaining model effectiveness.Methods such as model pruning,quantization,and knowledge distillation have been applied to reduce the parameter count and enhance the inference speed.Furthermore,efficient attention mechanisms such as linear or sparse attention were employed to alleviate the substantial memory and processing requirements of traditional self-attention operations.For further deployment optimization,researchers have implemented hardware-aware acceleration strategies,including the use of TensorRT and ONNX-based model compression,to ensure efficient execution on edge devices.These optimizations allow the approach to function effectively in real-time clinical settings,ensuring viability even in environments with limited resources.Future research directions include integrating non-imaging data to facilitate personalized treatment and enhancing computational efficiency for implementation in resource-limited environments.This study highlights the transformative potential of transformer models in multi-modal medical imaging,offering improvements in diagnostic accuracy and patient care outcomes.
基金partially supported by the National Natural Science Foundation of China under Grants 62471493 and 62402257(for conceptualization and investigation)partially supported by the Natural Science Foundation of Shandong Province,China under Grants ZR2023LZH017,ZR2024MF066,and 2023QF025(for formal analysis and validation)+1 种基金partially supported by the Open Foundation of Key Laboratory of Computing Power Network and Information Security,Ministry of Education,Qilu University of Technology(Shandong Academy of Sciences)under Grant 2023ZD010(for methodology and model design)partially supported by the Russian Science Foundation(RSF)Project under Grant 22-71-10095-P(for validation and results verification).
文摘To address the challenge of missing modal information in entity alignment and to mitigate information loss or bias arising frommodal heterogeneity during fusion,while also capturing shared information acrossmodalities,this paper proposes a Multi-modal Pre-synergistic Entity Alignmentmodel based on Cross-modalMutual Information Strategy Optimization(MPSEA).The model first employs independent encoders to process multi-modal features,including text,images,and numerical values.Next,a multi-modal pre-synergistic fusion mechanism integrates graph structural and visual modal features into the textual modality as preparatory information.This pre-fusion strategy enables unified perception of heterogeneous modalities at the model’s initial stage,reducing discrepancies during the fusion process.Finally,using cross-modal deep perception reinforcement learning,the model achieves adaptive multilevel feature fusion between modalities,supporting learningmore effective alignment strategies.Extensive experiments on multiple public datasets show that the MPSEA method achieves gains of up to 7% in Hits@1 and 8.2% in MRR on the FBDB15K dataset,and up to 9.1% in Hits@1 and 7.7% in MRR on the FBYG15K dataset,compared to existing state-of-the-art methods.These results confirm the effectiveness of the proposed model.
文摘Background: Sickle cell anemia(SCA), a genetic hemoglobin disorder, suggests essential inner ear compromise and poor auditory processing. In humans, auditory processing differs physiologically between males and females, possibly true for SCA due to gender-specific disease pathophysiological changes. Objective: To investigate gender differences in psychoacoustical abilities, and speech perception in noise in SCA individuals and further compare with normal healthy(NH) population. Methods: 80 SCA and 80 NH normal-hearing participants aged 15-40 years were included and further grouped based on gender. Auditory discrimination for frequency, intensity, and duration at 500Hz and 4000Hz;temporal processing(Gap detection threshold & Modulation Detection Threshold) and Speech Perception In Noise(SPIN) at 0d BSNR tests were evaluated and compared between males and females of SCA and NH population. Results: SCA performed poorer compared to NH for all experimental measures. In the NH population, males performed poorer than females in psychoacoustical measures whereas within the SCA population, the reverse was true. Female participants performed better in the SPIN test in both populations. Conclusions: The adverse impact of SCA on the auditory system due to circulatory changes might cause poorer performance in SCA. Poorer performance by Female SCA is possibly due to the contrary impact of lower Hb level overlying Sickle disease.Estrogen levels and gender preference in auditory processing might lead to better performance by females within the NH population. SPIN performance depends on different attentional demands and sensorimotor processing strategies in noise beyond psychoacoustical processing may lead to better female performance in both populations.
文摘Intelligent perception,as a cutting-edge field of modern science and technology,is profoundly changing our understanding and interaction with the world.With the rapid development of artificial intelligence,the Internet of things,big data,and other technologies,intelligent perception systems have shown great potential in non-destructive testing,safety monitoring,human-computer interaction,and precision measurement.Traditional sensing technologies face many challenges in complex scenarios or specific needs,while intelligent perception provides a new path for innovation and breakthroughs in instrumentation and sensing technologies through multidisciplinary integration.