A rapidly growing field is piezoresistive sensor for accurate respiration rate monitoring to suppress the worldwide respiratory illness.However,a large neglected issue is the sensing durability and accuracy without in...A rapidly growing field is piezoresistive sensor for accurate respiration rate monitoring to suppress the worldwide respiratory illness.However,a large neglected issue is the sensing durability and accuracy without interference since the expiratory pressure always coupled with external humidity and temperature variations,as well as mechanical motion artifacts.Herein,a robust and biodegradable piezoresistive sensor is reported that consists of heterogeneous MXene/cellulose-gelation sensing layer and Ag-based interdigital electrode,featuring customizable cylindrical interface arrangement and compact hierarchical laminated architecture for collectively regulating the piezoresistive response and mechanical robustness,thereby realizing the long-term breath-induced pressure detection.Notably,molecular dynamics simulations reveal the frequent angle inversion and reorientation of MXene/cellulose in vacuum filtration,driven by shear forces and interfacial interactions,which facilitate the establishment of hydrogen bonds and optimize the architecture design in sensing layer.The resultant sensor delivers unprecedented collection features of superior stability for off-axis deformation(0-120°,~2.8×10^(-3) A)and sensing accuracy without crosstalk(humidity 50%-100%and temperature 30-80).Besides,the sensor-embedded mask together with machine learning models is achieved to train and classify the respiration status for volunteers with different ages(average prediction accuracy~90%).It is envisioned that the customizable architecture design and sensor paradigm will shed light on the advanced stability of sustainable electronics and pave the way for the commercial application in respiratory monitory.展开更多
Advanced traffic monitoring systems encounter substantial challenges in vehicle detection and classification due to the limitations of conventional methods,which often demand extensive computational resources and stru...Advanced traffic monitoring systems encounter substantial challenges in vehicle detection and classification due to the limitations of conventional methods,which often demand extensive computational resources and struggle with diverse data acquisition techniques.This research presents a novel approach for vehicle classification and recognition in aerial image sequences,integrating multiple advanced techniques to enhance detection accuracy.The proposed model begins with preprocessing using Multiscale Retinex(MSR)to enhance image quality,followed by Expectation-Maximization(EM)Segmentation for precise foreground object identification.Vehicle detection is performed using the state-of-the-art YOLOv10 framework,while feature extraction incorporates Maximally Stable Extremal Regions(MSER),Dense Scale-Invariant Feature Transform(Dense SIFT),and Zernike Moments Features to capture distinct object characteristics.Feature optimization is further refined through a Hybrid Swarm-based Optimization algorithm,ensuring optimal feature selection for improved classification performance.The final classification is conducted using a Vision Transformer,leveraging its robust learning capabilities for enhanced accuracy.Experimental evaluations on benchmark datasets,including UAVDT and the Unmanned Aerial Vehicle Intruder Dataset(UAVID),demonstrate the superiority of the proposed approach,achieving an accuracy of 94.40%on UAVDT and 93.57%on UAVID.The results highlight the efficacy of the model in significantly enhancing vehicle detection and classification in aerial imagery,outperforming existing methodologies and offering a statistically validated improvement for intelligent traffic monitoring systems compared to existing approaches.展开更多
Diabetes mellitus represents a major global health issue,driving the need for noninvasive alternatives to traditional blood glucose monitoring methods.Recent advancements in wearable technology have introduced skin-in...Diabetes mellitus represents a major global health issue,driving the need for noninvasive alternatives to traditional blood glucose monitoring methods.Recent advancements in wearable technology have introduced skin-interfaced biosensors capable of analyzing sweat and skin biomarkers,providing innovative solutions for diabetes diagnosis and monitoring.This review comprehensively discusses the current developments in noninvasive wearable biosensors,emphasizing simultaneous detection of biochemical biomarkers(such as glucose,cortisol,lactate,branched-chain amino acids,and cytokines)and physiological signals(including heart rate,blood pressure,and sweat rate)for accurate,personalized diabetes management.We explore innovations in multimodal sensor design,materials science,biorecognition elements,and integration techniques,highlighting the importance of advanced data analytics,artificial intelligence-driven predictive algorithms,and closed-loop therapeutic systems.Additionally,the review addresses ongoing challenges in biomarker validation,sensor stability,user compliance,data privacy,and regulatory considerations.A holistic,multimodal approach enabled by these next-generation wearable biosensors holds significant potential for improving patient outcomes and facilitating proactive healthcare interventions in diabetes management.展开更多
The growing prevalence of exercise-induced tibial stress fractures demands wearable sensors capable of monitoring dynamic musculoskeletal loads with medical-grade precision.While flexible pressure-sensing insoles show...The growing prevalence of exercise-induced tibial stress fractures demands wearable sensors capable of monitoring dynamic musculoskeletal loads with medical-grade precision.While flexible pressure-sensing insoles show clinical potential,their development has been hindered by the intrinsic trade-off between high sensitivity and full-range linearity(R^(2)>0.99 up to 1 MPa)in conventional designs.Inspired by the tactile sensing mechanism of human skin,where dermal stratification enables wide-range pressure adaptation and ion-channelregulated signaling maintains linear electrical responses,we developed a dual-mechanism flexible iontronic pressure sensor(FIPS).This innovative design synergistically combines two bioinspired components:interdigitated fabric microstructures enabling pressure-proportional contact area expansion(αP1/3)and iontronic film facilitating self-adaptive ion concentration modulation(αP^(2/3)),which together generate a linear capacitance-pressure response(CαP).The FIPS achieves breakthrough performance:242 kPa^(-1)sensitivity with 0.997linearity across 0-1 MPa,yielding a record linear sensing factor(LSF=242,000).The design is validated across various substrates and ionic materials,demonstrating its versatility.Finally,the FIPS-driven design enables a smart insole demonstrating 1.8%error in tibial load assessment during gait analysis,outperforming nonlinear counterparts(6.5%error)in early fracture-risk prediction.The biomimetic design framework establishes a universal approach for developing high-performance linear sensors,establishing generalized principles for medical-grade wearable devices.展开更多
There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because the...There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring.展开更多
The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties ...The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating.展开更多
Objective To develop a non-invasive predictive model for coronary artery stenosis severity based on adaptive multi-modal integration of traditional Chinese and western medicine data.Methods Clinical indicators,echocar...Objective To develop a non-invasive predictive model for coronary artery stenosis severity based on adaptive multi-modal integration of traditional Chinese and western medicine data.Methods Clinical indicators,echocardiographic data,traditional Chinese medicine(TCM)tongue manifestations,and facial features were collected from patients who underwent coro-nary computed tomography angiography(CTA)in the Cardiac Care Unit(CCU)of Shanghai Tenth People's Hospital between May 1,2023 and May 1,2024.An adaptive weighted multi-modal data fusion(AWMDF)model based on deep learning was constructed to predict the severity of coronary artery stenosis.The model was evaluated using metrics including accura-cy,precision,recall,F1 score,and the area under the receiver operating characteristic(ROC)curve(AUC).Further performance assessment was conducted through comparisons with six ensemble machine learning methods,data ablation,model component ablation,and various decision-level fusion strategies.Results A total of 158 patients were included in the study.The AWMDF model achieved ex-cellent predictive performance(AUC=0.973,accuracy=0.937,precision=0.937,recall=0.929,and F1 score=0.933).Compared with model ablation,data ablation experiments,and various traditional machine learning models,the AWMDF model demonstrated superior per-formance.Moreover,the adaptive weighting strategy outperformed alternative approaches,including simple weighting,averaging,voting,and fixed-weight schemes.Conclusion The AWMDF model demonstrates potential clinical value in the non-invasive prediction of coronary artery disease and could serve as a tool for clinical decision support.展开更多
Traditional Chinese medicine(TCM)demonstrates distinctive advantages in disease prevention and treatment.However,analyzing its biological mechanisms through the modern medical research paradigm of“single drug,single ...Traditional Chinese medicine(TCM)demonstrates distinctive advantages in disease prevention and treatment.However,analyzing its biological mechanisms through the modern medical research paradigm of“single drug,single target”presents significant challenges due to its holistic approach.Network pharmacology and its core theory of network targets connect drugs and diseases from a holistic and systematic perspective based on biological networks,overcoming the limitations of reductionist research models and showing considerable value in TCM research.Recent integration of network target computational and experimental methods with artificial intelligence(AI)and multi-modal multi-omics technologies has substantially enhanced network pharmacology methodology.The advancement in computational and experimental techniques provides complementary support for network target theory in decoding TCM principles.This review,centered on network targets,examines the progress of network target methods combined with AI in predicting disease molecular mechanisms and drug-target relationships,alongside the application of multi-modal multi-omics technologies in analyzing TCM formulae,syndromes,and toxicity.Looking forward,network target theory is expected to incorporate emerging technologies while developing novel approaches aligned with its unique characteristics,potentially leading to significant breakthroughs in TCM research and advancing scientific understanding and innovation in TCM.展开更多
Environmentalmonitoring systems based on remote sensing technology have a wider monitoringrange and longer timeliness, which makes them widely used in the detection andmanagement of pollution sources. However, haze we...Environmentalmonitoring systems based on remote sensing technology have a wider monitoringrange and longer timeliness, which makes them widely used in the detection andmanagement of pollution sources. However, haze weather conditions degrade image qualityand reduce the precision of environmental monitoring systems. To address this problem,this research proposes a remote sensing image dehazingmethod based on the atmosphericscattering model and a dark channel prior constrained network. The method consists ofa dehazing network, a dark channel information injection network (DCIIN), and a transmissionmap network. Within the dehazing network, the branch fusion module optimizesfeature weights to enhance the dehazing effect. By leveraging dark channel information,the DCIIN enables high-quality estimation of the atmospheric veil. To ensure the outputof the deep learning model aligns with physical laws, we reconstruct the haze image usingthe prediction results from the three networks. Subsequently, we apply the traditionalloss function and dark channel loss function between the reconstructed haze image and theoriginal haze image. This approach enhances interpretability and reliabilitywhile maintainingadherence to physical principles. Furthermore, the network is trained on a synthesizednon-homogeneous haze remote sensing dataset using dark channel information from cloudmaps. The experimental results show that the proposed network can achieve better imagedehazing on both synthetic and real remote sensing images with non-homogeneous hazedistribution. This research provides a new idea for solving the problem of decreased accuracyof environmental monitoring systems under haze weather conditions and has strongpracticability.展开更多
With the advent of the next-generation Air Traffic Control(ATC)system,there is growing interest in using Artificial Intelligence(AI)techniques to enhance Situation Awareness(SA)for ATC Controllers(ATCOs),i.e.,Intellig...With the advent of the next-generation Air Traffic Control(ATC)system,there is growing interest in using Artificial Intelligence(AI)techniques to enhance Situation Awareness(SA)for ATC Controllers(ATCOs),i.e.,Intelligent SA(ISA).However,the existing AI-based SA approaches often rely on unimodal data and lack a comprehensive description and benchmark of the ISA tasks utilizing multi-modal data for real-time ATC environments.To address this gap,by analyzing the situation awareness procedure of the ATCOs,the ISA task is refined to the processing of the two primary elements,i.e.,spoken instructions and flight trajectories.Subsequently,the ISA is further formulated into Controlling Intent Understanding(CIU)and Flight Trajectory Prediction(FTP)tasks.For the CIU task,an innovative automatic speech recognition and understanding framework is designed to extract the controlling intent from unstructured and continuous ATC communications.For the FTP task,the single-and multi-horizon FTP approaches are investigated to support the high-precision prediction of the situation evolution.A total of 32 unimodal/multi-modal advanced methods with extensive evaluation metrics are introduced to conduct the benchmarks on the real-world multi-modal ATC situation dataset.Experimental results demonstrate the effectiveness of AI-based techniques in enhancing ISA for the ATC environment.展开更多
Refractory wounds cause significant harm to the health of patients and the most common treatments in clinical practice are surgical debridement and wound dressings.However,certain challenges,including surgical difficu...Refractory wounds cause significant harm to the health of patients and the most common treatments in clinical practice are surgical debridement and wound dressings.However,certain challenges,including surgical difficulty,lengthy recovery times,and a high recurrence rate persist.Conductive hydrogel dressings with combined monitoring and therapeutic properties have strong advantages in promoting wound healing due to the stimulation of endogenous current on wounds and are the focus of recent advancements.Therefore,this review introduces the mechanism of conductive hydrogel used for wound monitoring and healing,the materials selection of conductive hydrogel dressings used for wound monitoring,focuses on the conductive hydrogel sensor to monitor the output categories of wound status signals,proving invaluable for non-invasive,real-time evaluation of wound condition to encourage wound healing.Notably,the research of artificial intelligence(AI)model based on sensor derived data to predict the wound healing state,AI makes use of this abundant data set to forecast and optimize the trajectory of tissue regeneration and assess the stage of wound healing.Finally,refractory wounds including pressure ulcers,diabetes ulcers and articular wounds,and the corresponding wound monitoring and healing process are discussed in detail.This manuscript supports the growth of clinically linked disciplines and offers motivation to researchers working in the multidisciplinary field of conductive hydrogel dressings.展开更多
General anesthesia,pivotal for surgical procedures,requires precise depth monitoring to mitigate risks ranging from intraoperative awareness to postoperative cognitive impairments.Traditional assessment methods,relyin...General anesthesia,pivotal for surgical procedures,requires precise depth monitoring to mitigate risks ranging from intraoperative awareness to postoperative cognitive impairments.Traditional assessment methods,relying on physiological indicators or behavioral responses,fall short of accurately capturing the nuanced states of unconsciousness.This study introduces a machine learning-based approach to decode anesthesia depth,leveraging EEG data across different anesthesia states induced by propofol and esketamine in rats.Our findings demonstrate the model’s robust predictive accuracy,underscored by a novel intrasubject dataset partitioning and a 5-fold cross-validation method.The research diverges from conventional monitoring by utilizing anesthetic infusion rates as objective indicators of anesthesia states,highlighting distinct EEG patterns and enhancing prediction accuracy.Moreover,the model’s ability to generalize across individuals suggests its potential for broad clinical application,distinguishing between anesthetic agents and their depths.Despite relying on rat EEG data,which poses questions about real-world applicability,our approach marks a significant advance in anesthesia monitoring.展开更多
A personalized outfit recommendation has emerged as a hot research topic in the fashion domain.However,existing recommendations do not fully exploit user style preferences.Typically,users prefer particular styles such...A personalized outfit recommendation has emerged as a hot research topic in the fashion domain.However,existing recommendations do not fully exploit user style preferences.Typically,users prefer particular styles such as casual and athletic styles,and consider attributes like color and texture when selecting outfits.To achieve personalized outfit recommendations in line with user style preferences,this paper proposes a personal style guided outfit recommendation with multi-modal fashion compatibility modeling,termed as PSGNet.Firstly,a style classifier is designed to categorize fashion images of various clothing types and attributes into distinct style categories.Secondly,a personal style prediction module extracts user style preferences by analyzing historical data.Then,to address the limitations of single-modal representations and enhance fashion compatibility,both fashion images and text data are leveraged to extract multi-modal features.Finally,PSGNet integrates these components through Bayesian personalized ranking(BPR)to unify the personal style and fashion compatibility,where the former is used as personal style features and guides the output of the personalized outfit recommendation tailored to the target user.Extensive experiments on large-scale datasets demonstrate that the proposed model is efficient on the personalized outfit recommendation.展开更多
A new modeling and monitoring approach for multi-mode processes is proposed.The method of similarity measure(SM) and kernel principal component analysis(KPCA) are integrated to construct SM-KPCA monitoring scheme,wher...A new modeling and monitoring approach for multi-mode processes is proposed.The method of similarity measure(SM) and kernel principal component analysis(KPCA) are integrated to construct SM-KPCA monitoring scheme,where SM method serves as the separation of common subspace and specific subspace.Compared with the traditional methods,the main contributions of this work are:1) SM consisted of two measures of distance and angle to accommodate process characters.The different monitoring effect involves putting on the different weight,which would simplify the monitoring model structure and enhance its reliability and robustness.2) The proposed method can be used to find faults by the common space and judge which mode the fault belongs to by the specific subspace.Results of algorithm analysis and fault detection experiments indicate the validity and practicability of the presented method.展开更多
Wearable sensing systems have been designed to monitor health conditions in real-time by detecting analytes in human biofluids.Wound diagnosis remains challenging,necessitating suitable materials for high-performance ...Wearable sensing systems have been designed to monitor health conditions in real-time by detecting analytes in human biofluids.Wound diagnosis remains challenging,necessitating suitable materials for high-performance wearable sensors to offer prompt feedback.Existing devices have limitations in measuring pH and the concentration of pH-dependent electroactive species simultaneously,which is crucial for obtaining a comprehensive understanding of wound status and optimizing biosensors.Therefore,improving materials and analysis system accuracy is essential.This article introduces the first example of a flexible array capable of detecting pyocyanin,a bacterial virulence factor,while correcting dynamic pH fluctuations.We demonstrate that this combined sensor enhances accuracy by mitigating the impact of pH variability on pyocyanin sensor response.Customized screen-printable inks were developed to enhance analytical performance.The analytical performances of two sensitive sensor systems(i.e.,fully-printed porous graphene/multiwalled carbon nanotube(CNT)and polyaniline/CNT composites for pyocyanin and pH sensors)are evaluated.Partial least square regression is employed to analyze nonzero-order data arrays from square wave voltammetric and potentiometric measurements of pyocyanin and pH sensors to establish a predictive model for pyocyanin concentration in complex fluids.This sensitive and effective strategy shows potential for personalized applications due to its affordability,ease of use,and ability to adjust for dynamic pH changes.展开更多
To tackle the issue of notch frequency and center frequency drift of the L(0,1)mode guided wave in ultra⁃sonic guided wave⁃based stress monitoring of prestressed steel strands,a method using higher⁃order mode plateau ...To tackle the issue of notch frequency and center frequency drift of the L(0,1)mode guided wave in ultra⁃sonic guided wave⁃based stress monitoring of prestressed steel strands,a method using higher⁃order mode plateau fre⁃quencies is adopted.First,the correlation between group velocity peaks and phase velocities at these plateau frequen⁃cies is analyzed.This analysis establishes a quantitative rela⁃tionship between phase velocity and stress in the steel strand,providing a theoretical foundation for stress monitor⁃ing.Then the two⁃dimensional Fourier transform is em⁃ployed to separate wave modes.Dynamic programming techniques are applied in the frequency⁃velocity domain to extract higher⁃order modes.By identifying the group veloc⁃ity peaks of these separated higher⁃order modes,the plateau frequencies of guided waves are determined,enabling indi⁃rect measurement of stress in the steel strand.To validate this method,finite element simulations are conducted under three scenarios.Results show that the higher⁃order modes of transient signals from three different positions can be ac⁃curately extracted,leading to successful cable stress moni⁃toring.This approach effectively circumvents the issue of guided wave frequency drift and improves stress monitoring accuracy.Consequently,it significantly improves the appli⁃cation of ultrasonic guided wave technology in structural health monitoring.展开更多
BACKGROUND At present,the conventional methods for diagnosing cerebral edema in clinical practice are computed tomography(CT)and magnetic resonance imaging(MRI),which can evaluate the location and degree of peripheral...BACKGROUND At present,the conventional methods for diagnosing cerebral edema in clinical practice are computed tomography(CT)and magnetic resonance imaging(MRI),which can evaluate the location and degree of peripheral cerebral edema,but cannot realize quantification.When patients have symptoms of diffuse cerebral edema or high cranial pressure,CT or MRI often suggests that cerebral edema is lagging and cannot be dynamically monitored in real time.Intracranial pressure monitoring is the gold standard,but it is an invasive operation with high cost and complications.For clinical purposes,the ideal cerebral edema monitoring should be non-invasive,real-time,bedside,and continuous dynamic monitoring.The dis-turbance coefficient(DC)was used in this study to dynamically monitor the occu-rrence,development,and evolution of cerebral edema in patients with cerebral hemorrhage in real time,and review head CT or MRI to evaluate the development of the disease and guide further treatment,so as to improve the prognosis of patients with cerebral hemorrhage.AIM To offer a promising new approach for non-invasive adjuvant therapy in cerebral edema treatment.METHODS A total of 160 patients with hypertensive cerebral hemorrhage admitted to the Department of Neurosurgery,Second Affiliated Hospital of Xi’an Medical University from September 2018 to September 2019 were recruited.The patients were randomly divided into a control group(n=80)and an experimental group(n=80).Patients in the control group received conventional empirical treatment,while those in the experimental group were treated with mannitol dehydration under the guidance of DC.Subsequently,we compared the two groups with regards to the total dosage of mannitol,the total course of treatment,the incidence of complications,and prognosis.RESULTS The mean daily consumption of mannitol,the total course of treatment,and the mean hospitalization days were 362.7±117.7 mL,14.8±5.2 days,and 29.4±7.9 in the control group and 283.1±93.6 mL,11.8±4.2 days,and 23.9±8.3 in the experimental group(P<0.05).In the control group,there were 20 patients with pulmonary infection(25%),30 with electrolyte disturbance(37.5%),20 with renal impairment(25%),and 16 with stress ulcer(20%).In the experimental group,pulmonary infection occurred in 18 patients(22.5%),electrolyte disturbance in 6(7.5%),renal impairment in 2(2.5%),and stress ulcers in 15(18.8%)(P<0.05).According to the Glasgow coma scale score 6 months after discharge,the prognosis of the control group was good in 20 patients(25%),fair in 26(32.5%),and poor in 34(42.5%);the prognosis of the experimental group was good in 32(40%),fair in 36(45%),and poor in 12(15%)(P<0.05).CONCLUSION Using DC for non-invasive dynamic monitoring of cerebral edema demonstrates considerable clinical potential.It reduces mannitol dosage,treatment duration,complication rates,and hospital stays,ultimately lowering hospital-ization costs.Additionally,it improves overall patient prognosis,offering a promising new approach for non-invasive adjuvant therapy in cerebral edema treatment.展开更多
Belt conveyors are extensively utilized in mining and power industries.In a typical coal mine conveyor system,coal is transported over distances exceeding 2 km,involving more than 20000 idlers,which far exceeds a reas...Belt conveyors are extensively utilized in mining and power industries.In a typical coal mine conveyor system,coal is transported over distances exceeding 2 km,involving more than 20000 idlers,which far exceeds a reasonable manual inspection capacity.Given that idlers typically have a lifespan of 1-2 years,there is an urgent need for a rapid,cost-effective,and intelligent safety monitoring system.However,current embedded systems face prohibitive replacement costs,while conventional monitoring technologies suffer from inefficiency at low rotational speeds and lack systematic structural optimization frameworks for diverse idler types and parameters.To address these challenges,this paper introduces an integrated,on-site detachable self-powered idler condition monitoring system(ICMS).This system combines energy harvesting based on the magnetic modulation technology with wireless condition monitoring capabilities.Specifically,it develops a data-driven model integrating convolutional neural networks(CNNs) with genetic algorithms(GAs).The conventional testing results show that the data-driven model not only significantly accelerates the parameter response time,but also achieves a prediction accuracy of 92.95%.The in-situ experiments conducted in coal mines demonstrate the system's reliability and monitoring functionality under both no-load and fullload conditions.This research provides an innovative self-powered condition monitoring solution and develops an efficient data-driven model,offering feasible online monitoring approaches for smart mine construction.展开更多
Flexible wearable optoelectronic devices fabricated fromorganic–inorganic hybrid perovskites significantly accelerate the developmentof portable energy,biomedicine,and sensing fields,but their poor thermal stabilityh...Flexible wearable optoelectronic devices fabricated fromorganic–inorganic hybrid perovskites significantly accelerate the developmentof portable energy,biomedicine,and sensing fields,but their poor thermal stabilityhinders further applications.Conversely,all-inorganic perovskites possessexcellent thermal stability,but black-phase all-inorganic perovskite filmusually requires high-temperature annealing steps,which increases energy consumptionand is not conducive to the fabrication of flexible wearable devices.In this work,an unprecedented low-temperature fabrication of stable blackphaseCsPbI3perovskite films is demonstrated by the in situ hydrolysis reactionof diphenylphosphinic chloride additive.The released diphenyl phosphateand chloride ions during the hydrolysis reaction significantly lower the phasetransition temperature and effectively passivate the defects in the perovskitefilms,yielding high-performance photodetectors with a responsivity of 42.1 AW−1 and a detectivity of 1.3×10^(14)Jones.Furthermore,high-fidelity imageand photoplethysmography sensors are demonstrated based on the fabricated flexible wearable photodetectors.This work provides a newperspective for the low-temperature fabrication of large-area all-inorganic perovskite flexible optoelectronic devices.展开更多
Precise coseismic displacements in earthquake/tsunamic early warning are necessary to characterize earthquakes in real time in order to enable decision-makers to issue alerts for public safety.Real-time global navigat...Precise coseismic displacements in earthquake/tsunamic early warning are necessary to characterize earthquakes in real time in order to enable decision-makers to issue alerts for public safety.Real-time global navigation satellite systems(GNSSs)have been a valuable tool in monitoring seismic motions,allowing permanent displacement computation to be unambiguously achieved.As a valuable tool presented to the seismic commu nity,the GSeisRT software developed by Wuhan University(China)can realize multi-GNSS precise point positioning with ambiguity resolution(PPP-AR)and achieve centimeterlevel to sub-centimeter-level precision in real time.While the stable maintenance of a global precise point positioning(PPP)service is challenging,this software is capable of estimating satellite clocks and phase biases in real time using a regional GNSS network.This capability makes GSeisRT especially suitable for proprietary GNSS networks and,more importantly,the highest possible positio ning precision and reliability can be obtained.According to real-time results from the Network of the Americas,the mean root mean square(RMS)errors of kinematic PPP-AR over a 24 h span are as low as 1.2,1.3,and 3.0 cm in the east,north,and up components,respectively.Within the few minutes that span a typical seismic event,a horizontal displacement precision of 4 mm can be achieved.The positioning precision of the GSeisRT regional PPP/PPP-AR is 30%-40%higher than that of the global PPP/PPP-AR.Since 2019,GSeisRT has successfully recorded the static,dynamic,and peak ground displacements for the 2020Oaxaca,Mexico moment magnitude(Mw)7.4 event;the 2020 Lone Pine,California Mw 5.8 event;and the 2021 Qinghai,China Mw 7.3 event in real time.The resulting immediate magnitude estimates have an error of around 0.1 only.The GSeisRT software is open to the scientific community and has been applied by the China Earthquake Ne tworks Center,the EarthScope Consortium of the United States,the National Seismological Center of Chile,Institute of Geological and Nuclear Sciences Limited(GNS Science Te PūAo)of New Zealand,and the Geospatial Information Agency of Indonesia.展开更多
基金supported by the National Natural Science Foundation of China(22074072,22274083,52376199)the Shandong Provincial Natural Science Foundation(ZR2023LZY005)+1 种基金the Exploration Project of the State Key Laboratory of BioFibers and EcoTextiles of Qingdao University(TSKT202101)the Fundamental Research Funds for the Central Universities(2022BLRD13,2023BLRD01).
文摘A rapidly growing field is piezoresistive sensor for accurate respiration rate monitoring to suppress the worldwide respiratory illness.However,a large neglected issue is the sensing durability and accuracy without interference since the expiratory pressure always coupled with external humidity and temperature variations,as well as mechanical motion artifacts.Herein,a robust and biodegradable piezoresistive sensor is reported that consists of heterogeneous MXene/cellulose-gelation sensing layer and Ag-based interdigital electrode,featuring customizable cylindrical interface arrangement and compact hierarchical laminated architecture for collectively regulating the piezoresistive response and mechanical robustness,thereby realizing the long-term breath-induced pressure detection.Notably,molecular dynamics simulations reveal the frequent angle inversion and reorientation of MXene/cellulose in vacuum filtration,driven by shear forces and interfacial interactions,which facilitate the establishment of hydrogen bonds and optimize the architecture design in sensing layer.The resultant sensor delivers unprecedented collection features of superior stability for off-axis deformation(0-120°,~2.8×10^(-3) A)and sensing accuracy without crosstalk(humidity 50%-100%and temperature 30-80).Besides,the sensor-embedded mask together with machine learning models is achieved to train and classify the respiration status for volunteers with different ages(average prediction accuracy~90%).It is envisioned that the customizable architecture design and sensor paradigm will shed light on the advanced stability of sustainable electronics and pave the way for the commercial application in respiratory monitory.
文摘Advanced traffic monitoring systems encounter substantial challenges in vehicle detection and classification due to the limitations of conventional methods,which often demand extensive computational resources and struggle with diverse data acquisition techniques.This research presents a novel approach for vehicle classification and recognition in aerial image sequences,integrating multiple advanced techniques to enhance detection accuracy.The proposed model begins with preprocessing using Multiscale Retinex(MSR)to enhance image quality,followed by Expectation-Maximization(EM)Segmentation for precise foreground object identification.Vehicle detection is performed using the state-of-the-art YOLOv10 framework,while feature extraction incorporates Maximally Stable Extremal Regions(MSER),Dense Scale-Invariant Feature Transform(Dense SIFT),and Zernike Moments Features to capture distinct object characteristics.Feature optimization is further refined through a Hybrid Swarm-based Optimization algorithm,ensuring optimal feature selection for improved classification performance.The final classification is conducted using a Vision Transformer,leveraging its robust learning capabilities for enhanced accuracy.Experimental evaluations on benchmark datasets,including UAVDT and the Unmanned Aerial Vehicle Intruder Dataset(UAVID),demonstrate the superiority of the proposed approach,achieving an accuracy of 94.40%on UAVDT and 93.57%on UAVID.The results highlight the efficacy of the model in significantly enhancing vehicle detection and classification in aerial imagery,outperforming existing methodologies and offering a statistically validated improvement for intelligent traffic monitoring systems compared to existing approaches.
文摘Diabetes mellitus represents a major global health issue,driving the need for noninvasive alternatives to traditional blood glucose monitoring methods.Recent advancements in wearable technology have introduced skin-interfaced biosensors capable of analyzing sweat and skin biomarkers,providing innovative solutions for diabetes diagnosis and monitoring.This review comprehensively discusses the current developments in noninvasive wearable biosensors,emphasizing simultaneous detection of biochemical biomarkers(such as glucose,cortisol,lactate,branched-chain amino acids,and cytokines)and physiological signals(including heart rate,blood pressure,and sweat rate)for accurate,personalized diabetes management.We explore innovations in multimodal sensor design,materials science,biorecognition elements,and integration techniques,highlighting the importance of advanced data analytics,artificial intelligence-driven predictive algorithms,and closed-loop therapeutic systems.Additionally,the review addresses ongoing challenges in biomarker validation,sensor stability,user compliance,data privacy,and regulatory considerations.A holistic,multimodal approach enabled by these next-generation wearable biosensors holds significant potential for improving patient outcomes and facilitating proactive healthcare interventions in diabetes management.
基金supported by the National Natural Science Foundation of China(NSFC 52175281,52475315)Youth Innovation Promotion Association of CAS(2021382)。
文摘The growing prevalence of exercise-induced tibial stress fractures demands wearable sensors capable of monitoring dynamic musculoskeletal loads with medical-grade precision.While flexible pressure-sensing insoles show clinical potential,their development has been hindered by the intrinsic trade-off between high sensitivity and full-range linearity(R^(2)>0.99 up to 1 MPa)in conventional designs.Inspired by the tactile sensing mechanism of human skin,where dermal stratification enables wide-range pressure adaptation and ion-channelregulated signaling maintains linear electrical responses,we developed a dual-mechanism flexible iontronic pressure sensor(FIPS).This innovative design synergistically combines two bioinspired components:interdigitated fabric microstructures enabling pressure-proportional contact area expansion(αP1/3)and iontronic film facilitating self-adaptive ion concentration modulation(αP^(2/3)),which together generate a linear capacitance-pressure response(CαP).The FIPS achieves breakthrough performance:242 kPa^(-1)sensitivity with 0.997linearity across 0-1 MPa,yielding a record linear sensing factor(LSF=242,000).The design is validated across various substrates and ionic materials,demonstrating its versatility.Finally,the FIPS-driven design enables a smart insole demonstrating 1.8%error in tibial load assessment during gait analysis,outperforming nonlinear counterparts(6.5%error)in early fracture-risk prediction.The biomimetic design framework establishes a universal approach for developing high-performance linear sensors,establishing generalized principles for medical-grade wearable devices.
基金Project(61374140)supported by the National Natural Science Foundation of China
文摘There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring.
基金financially supported by the National Natural Science Foundation of China(No.52371049)the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(YESS,No.2020QNRC001)the National Science and Technology Resources Investigation Program of China(Nos.2021FY100603 and 2019FY101404)。
文摘The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating.
基金Construction Program of the Key Discipline of State Administration of Traditional Chinese Medicine of China(ZYYZDXK-2023069)Research Project of Shanghai Municipal Health Commission (2024QN018)Shanghai University of Traditional Chinese Medicine Science and Technology Development Program (23KFL005)。
文摘Objective To develop a non-invasive predictive model for coronary artery stenosis severity based on adaptive multi-modal integration of traditional Chinese and western medicine data.Methods Clinical indicators,echocardiographic data,traditional Chinese medicine(TCM)tongue manifestations,and facial features were collected from patients who underwent coro-nary computed tomography angiography(CTA)in the Cardiac Care Unit(CCU)of Shanghai Tenth People's Hospital between May 1,2023 and May 1,2024.An adaptive weighted multi-modal data fusion(AWMDF)model based on deep learning was constructed to predict the severity of coronary artery stenosis.The model was evaluated using metrics including accura-cy,precision,recall,F1 score,and the area under the receiver operating characteristic(ROC)curve(AUC).Further performance assessment was conducted through comparisons with six ensemble machine learning methods,data ablation,model component ablation,and various decision-level fusion strategies.Results A total of 158 patients were included in the study.The AWMDF model achieved ex-cellent predictive performance(AUC=0.973,accuracy=0.937,precision=0.937,recall=0.929,and F1 score=0.933).Compared with model ablation,data ablation experiments,and various traditional machine learning models,the AWMDF model demonstrated superior per-formance.Moreover,the adaptive weighting strategy outperformed alternative approaches,including simple weighting,averaging,voting,and fixed-weight schemes.Conclusion The AWMDF model demonstrates potential clinical value in the non-invasive prediction of coronary artery disease and could serve as a tool for clinical decision support.
文摘Traditional Chinese medicine(TCM)demonstrates distinctive advantages in disease prevention and treatment.However,analyzing its biological mechanisms through the modern medical research paradigm of“single drug,single target”presents significant challenges due to its holistic approach.Network pharmacology and its core theory of network targets connect drugs and diseases from a holistic and systematic perspective based on biological networks,overcoming the limitations of reductionist research models and showing considerable value in TCM research.Recent integration of network target computational and experimental methods with artificial intelligence(AI)and multi-modal multi-omics technologies has substantially enhanced network pharmacology methodology.The advancement in computational and experimental techniques provides complementary support for network target theory in decoding TCM principles.This review,centered on network targets,examines the progress of network target methods combined with AI in predicting disease molecular mechanisms and drug-target relationships,alongside the application of multi-modal multi-omics technologies in analyzing TCM formulae,syndromes,and toxicity.Looking forward,network target theory is expected to incorporate emerging technologies while developing novel approaches aligned with its unique characteristics,potentially leading to significant breakthroughs in TCM research and advancing scientific understanding and innovation in TCM.
基金supported by the National Natural Science Foundation of China(No.51605054).
文摘Environmentalmonitoring systems based on remote sensing technology have a wider monitoringrange and longer timeliness, which makes them widely used in the detection andmanagement of pollution sources. However, haze weather conditions degrade image qualityand reduce the precision of environmental monitoring systems. To address this problem,this research proposes a remote sensing image dehazingmethod based on the atmosphericscattering model and a dark channel prior constrained network. The method consists ofa dehazing network, a dark channel information injection network (DCIIN), and a transmissionmap network. Within the dehazing network, the branch fusion module optimizesfeature weights to enhance the dehazing effect. By leveraging dark channel information,the DCIIN enables high-quality estimation of the atmospheric veil. To ensure the outputof the deep learning model aligns with physical laws, we reconstruct the haze image usingthe prediction results from the three networks. Subsequently, we apply the traditionalloss function and dark channel loss function between the reconstructed haze image and theoriginal haze image. This approach enhances interpretability and reliabilitywhile maintainingadherence to physical principles. Furthermore, the network is trained on a synthesizednon-homogeneous haze remote sensing dataset using dark channel information from cloudmaps. The experimental results show that the proposed network can achieve better imagedehazing on both synthetic and real remote sensing images with non-homogeneous hazedistribution. This research provides a new idea for solving the problem of decreased accuracyof environmental monitoring systems under haze weather conditions and has strongpracticability.
基金supported by the National Natural Science Foundation of China(Nos.62371323,62401380,U2433217,U2333209,and U20A20161)Natural Science Foundation of Sichuan Province,China(Nos.2025ZNSFSC1476)+2 种基金Sichuan Science and Technology Program,China(Nos.2024YFG0010 and 2024ZDZX0046)the Institutional Research Fund from Sichuan University(Nos.2024SCUQJTX030)the Open Fund of Key Laboratory of Flight Techniques and Flight Safety,CAAC(Nos.GY2024-01A).
文摘With the advent of the next-generation Air Traffic Control(ATC)system,there is growing interest in using Artificial Intelligence(AI)techniques to enhance Situation Awareness(SA)for ATC Controllers(ATCOs),i.e.,Intelligent SA(ISA).However,the existing AI-based SA approaches often rely on unimodal data and lack a comprehensive description and benchmark of the ISA tasks utilizing multi-modal data for real-time ATC environments.To address this gap,by analyzing the situation awareness procedure of the ATCOs,the ISA task is refined to the processing of the two primary elements,i.e.,spoken instructions and flight trajectories.Subsequently,the ISA is further formulated into Controlling Intent Understanding(CIU)and Flight Trajectory Prediction(FTP)tasks.For the CIU task,an innovative automatic speech recognition and understanding framework is designed to extract the controlling intent from unstructured and continuous ATC communications.For the FTP task,the single-and multi-horizon FTP approaches are investigated to support the high-precision prediction of the situation evolution.A total of 32 unimodal/multi-modal advanced methods with extensive evaluation metrics are introduced to conduct the benchmarks on the real-world multi-modal ATC situation dataset.Experimental results demonstrate the effectiveness of AI-based techniques in enhancing ISA for the ATC environment.
基金supports received from Scientific Research Fund of Liaoning Province Education Department(Grant No.JYTQN 2023025)Scientific Research Fund of Liaoning Province Education Department(Grant No.JYTQN 2023025)+3 种基金the Natural Science Foundation of Liaoning Province(Grant No.2024-MS-075)the National Natural Science Foundation of China(32201179)National Key R&D Program of China(2023YFC2508200)Liaoning Provincial Natural Science Foundation Joint Fund(General Support Program Project)(2023-MSBA-093).
文摘Refractory wounds cause significant harm to the health of patients and the most common treatments in clinical practice are surgical debridement and wound dressings.However,certain challenges,including surgical difficulty,lengthy recovery times,and a high recurrence rate persist.Conductive hydrogel dressings with combined monitoring and therapeutic properties have strong advantages in promoting wound healing due to the stimulation of endogenous current on wounds and are the focus of recent advancements.Therefore,this review introduces the mechanism of conductive hydrogel used for wound monitoring and healing,the materials selection of conductive hydrogel dressings used for wound monitoring,focuses on the conductive hydrogel sensor to monitor the output categories of wound status signals,proving invaluable for non-invasive,real-time evaluation of wound condition to encourage wound healing.Notably,the research of artificial intelligence(AI)model based on sensor derived data to predict the wound healing state,AI makes use of this abundant data set to forecast and optimize the trajectory of tissue regeneration and assess the stage of wound healing.Finally,refractory wounds including pressure ulcers,diabetes ulcers and articular wounds,and the corresponding wound monitoring and healing process are discussed in detail.This manuscript supports the growth of clinically linked disciplines and offers motivation to researchers working in the multidisciplinary field of conductive hydrogel dressings.
基金supported by grants from the Shanghai Municipal Health Commission(2023ZDFC0203)the National Natural Science Foundation of China(32171044).
文摘General anesthesia,pivotal for surgical procedures,requires precise depth monitoring to mitigate risks ranging from intraoperative awareness to postoperative cognitive impairments.Traditional assessment methods,relying on physiological indicators or behavioral responses,fall short of accurately capturing the nuanced states of unconsciousness.This study introduces a machine learning-based approach to decode anesthesia depth,leveraging EEG data across different anesthesia states induced by propofol and esketamine in rats.Our findings demonstrate the model’s robust predictive accuracy,underscored by a novel intrasubject dataset partitioning and a 5-fold cross-validation method.The research diverges from conventional monitoring by utilizing anesthetic infusion rates as objective indicators of anesthesia states,highlighting distinct EEG patterns and enhancing prediction accuracy.Moreover,the model’s ability to generalize across individuals suggests its potential for broad clinical application,distinguishing between anesthetic agents and their depths.Despite relying on rat EEG data,which poses questions about real-world applicability,our approach marks a significant advance in anesthesia monitoring.
基金Shanghai Frontier Science Research Center for Modern Textiles,Donghua University,ChinaOpen Project of Henan Key Laboratory of Intelligent Manufacturing of Mechanical Equipment,Zhengzhou University of Light Industry,China(No.IM202303)National Key Research and Development Program of China(No.2019YFB1706300)。
文摘A personalized outfit recommendation has emerged as a hot research topic in the fashion domain.However,existing recommendations do not fully exploit user style preferences.Typically,users prefer particular styles such as casual and athletic styles,and consider attributes like color and texture when selecting outfits.To achieve personalized outfit recommendations in line with user style preferences,this paper proposes a personal style guided outfit recommendation with multi-modal fashion compatibility modeling,termed as PSGNet.Firstly,a style classifier is designed to categorize fashion images of various clothing types and attributes into distinct style categories.Secondly,a personal style prediction module extracts user style preferences by analyzing historical data.Then,to address the limitations of single-modal representations and enhance fashion compatibility,both fashion images and text data are leveraged to extract multi-modal features.Finally,PSGNet integrates these components through Bayesian personalized ranking(BPR)to unify the personal style and fashion compatibility,where the former is used as personal style features and guides the output of the personalized outfit recommendation tailored to the target user.Extensive experiments on large-scale datasets demonstrate that the proposed model is efficient on the personalized outfit recommendation.
基金Projects(61273163,61325015,61304121)supported by the National Natural Science Foundation of China
文摘A new modeling and monitoring approach for multi-mode processes is proposed.The method of similarity measure(SM) and kernel principal component analysis(KPCA) are integrated to construct SM-KPCA monitoring scheme,where SM method serves as the separation of common subspace and specific subspace.Compared with the traditional methods,the main contributions of this work are:1) SM consisted of two measures of distance and angle to accommodate process characters.The different monitoring effect involves putting on the different weight,which would simplify the monitoring model structure and enhance its reliability and robustness.2) The proposed method can be used to find faults by the common space and judge which mode the fault belongs to by the specific subspace.Results of algorithm analysis and fault detection experiments indicate the validity and practicability of the presented method.
基金the Talent Management Project of Prince of Songkla University
文摘Wearable sensing systems have been designed to monitor health conditions in real-time by detecting analytes in human biofluids.Wound diagnosis remains challenging,necessitating suitable materials for high-performance wearable sensors to offer prompt feedback.Existing devices have limitations in measuring pH and the concentration of pH-dependent electroactive species simultaneously,which is crucial for obtaining a comprehensive understanding of wound status and optimizing biosensors.Therefore,improving materials and analysis system accuracy is essential.This article introduces the first example of a flexible array capable of detecting pyocyanin,a bacterial virulence factor,while correcting dynamic pH fluctuations.We demonstrate that this combined sensor enhances accuracy by mitigating the impact of pH variability on pyocyanin sensor response.Customized screen-printable inks were developed to enhance analytical performance.The analytical performances of two sensitive sensor systems(i.e.,fully-printed porous graphene/multiwalled carbon nanotube(CNT)and polyaniline/CNT composites for pyocyanin and pH sensors)are evaluated.Partial least square regression is employed to analyze nonzero-order data arrays from square wave voltammetric and potentiometric measurements of pyocyanin and pH sensors to establish a predictive model for pyocyanin concentration in complex fluids.This sensitive and effective strategy shows potential for personalized applications due to its affordability,ease of use,and ability to adjust for dynamic pH changes.
基金The National Natural Science Foundation of China(No.52278303).
文摘To tackle the issue of notch frequency and center frequency drift of the L(0,1)mode guided wave in ultra⁃sonic guided wave⁃based stress monitoring of prestressed steel strands,a method using higher⁃order mode plateau fre⁃quencies is adopted.First,the correlation between group velocity peaks and phase velocities at these plateau frequen⁃cies is analyzed.This analysis establishes a quantitative rela⁃tionship between phase velocity and stress in the steel strand,providing a theoretical foundation for stress monitor⁃ing.Then the two⁃dimensional Fourier transform is em⁃ployed to separate wave modes.Dynamic programming techniques are applied in the frequency⁃velocity domain to extract higher⁃order modes.By identifying the group veloc⁃ity peaks of these separated higher⁃order modes,the plateau frequencies of guided waves are determined,enabling indi⁃rect measurement of stress in the steel strand.To validate this method,finite element simulations are conducted under three scenarios.Results show that the higher⁃order modes of transient signals from three different positions can be ac⁃curately extracted,leading to successful cable stress moni⁃toring.This approach effectively circumvents the issue of guided wave frequency drift and improves stress monitoring accuracy.Consequently,it significantly improves the appli⁃cation of ultrasonic guided wave technology in structural health monitoring.
基金Supported by the Shaanxi Provincial Key Research and Development Plan Project,No.2020ZDLSF01-02.
文摘BACKGROUND At present,the conventional methods for diagnosing cerebral edema in clinical practice are computed tomography(CT)and magnetic resonance imaging(MRI),which can evaluate the location and degree of peripheral cerebral edema,but cannot realize quantification.When patients have symptoms of diffuse cerebral edema or high cranial pressure,CT or MRI often suggests that cerebral edema is lagging and cannot be dynamically monitored in real time.Intracranial pressure monitoring is the gold standard,but it is an invasive operation with high cost and complications.For clinical purposes,the ideal cerebral edema monitoring should be non-invasive,real-time,bedside,and continuous dynamic monitoring.The dis-turbance coefficient(DC)was used in this study to dynamically monitor the occu-rrence,development,and evolution of cerebral edema in patients with cerebral hemorrhage in real time,and review head CT or MRI to evaluate the development of the disease and guide further treatment,so as to improve the prognosis of patients with cerebral hemorrhage.AIM To offer a promising new approach for non-invasive adjuvant therapy in cerebral edema treatment.METHODS A total of 160 patients with hypertensive cerebral hemorrhage admitted to the Department of Neurosurgery,Second Affiliated Hospital of Xi’an Medical University from September 2018 to September 2019 were recruited.The patients were randomly divided into a control group(n=80)and an experimental group(n=80).Patients in the control group received conventional empirical treatment,while those in the experimental group were treated with mannitol dehydration under the guidance of DC.Subsequently,we compared the two groups with regards to the total dosage of mannitol,the total course of treatment,the incidence of complications,and prognosis.RESULTS The mean daily consumption of mannitol,the total course of treatment,and the mean hospitalization days were 362.7±117.7 mL,14.8±5.2 days,and 29.4±7.9 in the control group and 283.1±93.6 mL,11.8±4.2 days,and 23.9±8.3 in the experimental group(P<0.05).In the control group,there were 20 patients with pulmonary infection(25%),30 with electrolyte disturbance(37.5%),20 with renal impairment(25%),and 16 with stress ulcer(20%).In the experimental group,pulmonary infection occurred in 18 patients(22.5%),electrolyte disturbance in 6(7.5%),renal impairment in 2(2.5%),and stress ulcers in 15(18.8%)(P<0.05).According to the Glasgow coma scale score 6 months after discharge,the prognosis of the control group was good in 20 patients(25%),fair in 26(32.5%),and poor in 34(42.5%);the prognosis of the experimental group was good in 32(40%),fair in 36(45%),and poor in 12(15%)(P<0.05).CONCLUSION Using DC for non-invasive dynamic monitoring of cerebral edema demonstrates considerable clinical potential.It reduces mannitol dosage,treatment duration,complication rates,and hospital stays,ultimately lowering hospital-ization costs.Additionally,it improves overall patient prognosis,offering a promising new approach for non-invasive adjuvant therapy in cerebral edema treatment.
基金supported by the National Natural Science Foundation of China(Nos.12172248,12302022,12021002,and 12132010)the Tianjin Research Program of Application Foundation and Advanced Technology of China(No.23JCZDJC00950)。
文摘Belt conveyors are extensively utilized in mining and power industries.In a typical coal mine conveyor system,coal is transported over distances exceeding 2 km,involving more than 20000 idlers,which far exceeds a reasonable manual inspection capacity.Given that idlers typically have a lifespan of 1-2 years,there is an urgent need for a rapid,cost-effective,and intelligent safety monitoring system.However,current embedded systems face prohibitive replacement costs,while conventional monitoring technologies suffer from inefficiency at low rotational speeds and lack systematic structural optimization frameworks for diverse idler types and parameters.To address these challenges,this paper introduces an integrated,on-site detachable self-powered idler condition monitoring system(ICMS).This system combines energy harvesting based on the magnetic modulation technology with wireless condition monitoring capabilities.Specifically,it develops a data-driven model integrating convolutional neural networks(CNNs) with genetic algorithms(GAs).The conventional testing results show that the data-driven model not only significantly accelerates the parameter response time,but also achieves a prediction accuracy of 92.95%.The in-situ experiments conducted in coal mines demonstrate the system's reliability and monitoring functionality under both no-load and fullload conditions.This research provides an innovative self-powered condition monitoring solution and develops an efficient data-driven model,offering feasible online monitoring approaches for smart mine construction.
基金supported by the National Natural Science Foundation of China(52303257,52321006,T2394480,and T2394484)the National Key R&D Program of China(Grant No.2023YFE0111500)+3 种基金Key Research&Development and Promotion of Special Project(Scientific Problem Tackling)of Henan Province(242102211090)the China Postdoctoral Science Foundation(2023TQ0300,and 2023M743171)the Postdoctoral Fellowship Program(Grade B)of China Postdoctoral Science Foundation(GZB20230666)College Student Innovation and Entrepreneurship Training Program of Zhengzhou University(202410459200)。
文摘Flexible wearable optoelectronic devices fabricated fromorganic–inorganic hybrid perovskites significantly accelerate the developmentof portable energy,biomedicine,and sensing fields,but their poor thermal stabilityhinders further applications.Conversely,all-inorganic perovskites possessexcellent thermal stability,but black-phase all-inorganic perovskite filmusually requires high-temperature annealing steps,which increases energy consumptionand is not conducive to the fabrication of flexible wearable devices.In this work,an unprecedented low-temperature fabrication of stable blackphaseCsPbI3perovskite films is demonstrated by the in situ hydrolysis reactionof diphenylphosphinic chloride additive.The released diphenyl phosphateand chloride ions during the hydrolysis reaction significantly lower the phasetransition temperature and effectively passivate the defects in the perovskitefilms,yielding high-performance photodetectors with a responsivity of 42.1 AW−1 and a detectivity of 1.3×10^(14)Jones.Furthermore,high-fidelity imageand photoplethysmography sensors are demonstrated based on the fabricated flexible wearable photodetectors.This work provides a newperspective for the low-temperature fabrication of large-area all-inorganic perovskite flexible optoelectronic devices.
基金funded by National Science Foundation of China(42025401)National Key Research and Development Program of China(2022YFB3903800)。
文摘Precise coseismic displacements in earthquake/tsunamic early warning are necessary to characterize earthquakes in real time in order to enable decision-makers to issue alerts for public safety.Real-time global navigation satellite systems(GNSSs)have been a valuable tool in monitoring seismic motions,allowing permanent displacement computation to be unambiguously achieved.As a valuable tool presented to the seismic commu nity,the GSeisRT software developed by Wuhan University(China)can realize multi-GNSS precise point positioning with ambiguity resolution(PPP-AR)and achieve centimeterlevel to sub-centimeter-level precision in real time.While the stable maintenance of a global precise point positioning(PPP)service is challenging,this software is capable of estimating satellite clocks and phase biases in real time using a regional GNSS network.This capability makes GSeisRT especially suitable for proprietary GNSS networks and,more importantly,the highest possible positio ning precision and reliability can be obtained.According to real-time results from the Network of the Americas,the mean root mean square(RMS)errors of kinematic PPP-AR over a 24 h span are as low as 1.2,1.3,and 3.0 cm in the east,north,and up components,respectively.Within the few minutes that span a typical seismic event,a horizontal displacement precision of 4 mm can be achieved.The positioning precision of the GSeisRT regional PPP/PPP-AR is 30%-40%higher than that of the global PPP/PPP-AR.Since 2019,GSeisRT has successfully recorded the static,dynamic,and peak ground displacements for the 2020Oaxaca,Mexico moment magnitude(Mw)7.4 event;the 2020 Lone Pine,California Mw 5.8 event;and the 2021 Qinghai,China Mw 7.3 event in real time.The resulting immediate magnitude estimates have an error of around 0.1 only.The GSeisRT software is open to the scientific community and has been applied by the China Earthquake Ne tworks Center,the EarthScope Consortium of the United States,the National Seismological Center of Chile,Institute of Geological and Nuclear Sciences Limited(GNS Science Te PūAo)of New Zealand,and the Geospatial Information Agency of Indonesia.