期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
CloudViT:A Lightweight Ground-Based Cloud Image Classification Model with the Ability to Capture Global Features
1
作者 Daoming Wei Fangyan Ge +5 位作者 Bopeng Zhang Zhiqiang Zhao Dequan Li Lizong Xi Jinrong Hu Xin Wang 《Computers, Materials & Continua》 2025年第6期5729-5746,共18页
Accurate cloud classification plays a crucial role in aviation safety,climate monitoring,and localized weather forecasting.Current research has been focusing on machine learning techniques,particularly deep learning b... Accurate cloud classification plays a crucial role in aviation safety,climate monitoring,and localized weather forecasting.Current research has been focusing on machine learning techniques,particularly deep learning based model,for the types identification.However,traditional approaches such as convolutional neural networks(CNNs)encounter difficulties in capturing global contextual information.In addition,they are computationally expensive,which restricts their usability in resource-limited environments.To tackle these issues,we present the Cloud Vision Transformer(CloudViT),a lightweight model that integrates CNNs with Transformers.The integration enables an effective balance between local and global feature extraction.To be specific,CloudViT comprises two innovative modules:Feature Extraction(E_Module)and Downsampling(D_Module).These modules are able to significantly reduce the number of model parameters and computational complexity while maintaining translation invariance and enhancing contextual comprehension.Overall,the CloudViT includes 0.93×10^(6)parameters,which decreases more than ten times compared to the SOTA(State-of-the-Art)model CloudNet.Comprehensive evaluations conducted on the HBMCD and SWIMCAT datasets showcase the outstanding performance of CloudViT.It achieves classification accuracies of 98.45%and 100%,respectively.Moreover,the efficiency and scalability of CloudViT make it an ideal candidate for deployment inmobile cloud observation systems,enabling real-time cloud image classification.The proposed hybrid architecture of CloudViT offers a promising approach for advancing ground-based cloud image classification.It holds significant potential for both optimizing performance and facilitating practical deployment scenarios. 展开更多
关键词 Image classification ground-based cloud images lightweight neural networks attention mechanism deep learning vision transformer
在线阅读 下载PDF
Signal classification method based on data mining formulti-mode radar 被引量:10
2
作者 qiang guo pulong nan jian wan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第5期1010-1017,共8页
For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to p... For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to process intercepted signals,which has a negative effect on signal classification. A classificationmethod based on spatial data mining is presented to address theabove challenge. Inspired by the idea of spatial data mining, theclassification method applies nuclear field to depicting the distributioninformation of pulse samples in feature space, and digs out thehidden cluster information by analyzing distribution characteristics.In addition, a membership-degree criterion to quantify the correlationamong all classes is established, which ensures classificationaccuracy of signal samples. Numerical experiments show that thepresented method can effectively prevent different working statesof multi-mode emitter from being classified as several emitters,and achieve higher classification accuracy. 展开更多
关键词 multi-mode radar signal classification data mining nuclear field cloud model membership.
在线阅读 下载PDF
Salient Local Binary Pattern for Ground-Based Cloud Classification 被引量:2
3
作者 刘爽 王春恒 +2 位作者 肖柏华 张重 邵允学 《Acta meteorologica Sinica》 SCIE 2013年第2期211-220,共10页
Ground-based cloud classification is challenging due to extreme variations in the appearance of clouds under different atmospheric conditions. Texture classification techniques have recently been introduced to deal wi... Ground-based cloud classification is challenging due to extreme variations in the appearance of clouds under different atmospheric conditions. Texture classification techniques have recently been introduced to deal with this issue. A novel texture descriptor, the salient local binary pattern (SLBP), is proposed for ground-based cloud classification. The SLBP takes advantage of the most frequently occurring patterns (the salient patterns) to capture descriptive information. This feature makes the SLBP robust to noise. Experimental results using ground-based cloud images demonstrate that the proposed method can achieve better results than current state-of-the-art methods. 展开更多
关键词 salient local binary pattern local binary pattern ground-based cloud classification
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部