期刊文献+
共找到155,130篇文章
< 1 2 250 >
每页显示 20 50 100
Cryptomining Malware Detection Based on Edge Computing-Oriented Multi-Modal Features Deep Learning 被引量:2
1
作者 Wenjuan Lian Guoqing Nie +2 位作者 Yanyan Kang Bin Jia Yang Zhang 《China Communications》 SCIE CSCD 2022年第2期174-185,共12页
In recent years,with the increase in the price of cryptocurrencies,the number of malicious cryptomining software has increased significantly.With their powerful spreading ability,cryptomining malware can unknowingly o... In recent years,with the increase in the price of cryptocurrencies,the number of malicious cryptomining software has increased significantly.With their powerful spreading ability,cryptomining malware can unknowingly occupy our resources,harm our interests,and damage more legitimate assets.However,although current traditional rule-based malware detection methods have a low false alarm rate,they have a relatively low detection rate when faced with a large volume of emerging malware.Even though common machine learning-based or deep learning-based methods have certain ability to learn and detect unknown malware,the characteristics they learn are single and independent,and cannot be learned adaptively.Aiming at the above problems,we propose a deep learning model with multi-input of multi-modal features,which can simultaneously accept digital features and image features on different dimensions.The model in turn includes parallel learning of three sub-models and ensemble learning of another specific sub-model.The four sub-models can be processed in parallel on different devices and can be further applied to edge computing environments.The model can adaptively learn multi-modal features and output prediction results.The detection rate of our model is as high as 97.01%and the false alarm rate is only 0.63%.The experimental results prove the advantage and effectiveness of the proposed method. 展开更多
关键词 cryptomining malware multi-modal ensemble learning deep learning edge computing
在线阅读 下载PDF
Tomato Growth Height Prediction Method by Phenotypic Feature Extraction Using Multi-modal Data
2
作者 GONG Yu WANG Ling +3 位作者 ZHAO Rongqiang YOU Haibo ZHOU Mo LIU Jie 《智慧农业(中英文)》 2025年第1期97-110,共14页
[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-base... [Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-based models that utilize either images data or environmental data.These methods fail to fully leverage multi-modal data to capture the diverse aspects of plant growth comprehensively.[Methods]To address this limitation,a two-stage phenotypic feature extraction(PFE)model based on deep learning algorithm of recurrent neural network(RNN)and long short-term memory(LSTM)was developed.The model integrated environment and plant information to provide a holistic understanding of the growth process,emploied phenotypic and temporal feature extractors to comprehensively capture both types of features,enabled a deeper understanding of the interaction between tomato plants and their environment,ultimately leading to highly accurate predictions of growth height.[Results and Discussions]The experimental results showed the model's ef‐fectiveness:When predicting the next two days based on the past five days,the PFE-based RNN and LSTM models achieved mean absolute percentage error(MAPE)of 0.81%and 0.40%,respectively,which were significantly lower than the 8.00%MAPE of the large language model(LLM)and 6.72%MAPE of the Transformer-based model.In longer-term predictions,the 10-day prediction for 4 days ahead and the 30-day prediction for 12 days ahead,the PFE-RNN model continued to outperform the other two baseline models,with MAPE of 2.66%and 14.05%,respectively.[Conclusions]The proposed method,which leverages phenotypic-temporal collaboration,shows great potential for intelligent,data-driven management of tomato cultivation,making it a promising approach for enhancing the efficiency and precision of smart tomato planting management. 展开更多
关键词 tomato growth prediction deep learning phenotypic feature extraction multi-modal data recurrent neural net‐work long short-term memory large language model
在线阅读 下载PDF
A Hand Features Based Fusion Recognition Network with Enhancing Multi-Modal Correlation
3
作者 Wei Wu Yuan Zhang +2 位作者 Yunpeng Li Chuanyang Li YanHao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期537-555,共19页
Fusing hand-based features in multi-modal biometric recognition enhances anti-spoofing capabilities.Additionally,it leverages inter-modal correlation to enhance recognition performance.Concurrently,the robustness and ... Fusing hand-based features in multi-modal biometric recognition enhances anti-spoofing capabilities.Additionally,it leverages inter-modal correlation to enhance recognition performance.Concurrently,the robustness and recognition performance of the system can be enhanced through judiciously leveraging the correlation among multimodal features.Nevertheless,two issues persist in multi-modal feature fusion recognition:Firstly,the enhancement of recognition performance in fusion recognition has not comprehensively considered the inter-modality correlations among distinct modalities.Secondly,during modal fusion,improper weight selection diminishes the salience of crucial modal features,thereby diminishing the overall recognition performance.To address these two issues,we introduce an enhanced DenseNet multimodal recognition network founded on feature-level fusion.The information from the three modalities is fused akin to RGB,and the input network augments the correlation between modes through channel correlation.Within the enhanced DenseNet network,the Efficient Channel Attention Network(ECA-Net)dynamically adjusts the weight of each channel to amplify the salience of crucial information in each modal feature.Depthwise separable convolution markedly reduces the training parameters and further enhances the feature correlation.Experimental evaluations were conducted on four multimodal databases,comprising six unimodal databases,including multispectral palmprint and palm vein databases from the Chinese Academy of Sciences.The Equal Error Rates(EER)values were 0.0149%,0.0150%,0.0099%,and 0.0050%,correspondingly.In comparison to other network methods for palmprint,palm vein,and finger vein fusion recognition,this approach substantially enhances recognition performance,rendering it suitable for high-security environments with practical applicability.The experiments in this article utilized amodest sample database comprising 200 individuals.The subsequent phase involves preparing for the extension of the method to larger databases. 展开更多
关键词 BIOMETRICS multi-modal CORRELATION deep learning feature-level fusion
在线阅读 下载PDF
Construction and evaluation of a predictive model for the degree of coronary artery occlusion based on adaptive weighted multi-modal fusion of traditional Chinese and western medicine data 被引量:1
4
作者 Jiyu ZHANG Jiatuo XU +1 位作者 Liping TU Hongyuan FU 《Digital Chinese Medicine》 2025年第2期163-173,共11页
Objective To develop a non-invasive predictive model for coronary artery stenosis severity based on adaptive multi-modal integration of traditional Chinese and western medicine data.Methods Clinical indicators,echocar... Objective To develop a non-invasive predictive model for coronary artery stenosis severity based on adaptive multi-modal integration of traditional Chinese and western medicine data.Methods Clinical indicators,echocardiographic data,traditional Chinese medicine(TCM)tongue manifestations,and facial features were collected from patients who underwent coro-nary computed tomography angiography(CTA)in the Cardiac Care Unit(CCU)of Shanghai Tenth People's Hospital between May 1,2023 and May 1,2024.An adaptive weighted multi-modal data fusion(AWMDF)model based on deep learning was constructed to predict the severity of coronary artery stenosis.The model was evaluated using metrics including accura-cy,precision,recall,F1 score,and the area under the receiver operating characteristic(ROC)curve(AUC).Further performance assessment was conducted through comparisons with six ensemble machine learning methods,data ablation,model component ablation,and various decision-level fusion strategies.Results A total of 158 patients were included in the study.The AWMDF model achieved ex-cellent predictive performance(AUC=0.973,accuracy=0.937,precision=0.937,recall=0.929,and F1 score=0.933).Compared with model ablation,data ablation experiments,and various traditional machine learning models,the AWMDF model demonstrated superior per-formance.Moreover,the adaptive weighting strategy outperformed alternative approaches,including simple weighting,averaging,voting,and fixed-weight schemes.Conclusion The AWMDF model demonstrates potential clinical value in the non-invasive prediction of coronary artery disease and could serve as a tool for clinical decision support. 展开更多
关键词 Coronary artery disease Deep learning multi-modal Clinical prediction Traditional Chinese medicine diagnosis
暂未订购
Correction:A Lightweight Approach for Skin Lesion Detection through Optimal Features Fusion
5
作者 Khadija Manzoor Fiaz Majeed +5 位作者 Ansar Siddique Talha Meraj Hafiz Tayyab Rauf Mohammed A.El-Meligy Mohamed Sharaf Abd Elatty E.Abd Elgawad 《Computers, Materials & Continua》 SCIE EI 2025年第1期1459-1459,共1页
In the article“A Lightweight Approach for Skin Lesion Detection through Optimal Features Fusion”by Khadija Manzoor,Fiaz Majeed,Ansar Siddique,Talha Meraj,Hafiz Tayyab Rauf,Mohammed A.El-Meligy,Mohamed Sharaf,Abd Ela... In the article“A Lightweight Approach for Skin Lesion Detection through Optimal Features Fusion”by Khadija Manzoor,Fiaz Majeed,Ansar Siddique,Talha Meraj,Hafiz Tayyab Rauf,Mohammed A.El-Meligy,Mohamed Sharaf,Abd Elatty E.Abd Elgawad Computers,Materials&Continua,2022,Vol.70,No.1,pp.1617–1630.DOI:10.32604/cmc.2022.018621,URL:https://www.techscience.com/cmc/v70n1/44361,there was an error regarding the affiliation for the author Hafiz Tayyab Rauf.Instead of“Centre for Smart Systems,AI and Cybersecurity,Staffordshire University,Stoke-on-Trent,UK”,the affiliation should be“Independent Researcher,Bradford,BD80HS,UK”. 展开更多
关键词 FUSION SKIN featurE
在线阅读 下载PDF
Unsupervised multi-modal image translation based on the squeeze-and-excitation mechanism and feature attention module 被引量:1
6
作者 胡振涛 HU Chonghao +1 位作者 YANG Haoran SHUAI Weiwei 《High Technology Letters》 EI CAS 2024年第1期23-30,共8页
The unsupervised multi-modal image translation is an emerging domain of computer vision whose goal is to transform an image from the source domain into many diverse styles in the target domain.However,the multi-genera... The unsupervised multi-modal image translation is an emerging domain of computer vision whose goal is to transform an image from the source domain into many diverse styles in the target domain.However,the multi-generator mechanism is employed among the advanced approaches available to model different domain mappings,which results in inefficient training of neural networks and pattern collapse,leading to inefficient generation of image diversity.To address this issue,this paper introduces a multi-modal unsupervised image translation framework that uses a generator to perform multi-modal image translation.Specifically,firstly,the domain code is introduced in this paper to explicitly control the different generation tasks.Secondly,this paper brings in the squeeze-and-excitation(SE)mechanism and feature attention(FA)module.Finally,the model integrates multiple optimization objectives to ensure efficient multi-modal translation.This paper performs qualitative and quantitative experiments on multiple non-paired benchmark image translation datasets while demonstrating the benefits of the proposed method over existing technologies.Overall,experimental results have shown that the proposed method is versatile and scalable. 展开更多
关键词 multi-modal image translation generative adversarial network(GAN) squeezeand-excitation(SE)mechanism feature attention(FA)module
在线阅读 下载PDF
MMGC-Net: Deep neural network for classification of mineral grains using multi-modal polarization images
7
作者 Jun Shu Xiaohai He +3 位作者 Qizhi Teng Pengcheng Yan Haibo He Honggang Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3894-3909,共16页
The multi-modal characteristics of mineral particles play a pivotal role in enhancing the classification accuracy,which is critical for obtaining a profound understanding of the Earth's composition and ensuring ef... The multi-modal characteristics of mineral particles play a pivotal role in enhancing the classification accuracy,which is critical for obtaining a profound understanding of the Earth's composition and ensuring effective exploitation utilization of its resources.However,the existing methods for classifying mineral particles do not fully utilize these multi-modal features,thereby limiting the classification accuracy.Furthermore,when conventional multi-modal image classification methods are applied to planepolarized and cross-polarized sequence images of mineral particles,they encounter issues such as information loss,misaligned features,and challenges in spatiotemporal feature extraction.To address these challenges,we propose a multi-modal mineral particle polarization image classification network(MMGC-Net)for precise mineral particle classification.Initially,MMGC-Net employs a two-dimensional(2D)backbone network with shared parameters to extract features from two types of polarized images to ensure feature alignment.Subsequently,a cross-polarized intra-modal feature fusion module is designed to refine the spatiotemporal features from the extracted features of the cross-polarized sequence images.Ultimately,the inter-modal feature fusion module integrates the two types of modal features to enhance the classification precision.Quantitative and qualitative experimental results indicate that when compared with the current state-of-the-art multi-modal image classification methods,MMGC-Net demonstrates marked superiority in terms of mineral particle multi-modal feature learning and four classification evaluation metrics.It also demonstrates better stability than the existing models. 展开更多
关键词 Mineral particles multi-modal image classification Shared parameters feature fusion Spatiotemporal feature
暂未订购
Multi-Modal Pre-Synergistic Fusion Entity Alignment Based on Mutual Information Strategy Optimization
8
作者 Huayu Li Xinxin Chen +3 位作者 Lizhuang Tan Konstantin I.Kostromitin Athanasios V.Vasilakos Peiying Zhang 《Computers, Materials & Continua》 2025年第11期4133-4153,共21页
To address the challenge of missing modal information in entity alignment and to mitigate information loss or bias arising frommodal heterogeneity during fusion,while also capturing shared information acrossmodalities... To address the challenge of missing modal information in entity alignment and to mitigate information loss or bias arising frommodal heterogeneity during fusion,while also capturing shared information acrossmodalities,this paper proposes a Multi-modal Pre-synergistic Entity Alignmentmodel based on Cross-modalMutual Information Strategy Optimization(MPSEA).The model first employs independent encoders to process multi-modal features,including text,images,and numerical values.Next,a multi-modal pre-synergistic fusion mechanism integrates graph structural and visual modal features into the textual modality as preparatory information.This pre-fusion strategy enables unified perception of heterogeneous modalities at the model’s initial stage,reducing discrepancies during the fusion process.Finally,using cross-modal deep perception reinforcement learning,the model achieves adaptive multilevel feature fusion between modalities,supporting learningmore effective alignment strategies.Extensive experiments on multiple public datasets show that the MPSEA method achieves gains of up to 7% in Hits@1 and 8.2% in MRR on the FBDB15K dataset,and up to 9.1% in Hits@1 and 7.7% in MRR on the FBYG15K dataset,compared to existing state-of-the-art methods.These results confirm the effectiveness of the proposed model. 展开更多
关键词 Knowledge graph multi-modal entity alignment feature fusion pre-synergistic fusion
在线阅读 下载PDF
Retrospective analysis of pathological types and imaging features in pancreatic cancer: A comprehensive study
9
作者 Yang-Gang Luo Mei Wu Hong-Guang Chen 《World Journal of Gastrointestinal Oncology》 SCIE 2025年第1期121-129,共9页
BACKGROUND Pancreatic cancer remains one of the most lethal malignancies worldwide,with a poor prognosis often attributed to late diagnosis.Understanding the correlation between pathological type and imaging features ... BACKGROUND Pancreatic cancer remains one of the most lethal malignancies worldwide,with a poor prognosis often attributed to late diagnosis.Understanding the correlation between pathological type and imaging features is crucial for early detection and appropriate treatment planning.AIM To retrospectively analyze the relationship between different pathological types of pancreatic cancer and their corresponding imaging features.METHODS We retrospectively analyzed the data of 500 patients diagnosed with pancreatic cancer between January 2010 and December 2020 at our institution.Pathological types were determined by histopathological examination of the surgical spe-cimens or biopsy samples.The imaging features were assessed using computed tomography,magnetic resonance imaging,and endoscopic ultrasound.Statistical analyses were performed to identify significant associations between pathological types and specific imaging characteristics.RESULTS There were 320(64%)cases of pancreatic ductal adenocarcinoma,75(15%)of intraductal papillary mucinous neoplasms,50(10%)of neuroendocrine tumors,and 55(11%)of other rare types.Distinct imaging features were identified in each pathological type.Pancreatic ductal adenocarcinoma typically presents as a hypodense mass with poorly defined borders on computed tomography,whereas intraductal papillary mucinous neoplasms present as characteristic cystic lesions with mural nodules.Neuroendocrine tumors often appear as hypervascular lesions in contrast-enhanced imaging.Statistical analysis revealed significant correlations between specific imaging features and pathological types(P<0.001).CONCLUSION This study demonstrated a strong association between the pathological types of pancreatic cancer and imaging features.These findings can enhance the accuracy of noninvasive diagnosis and guide personalized treatment approaches. 展开更多
关键词 Pancreatic cancer Pathological types Imaging features Retrospective analysis Diagnostic accuracy
暂未订购
New Features and New Challenges of U.S.-Europe Relations Under Trump 2.0 被引量:1
10
作者 Zhao Huaipu 《Contemporary World》 2025年第3期47-52,共6页
During Donald Trump’s first term,the“Trump Shock”brought world politics into an era of uncertainties and pulled the transatlantic alliance down to its lowest point in history.The Trump 2.0 tsunami brewed by the 202... During Donald Trump’s first term,the“Trump Shock”brought world politics into an era of uncertainties and pulled the transatlantic alliance down to its lowest point in history.The Trump 2.0 tsunami brewed by the 2024 presidential election of the United States has plunged the U.S.-Europe relations into more gloomy waters,ushering in a more complex and turbulent period of adjustment. 展开更多
关键词 new features turbulent period Trump U S Europe relations presidential election new challenges UNCERTAINTIES transatlantic alliance
在线阅读 下载PDF
Tri-M2MT:Multi-modalities based effective acute bilirubin encephalopathy diagnosis through multi-transformer using neonatal Magnetic Resonance Imaging
11
作者 Kumar Perumal Rakesh Kumar Mahendran +1 位作者 Arfat Ahmad Khan Seifedine Kadry 《CAAI Transactions on Intelligence Technology》 2025年第2期434-449,共16页
Acute Bilirubin Encephalopathy(ABE)is a significant threat to neonates and it leads to disability and high mortality rates.Detecting and treating ABE promptly is important to prevent further complications and long-ter... Acute Bilirubin Encephalopathy(ABE)is a significant threat to neonates and it leads to disability and high mortality rates.Detecting and treating ABE promptly is important to prevent further complications and long-term issues.Recent studies have explored ABE diagnosis.However,they often face limitations in classification due to reliance on a single modality of Magnetic Resonance Imaging(MRI).To tackle this problem,the authors propose a Tri-M2MT model for precise ABE detection by using tri-modality MRI scans.The scans include T1-weighted imaging(T1WI),T2-weighted imaging(T2WI),and apparent diffusion coefficient maps to get indepth information.Initially,the tri-modality MRI scans are collected and preprocessesed by using an Advanced Gaussian Filter for noise reduction and Z-score normalisation for data standardisation.An Advanced Capsule Network was utilised to extract relevant features by using Snake Optimization Algorithm to select optimal features based on feature correlation with the aim of minimising complexity and enhancing detection accuracy.Furthermore,a multi-transformer approach was used for feature fusion and identify feature correlations effectively.Finally,accurate ABE diagnosis is achieved through the utilisation of a SoftMax layer.The performance of the proposed Tri-M2MT model is evaluated across various metrics,including accuracy,specificity,sensitivity,F1-score,and ROC curve analysis,and the proposed methodology provides better performance compared to existing methodologies. 展开更多
关键词 Acute Bilirubin Encephalopathy(ABE)Diagnosis feature extraction MRI multi-modalITY multi-transformer NEONATAL
在线阅读 下载PDF
BDMFuse:Multi-scale network fusion for infrared and visible images based on base and detail features
12
作者 SI Hai-Ping ZHAO Wen-Rui +4 位作者 LI Ting-Ting LI Fei-Tao Fernando Bacao SUN Chang-Xia LI Yan-Ling 《红外与毫米波学报》 北大核心 2025年第2期289-298,共10页
The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method f... The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception. 展开更多
关键词 infrared image visible image image fusion encoder-decoder multi-scale features
在线阅读 下载PDF
Multi-Modal Named Entity Recognition with Auxiliary Visual Knowledge and Word-Level Fusion
13
作者 Huansha Wang Ruiyang Huang +1 位作者 Qinrang Liu Xinghao Wang 《Computers, Materials & Continua》 2025年第6期5747-5760,共14页
Multi-modal Named Entity Recognition(MNER)aims to better identify meaningful textual entities by integrating information from images.Previous work has focused on extracting visual semantics at a fine-grained level,or ... Multi-modal Named Entity Recognition(MNER)aims to better identify meaningful textual entities by integrating information from images.Previous work has focused on extracting visual semantics at a fine-grained level,or obtaining entity related external knowledge from knowledge bases or Large Language Models(LLMs).However,these approaches ignore the poor semantic correlation between visual and textual modalities in MNER datasets and do not explore different multi-modal fusion approaches.In this paper,we present MMAVK,a multi-modal named entity recognition model with auxiliary visual knowledge and word-level fusion,which aims to leverage the Multi-modal Large Language Model(MLLM)as an implicit knowledge base.It also extracts vision-based auxiliary knowledge from the image formore accurate and effective recognition.Specifically,we propose vision-based auxiliary knowledge generation,which guides the MLLM to extract external knowledge exclusively derived from images to aid entity recognition by designing target-specific prompts,thus avoiding redundant recognition and cognitive confusion caused by the simultaneous processing of image-text pairs.Furthermore,we employ a word-level multi-modal fusion mechanism to fuse the extracted external knowledge with each word-embedding embedded from the transformerbased encoder.Extensive experimental results demonstrate that MMAVK outperforms or equals the state-of-the-art methods on the two classical MNER datasets,even when the largemodels employed have significantly fewer parameters than other baselines. 展开更多
关键词 multi-modal named entity recognition large language model multi-modal fusion
在线阅读 下载PDF
MMCSD:Multi-Modal Knowledge Graph Completion Based on Super-Resolution and Detailed Description Generation
14
作者 Huansha Wang Ruiyang Huang +2 位作者 Qinrang Liu Shaomei Li Jianpeng Zhang 《Computers, Materials & Continua》 2025年第4期761-783,共23页
Multi-modal knowledge graph completion(MMKGC)aims to complete missing entities or relations in multi-modal knowledge graphs,thereby discovering more previously unknown triples.Due to the continuous growth of data and ... Multi-modal knowledge graph completion(MMKGC)aims to complete missing entities or relations in multi-modal knowledge graphs,thereby discovering more previously unknown triples.Due to the continuous growth of data and knowledge and the limitations of data sources,the visual knowledge within the knowledge graphs is generally of low quality,and some entities suffer from the issue of missing visual modality.Nevertheless,previous studies of MMKGC have primarily focused on how to facilitate modality interaction and fusion while neglecting the problems of low modality quality and modality missing.In this case,mainstream MMKGC models only use pre-trained visual encoders to extract features and transfer the semantic information to the joint embeddings through modal fusion,which inevitably suffers from problems such as error propagation and increased uncertainty.To address these problems,we propose a Multi-modal knowledge graph Completion model based on Super-resolution and Detailed Description Generation(MMCSD).Specifically,we leverage a pre-trained residual network to enhance the resolution and improve the quality of the visual modality.Moreover,we design multi-level visual semantic extraction and entity description generation,thereby further extracting entity semantics from structural triples and visual images.Meanwhile,we train a variational multi-modal auto-encoder and utilize a pre-trained multi-modal language model to complement the missing visual features.We conducted experiments on FB15K-237 and DB13K,and the results showed that MMCSD can effectively perform MMKGC and achieve state-of-the-art performance. 展开更多
关键词 multi-modal knowledge graph knowledge graph completion multi-modal fusion
在线阅读 下载PDF
Transformers for Multi-Modal Image Analysis in Healthcare
15
作者 Sameera V Mohd Sagheer Meghana K H +2 位作者 P M Ameer Muneer Parayangat Mohamed Abbas 《Computers, Materials & Continua》 2025年第9期4259-4297,共39页
Integrating multiple medical imaging techniques,including Magnetic Resonance Imaging(MRI),Computed Tomography,Positron Emission Tomography(PET),and ultrasound,provides a comprehensive view of the patient health status... Integrating multiple medical imaging techniques,including Magnetic Resonance Imaging(MRI),Computed Tomography,Positron Emission Tomography(PET),and ultrasound,provides a comprehensive view of the patient health status.Each of these methods contributes unique diagnostic insights,enhancing the overall assessment of patient condition.Nevertheless,the amalgamation of data from multiple modalities presents difficulties due to disparities in resolution,data collection methods,and noise levels.While traditional models like Convolutional Neural Networks(CNNs)excel in single-modality tasks,they struggle to handle multi-modal complexities,lacking the capacity to model global relationships.This research presents a novel approach for examining multi-modal medical imagery using a transformer-based system.The framework employs self-attention and cross-attention mechanisms to synchronize and integrate features across various modalities.Additionally,it shows resilience to variations in noise and image quality,making it adaptable for real-time clinical use.To address the computational hurdles linked to transformer models,particularly in real-time clinical applications in resource-constrained environments,several optimization techniques have been integrated to boost scalability and efficiency.Initially,a streamlined transformer architecture was adopted to minimize the computational load while maintaining model effectiveness.Methods such as model pruning,quantization,and knowledge distillation have been applied to reduce the parameter count and enhance the inference speed.Furthermore,efficient attention mechanisms such as linear or sparse attention were employed to alleviate the substantial memory and processing requirements of traditional self-attention operations.For further deployment optimization,researchers have implemented hardware-aware acceleration strategies,including the use of TensorRT and ONNX-based model compression,to ensure efficient execution on edge devices.These optimizations allow the approach to function effectively in real-time clinical settings,ensuring viability even in environments with limited resources.Future research directions include integrating non-imaging data to facilitate personalized treatment and enhancing computational efficiency for implementation in resource-limited environments.This study highlights the transformative potential of transformer models in multi-modal medical imaging,offering improvements in diagnostic accuracy and patient care outcomes. 展开更多
关键词 multi-modal image analysis medical imaging deep learning image segmentation disease detection multi-modal fusion Vision Transformers(ViTs) precision medicine clinical decision support
在线阅读 下载PDF
Block-gram:Mining knowledgeable features for efficiently smart contract vulnerability detection
16
作者 Xueshuo Xie Haolong Wang +3 位作者 Zhaolong Jian Yaozheng Fang Zichun Wang Tao Li 《Digital Communications and Networks》 2025年第1期1-12,共12页
Smart contracts are widely used on the blockchain to implement complex transactions,such as decentralized applications on Ethereum.Effective vulnerability detection of large-scale smart contracts is critical,as attack... Smart contracts are widely used on the blockchain to implement complex transactions,such as decentralized applications on Ethereum.Effective vulnerability detection of large-scale smart contracts is critical,as attacks on smart contracts often cause huge economic losses.Since it is difficult to repair and update smart contracts,it is necessary to find the vulnerabilities before they are deployed.However,code analysis,which requires traversal paths,and learning methods,which require many features to be trained,are too time-consuming to detect large-scale on-chain contracts.Learning-based methods will obtain detection models from a feature space compared to code analysis methods such as symbol execution.But the existing features lack the interpretability of the detection results and training model,even worse,the large-scale feature space also affects the efficiency of detection.This paper focuses on improving the detection efficiency by reducing the dimension of the features,combined with expert knowledge.In this paper,a feature extraction model Block-gram is proposed to form low-dimensional knowledge-based features from bytecode.First,the metadata is separated and the runtime code is converted into a sequence of opcodes,which are divided into segments based on some instructions(jumps,etc.).Then,scalable Block-gram features,including 4-dimensional block features and 8-dimensional attribute features,are mined for the learning-based model training.Finally,feature contributions are calculated from SHAP values to measure the relationship between our features and the results of the detection model.In addition,six types of vulnerability labels are made on a dataset containing 33,885 contracts,and these knowledge-based features are evaluated using seven state-of-the-art learning algorithms,which show that the average detection latency speeds up 25×to 650×,compared with the features extracted by N-gram,and also can enhance the interpretability of the detection model. 展开更多
关键词 Smart contract Bytecode&opcode Knowledgeable features Vulnerability detection feature contribution
在线阅读 下载PDF
TCM network pharmacology:new perspective integrating network target with artificial intelligence and multi-modal multi-omics technologies
17
作者 Ziyi Wang Tingyu Zhang +1 位作者 Boyang Wang Shao Li 《Chinese Journal of Natural Medicines》 2025年第11期1425-1434,共10页
Traditional Chinese medicine(TCM)demonstrates distinctive advantages in disease prevention and treatment.However,analyzing its biological mechanisms through the modern medical research paradigm of“single drug,single ... Traditional Chinese medicine(TCM)demonstrates distinctive advantages in disease prevention and treatment.However,analyzing its biological mechanisms through the modern medical research paradigm of“single drug,single target”presents significant challenges due to its holistic approach.Network pharmacology and its core theory of network targets connect drugs and diseases from a holistic and systematic perspective based on biological networks,overcoming the limitations of reductionist research models and showing considerable value in TCM research.Recent integration of network target computational and experimental methods with artificial intelligence(AI)and multi-modal multi-omics technologies has substantially enhanced network pharmacology methodology.The advancement in computational and experimental techniques provides complementary support for network target theory in decoding TCM principles.This review,centered on network targets,examines the progress of network target methods combined with AI in predicting disease molecular mechanisms and drug-target relationships,alongside the application of multi-modal multi-omics technologies in analyzing TCM formulae,syndromes,and toxicity.Looking forward,network target theory is expected to incorporate emerging technologies while developing novel approaches aligned with its unique characteristics,potentially leading to significant breakthroughs in TCM research and advancing scientific understanding and innovation in TCM. 展开更多
关键词 Network pharmacology Traditional Chinese medicine Network target Artificial intelligence multi-modal Multi-omics
原文传递
BAHGRF^(3):Human gait recognition in the indoor environment using deep learning features fusion assisted framework and posterior probability moth flame optimisation
18
作者 Muhammad Abrar Ahmad Khan Muhammad Attique Khan +5 位作者 Ateeq Ur Rehman Ahmed Ibrahim Alzahrani Nasser Alalwan Deepak Gupta Saima Ahmed Rahin Yudong Zhang 《CAAI Transactions on Intelligence Technology》 2025年第2期387-401,共15页
Biometric characteristics are playing a vital role in security for the last few years.Human gait classification in video sequences is an important biometrics attribute and is used for security purposes.A new framework... Biometric characteristics are playing a vital role in security for the last few years.Human gait classification in video sequences is an important biometrics attribute and is used for security purposes.A new framework for human gait classification in video sequences using deep learning(DL)fusion assisted and posterior probability-based moth flames optimization(MFO)is proposed.In the first step,the video frames are resized and finetuned by two pre-trained lightweight DL models,EfficientNetB0 and MobileNetV2.Both models are selected based on the top-5 accuracy and less number of parameters.Later,both models are trained through deep transfer learning and extracted deep features fused using a voting scheme.In the last step,the authors develop a posterior probabilitybased MFO feature selection algorithm to select the best features.The selected features are classified using several supervised learning methods.The CASIA-B publicly available dataset has been employed for the experimental process.On this dataset,the authors selected six angles such as 0°,18°,90°,108°,162°,and 180°and obtained an average accuracy of 96.9%,95.7%,86.8%,90.0%,95.1%,and 99.7%.Results demonstrate comparable improvement in accuracy and significantly minimize the computational time with recent state-of-the-art techniques. 展开更多
关键词 deep learning feature fusion feature optimization gait classification indoor environment machine learning
在线阅读 下载PDF
Hyperspectral Image Super-Resolution Based on Spatial-Spectral-Frequency Multidimensional Features
19
作者 Sifan Zheng Tao Zhang +3 位作者 Haibing Yin Hao Hu Jian Jiang Chenggang Yan 《Journal of Beijing Institute of Technology》 2025年第1期28-41,共14页
Due to the limitations of existing imaging hardware, obtaining high-resolution hyperspectral images is challenging. Hyperspectral image super-resolution(HSI SR) has been a very attractive research topic in computer vi... Due to the limitations of existing imaging hardware, obtaining high-resolution hyperspectral images is challenging. Hyperspectral image super-resolution(HSI SR) has been a very attractive research topic in computer vision, attracting the attention of many researchers. However, most HSI SR methods focus on the tradeoff between spatial resolution and spectral information, and cannot guarantee the efficient extraction of image information. In this paper, a multidimensional features network(MFNet) for HSI SR is proposed, which simultaneously learns and fuses the spatial,spectral, and frequency multidimensional features of HSI. Spatial features contain rich local details,spectral features contain the information and correlation between spectral bands, and frequency feature can reflect the global information of the image and can be used to obtain the global context of HSI. The fusion of the three features can better guide image super-resolution, to obtain higher-quality high-resolution hyperspectral images. In MFNet, we use the frequency feature extraction module(FFEM) to extract the frequency feature. On this basis, a multidimensional features extraction module(MFEM) is designed to learn and fuse multidimensional features. In addition, experimental results on two public datasets demonstrate that MFNet achieves state-of-the-art performance. 展开更多
关键词 deep neural network hyperspectral image spatial feature spectral information frequency feature
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部