期刊文献+
共找到9,428篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-model ensemble learning for battery state-of-health estimation:Recent advances and perspectives 被引量:1
1
作者 Chuanping Lin Jun Xu +4 位作者 Delong Jiang Jiayang Hou Ying Liang Zhongyue Zou Xuesong Mei 《Journal of Energy Chemistry》 2025年第1期739-759,共21页
The burgeoning market for lithium-ion batteries has stimulated a growing need for more reliable battery performance monitoring. Accurate state-of-health(SOH) estimation is critical for ensuring battery operational per... The burgeoning market for lithium-ion batteries has stimulated a growing need for more reliable battery performance monitoring. Accurate state-of-health(SOH) estimation is critical for ensuring battery operational performance. Despite numerous data-driven methods reported in existing research for battery SOH estimation, these methods often exhibit inconsistent performance across different application scenarios. To address this issue and overcome the performance limitations of individual data-driven models,integrating multiple models for SOH estimation has received considerable attention. Ensemble learning(EL) typically leverages the strengths of multiple base models to achieve more robust and accurate outputs. However, the lack of a clear review of current research hinders the further development of ensemble methods in SOH estimation. Therefore, this paper comprehensively reviews multi-model ensemble learning methods for battery SOH estimation. First, existing ensemble methods are systematically categorized into 6 classes based on their combination strategies. Different realizations and underlying connections are meticulously analyzed for each category of EL methods, highlighting distinctions, innovations, and typical applications. Subsequently, these ensemble methods are comprehensively compared in terms of base models, combination strategies, and publication trends. Evaluations across 6 dimensions underscore the outstanding performance of stacking-based ensemble methods. Following this, these ensemble methods are further inspected from the perspectives of weighted ensemble and diversity, aiming to inspire potential approaches for enhancing ensemble performance. Moreover, addressing challenges such as base model selection, measuring model robustness and uncertainty, and interpretability of ensemble models in practical applications is emphasized. Finally, future research prospects are outlined, specifically noting that deep learning ensemble is poised to advance ensemble methods for battery SOH estimation. The convergence of advanced machine learning with ensemble learning is anticipated to yield valuable avenues for research. Accelerated research in ensemble learning holds promising prospects for achieving more accurate and reliable battery SOH estimation under real-world conditions. 展开更多
关键词 Lithium-ion battery State-of-health estimation DATA-DRIVEN Machine learning ensemble learning ensemble diversity
在线阅读 下载PDF
Construction of multi-model ensemble prediction for ENSO based on neural network
2
作者 Yuan Ou Ting Liu Tao Lian 《Acta Oceanologica Sinica》 2025年第8期10-19,共10页
In this study,we conducted an experiment to construct multi-model ensemble(MME)predictions for the El Niño-Southern Oscillation(ENSO)using a neural network,based on hindcast data released from five coupled oceana... In this study,we conducted an experiment to construct multi-model ensemble(MME)predictions for the El Niño-Southern Oscillation(ENSO)using a neural network,based on hindcast data released from five coupled oceanatmosphere models,which exhibit varying levels of complexity.This nonlinear approach demonstrated extraordinary superiority and effectiveness in constructing ENSO MME.Subsequently,we employed the leave-one-out crossvalidation and the moving base methods to further validate the robustness of the neural network model in the formulation of ENSO MME.In conclusion,the neural network algorithm outperforms the conventional approach of assigning a uniform weight to all models.This is evidenced by an enhancement in correlation coefficients and reduction in prediction errors,which have the potential to provide a more accurate ENSO forecast. 展开更多
关键词 El Niño-Southern Oscillation(ENSO) multi-model ensemble mean neural network
在线阅读 下载PDF
PM_(2.5) concentration prediction system combining fuzzy information granulation and multi-model ensemble learning
3
作者 Yamei Chen Jianzhou Wang +1 位作者 Runze Li Jialu Gao 《Journal of Environmental Sciences》 2025年第10期332-345,共14页
With the rapid development of economy,air pollution caused by industrial expansion has caused serious harm to human health and social development.Therefore,establishing an effective air pollution concentration predict... With the rapid development of economy,air pollution caused by industrial expansion has caused serious harm to human health and social development.Therefore,establishing an effective air pollution concentration prediction system is of great scientific and practical significance for accurate and reliable predictions.This paper proposes a combination of pointinterval prediction system for pollutant concentration prediction by leveraging neural network,meta-heuristic optimization algorithm,and fuzzy theory.Fuzzy information granulation technology is used in data preprocessing to transform numerical sequences into fuzzy particles for comprehensive feature extraction.The golden Jackal optimization algorithm is employed in the optimization stage to fine-tune model hyperparameters.In the prediction stage,an ensemble learning method combines training results frommultiplemodels to obtain final point predictions while also utilizing quantile regression and kernel density estimation methods for interval predictions on the test set.Experimental results demonstrate that the combined model achieves a high goodness of fit coefficient of determination(R^(2))at 99.3% and a maximum difference between prediction accuracy mean absolute percentage error(MAPE)and benchmark model at 12.6%.This suggests that the integrated learning system proposed in this paper can provide more accurate deterministic predictions as well as reliable uncertainty analysis compared to traditionalmodels,offering practical reference for air quality early warning. 展开更多
关键词 Air pollution prediction Fuzzy information granulation Meta-heuristic optimization algorithm ensemble learning model Point interval prediction
原文传递
Landslide Susceptibility Mapping Using RBFN-Based Ensemble Machine Learning Models 被引量:1
4
作者 Duc-Dam Nguyen Nguyen Viet Tiep +5 位作者 Quynh-Anh Thi Bui Hiep Van Le Indra Prakash Romulus Costache Manish Pandey Binh Thai Pham 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期467-500,共34页
This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble lear... This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making. 展开更多
关键词 Landslide susceptibility map spatial analysis ensemble modelling information values(IV)
在线阅读 下载PDF
不平衡集成算法LASSO-EasyEnsemble在冠心病预后预测中的应用及可解释性研究
5
作者 昝家昕 杨弘 +4 位作者 田晶 闫晶晶 和紫铉 杜宇涛 张岩波 《中国卫生统计》 北大核心 2025年第2期197-203,共7页
目的 针对冠心病预后预测中遇到的高噪声、类间不平衡的特点,通过LASSO特征筛选后,构建EasyEnsemble不平衡集成模型并对模型性能进行评估。方法 基于2009—2018年美国健康与营养调查公共数据库的调查数据,随访时间截止到2019年。预后有... 目的 针对冠心病预后预测中遇到的高噪声、类间不平衡的特点,通过LASSO特征筛选后,构建EasyEnsemble不平衡集成模型并对模型性能进行评估。方法 基于2009—2018年美国健康与营养调查公共数据库的调查数据,随访时间截止到2019年。预后有无因病死亡作为结局,通过LASSO进行特征选择,使用筛选后特征构建EasyEnsemble不平衡集成预测模型和SMOTE+LightGBM、XGBoost、Random Forest预测模型,采用网格搜索法对每个模型进行参数优化,通过AUC、精确率、特异度、G-mean和性能曲线评价其分类性能;应用SHAP(shapley additive explanation)进行模型可解释性分析。结果 EasyEnsemble模型的综合性能最高,AUC为0.80(95%CI:0.79~0.82),精确率为0.86(95%CI:0.78~0.93),特异度为0.99(95%CI:0.98~0.99)和G-mean为0.79(95%CI:0.76~0.83),性能曲线也显示最高。同时,年龄、血清磷、糖尿病、白蛋白等是影响患者预后的重要因素。结论 基于LASSO-EasyEnsemble的不平衡集成模型能够实现对冠心病患者预后的精准预测,结合SHAP可以帮助临床医生更好地评估疾病严重程度和识别高危人群以便实现患者个性化管理。 展开更多
关键词 冠心病 不平衡数据 集成学习 预后预测 可解释性
暂未订购
Construction and evaluation of a predictive model for the degree of coronary artery occlusion based on adaptive weighted multi-modal fusion of traditional Chinese and western medicine data 被引量:1
6
作者 Jiyu ZHANG Jiatuo XU +1 位作者 Liping TU Hongyuan FU 《Digital Chinese Medicine》 2025年第2期163-173,共11页
Objective To develop a non-invasive predictive model for coronary artery stenosis severity based on adaptive multi-modal integration of traditional Chinese and western medicine data.Methods Clinical indicators,echocar... Objective To develop a non-invasive predictive model for coronary artery stenosis severity based on adaptive multi-modal integration of traditional Chinese and western medicine data.Methods Clinical indicators,echocardiographic data,traditional Chinese medicine(TCM)tongue manifestations,and facial features were collected from patients who underwent coro-nary computed tomography angiography(CTA)in the Cardiac Care Unit(CCU)of Shanghai Tenth People's Hospital between May 1,2023 and May 1,2024.An adaptive weighted multi-modal data fusion(AWMDF)model based on deep learning was constructed to predict the severity of coronary artery stenosis.The model was evaluated using metrics including accura-cy,precision,recall,F1 score,and the area under the receiver operating characteristic(ROC)curve(AUC).Further performance assessment was conducted through comparisons with six ensemble machine learning methods,data ablation,model component ablation,and various decision-level fusion strategies.Results A total of 158 patients were included in the study.The AWMDF model achieved ex-cellent predictive performance(AUC=0.973,accuracy=0.937,precision=0.937,recall=0.929,and F1 score=0.933).Compared with model ablation,data ablation experiments,and various traditional machine learning models,the AWMDF model demonstrated superior per-formance.Moreover,the adaptive weighting strategy outperformed alternative approaches,including simple weighting,averaging,voting,and fixed-weight schemes.Conclusion The AWMDF model demonstrates potential clinical value in the non-invasive prediction of coronary artery disease and could serve as a tool for clinical decision support. 展开更多
关键词 Coronary artery disease Deep learning multi-modal Clinical prediction Traditional Chinese medicine diagnosis
暂未订购
Steel Surface Defect Recognition in Smart Manufacturing Using Deep Ensemble Transfer Learning-Based Techniques
7
作者 Tajmal Hussain Jongwon Seok 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期231-250,共20页
Smart manufacturing and Industry 4.0 are transforming traditional manufacturing processes by utilizing innovative technologies such as the artificial intelligence(AI)and internet of things(IoT)to enhance efficiency,re... Smart manufacturing and Industry 4.0 are transforming traditional manufacturing processes by utilizing innovative technologies such as the artificial intelligence(AI)and internet of things(IoT)to enhance efficiency,reduce costs,and ensure product quality.In light of the recent advancement of Industry 4.0,identifying defects has become important for ensuring the quality of products during the manufacturing process.In this research,we present an ensemble methodology for accurately classifying hot rolled steel surface defects by combining the strengths of four pre-trained convolutional neural network(CNN)architectures:VGG16,VGG19,Xception,and Mobile-Net V2,compensating for their individual weaknesses.We evaluated our methodology on the Xsteel surface defect dataset(XSDD),which comprises seven different classes.The ensemble methodology integrated the predictions of individual models through two methods:model averaging and weighted averaging.Our evaluation showed that the model averaging ensemble achieved an accuracy of 98.89%,a recall of 98.92%,a precision of 99.05%,and an F1-score of 98.97%,while the weighted averaging ensemble reached an accuracy of 99.72%,a recall of 99.74%,a precision of 99.67%,and an F1-score of 99.70%.The proposed weighted averaging ensemble model outperformed the model averaging method and the individual models in detecting defects in terms of accuracy,recall,precision,and F1-score.Comparative analysis with recent studies also showed the superior performance of our methodology. 展开更多
关键词 Smart manufacturing CNN steel defects ensemble models
在线阅读 下载PDF
TELL-Me:A time-series-decomposition-based ensembled lightweight learning model for diverse battery prognosis and diagnosis 被引量:1
8
作者 Kun-Yu Liu Ting-Ting Wang +2 位作者 Bo-Bo Zou Hong-Jie Peng Xinyan Liu 《Journal of Energy Chemistry》 2025年第7期1-8,共8页
As batteries become increasingly essential for energy storage technologies,battery prognosis,and diagnosis remain central to ensure reliable operation and effective management,as well as to aid the in-depth investigat... As batteries become increasingly essential for energy storage technologies,battery prognosis,and diagnosis remain central to ensure reliable operation and effective management,as well as to aid the in-depth investigation of degradation mechanisms.However,dynamic operating conditions,cell-to-cell inconsistencies,and limited availability of labeled data have posed significant challenges to accurate and robust prognosis and diagnosis.Herein,we introduce a time-series-decomposition-based ensembled lightweight learning model(TELL-Me),which employs a synergistic dual-module framework to facilitate accurate and reliable forecasting.The feature module formulates features with physical implications and sheds light on battery aging mechanisms,while the gradient module monitors capacity degradation rates and captures aging trend.TELL-Me achieves high accuracy in end-of-life prediction using minimal historical data from a single battery without requiring offline training dataset,and demonstrates impressive generality and robustness across various operating conditions and battery types.Additionally,by correlating feature contributions with degradation mechanisms across different datasets,TELL-Me is endowed with the diagnostic ability that not only enhances prediction reliability but also provides critical insights into the design and optimization of next-generation batteries. 展开更多
关键词 Battery prognosis Interpretable machine learning Degradation diagnosis ensemble learning Online prediction Lightweight model
在线阅读 下载PDF
Advancing flood susceptibility modeling using stacking ensemble machine learning: A multi-model approach 被引量:1
9
作者 YANG Huilin YAO Rui +5 位作者 DONG Linyao SUN Peng ZHANG Qiang WEI Yongqiang SUN Shao AGHAKOUCHAK Amir 《Journal of Geographical Sciences》 SCIE CSCD 2024年第8期1513-1536,共24页
Flood susceptibility modeling is crucial for rapid flood forecasting, disaster reduction strategies, evacuation planning, and decision-making. Machine learning(ML) models have proven to be effective tools for assessin... Flood susceptibility modeling is crucial for rapid flood forecasting, disaster reduction strategies, evacuation planning, and decision-making. Machine learning(ML) models have proven to be effective tools for assessing flood susceptibility. However, most previous studies have focused on individual models or comparative performance, underscoring the unique strengths and weaknesses of each model. In this study, we propose a stacking ensemble learning algorithm that harnesses the strengths of a diverse range of machine learning models. The findings reveal the following:(1) The stacking ensemble learning, using RF-XGBCB-LR model, significantly enhances flood susceptibility simulation.(2) In addition to rainfall,key flood drivers in the study area include NDVI, and impervious surfaces. Over 40% of the study area, primarily in the northeast and southeast, exhibits high flood susceptibility, with higher risks for populations compared to cropland.(3) In the northeast of the study area,heavy precipitation, low terrain, and NDVI values are key indicators contributing to high flood susceptibility, while long-duration precipitation, mountainous topography, and upper reach vegetation are the main drivers in the southeast. This study underscores the effectiveness of ML, particularly ensemble learning, in flood modeling. It identifies vulnerable areas and contributes to improved flood risk management. 展开更多
关键词 flood susceptibility assessment machine learning stacking ensemble learning flood drivers XiangjiangRiverBasin
原文传递
Weighted Voting Ensemble Model Integrated with IoT for Detecting Security Threats in Satellite Systems and Aerial Vehicles
10
作者 Raed Alharthi 《Journal of Computer and Communications》 2025年第2期250-281,共32页
Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptibl... Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptible to security and privacy threats due to hardware and architectural issues. Although small drones hold promise for expansion in both civil and defense sectors, they have safety, security, and privacy threats. Addressing these challenges is crucial to maintaining the security and uninterrupted operations of these drones. In this regard, this study investigates security, and preservation concerning both the drones and Internet of Drones (IoD), emphasizing the significance of creating drone networks that are secure and can robustly withstand interceptions and intrusions. The proposed framework incorporates a weighted voting ensemble model comprising three convolutional neural network (CNN) models to enhance intrusion detection within the network. The employed CNNs are customized 1D models optimized to obtain better performance. The output from these CNNs is voted using a weighted criterion using a 0.4, 0.3, and 0.3 ratio for three CNNs, respectively. Experiments involve using multiple benchmark datasets, achieving an impressive accuracy of up to 99.89% on drone data. The proposed model shows promising results concerning precision, recall, and F1 as indicated by their obtained values of 99.92%, 99.98%, and 99.97%, respectively. Furthermore, cross-validation and performance comparison with existing works is also carried out. Findings indicate that the proposed approach offers a prospective solution for detecting security threats for aerial systems and satellite systems with high accuracy. 展开更多
关键词 Intrusion Detection Cyber-Physical Systems Drone Security Weighted ensemble Voting Unmanned Vehicles Security Strategies
在线阅读 下载PDF
FISHER INFORMATION AMONG β-ENSEMBLES
11
作者 Yutao MA 《Acta Mathematica Scientia》 2025年第2期493-513,共21页
In this paper,we consider the Fisher informations among three classical type β-ensembles when β>0 scales with n satisfying lim βn=∞.We offer the exact order of-the corresponding two Fisher informations,which in... In this paper,we consider the Fisher informations among three classical type β-ensembles when β>0 scales with n satisfying lim βn=∞.We offer the exact order of-the corresponding two Fisher informations,which indicates that theβ-Laguerre ensembles do not satisfy the logarithmic Sobolev inequality.We also give some limit theorems on the extremals of β-Jacobi ensembles for β>0 fixed. 展开更多
关键词 β-Hermite ensemble βB-Laguerre ensemble β-Jacobi ensemble Fisher information Tracy-Widom law
在线阅读 下载PDF
Multi-Modal Named Entity Recognition with Auxiliary Visual Knowledge and Word-Level Fusion
12
作者 Huansha Wang Ruiyang Huang +1 位作者 Qinrang Liu Xinghao Wang 《Computers, Materials & Continua》 2025年第6期5747-5760,共14页
Multi-modal Named Entity Recognition(MNER)aims to better identify meaningful textual entities by integrating information from images.Previous work has focused on extracting visual semantics at a fine-grained level,or ... Multi-modal Named Entity Recognition(MNER)aims to better identify meaningful textual entities by integrating information from images.Previous work has focused on extracting visual semantics at a fine-grained level,or obtaining entity related external knowledge from knowledge bases or Large Language Models(LLMs).However,these approaches ignore the poor semantic correlation between visual and textual modalities in MNER datasets and do not explore different multi-modal fusion approaches.In this paper,we present MMAVK,a multi-modal named entity recognition model with auxiliary visual knowledge and word-level fusion,which aims to leverage the Multi-modal Large Language Model(MLLM)as an implicit knowledge base.It also extracts vision-based auxiliary knowledge from the image formore accurate and effective recognition.Specifically,we propose vision-based auxiliary knowledge generation,which guides the MLLM to extract external knowledge exclusively derived from images to aid entity recognition by designing target-specific prompts,thus avoiding redundant recognition and cognitive confusion caused by the simultaneous processing of image-text pairs.Furthermore,we employ a word-level multi-modal fusion mechanism to fuse the extracted external knowledge with each word-embedding embedded from the transformerbased encoder.Extensive experimental results demonstrate that MMAVK outperforms or equals the state-of-the-art methods on the two classical MNER datasets,even when the largemodels employed have significantly fewer parameters than other baselines. 展开更多
关键词 multi-modal named entity recognition large language model multi-modal fusion
在线阅读 下载PDF
MMCSD:Multi-Modal Knowledge Graph Completion Based on Super-Resolution and Detailed Description Generation
13
作者 Huansha Wang Ruiyang Huang +2 位作者 Qinrang Liu Shaomei Li Jianpeng Zhang 《Computers, Materials & Continua》 2025年第4期761-783,共23页
Multi-modal knowledge graph completion(MMKGC)aims to complete missing entities or relations in multi-modal knowledge graphs,thereby discovering more previously unknown triples.Due to the continuous growth of data and ... Multi-modal knowledge graph completion(MMKGC)aims to complete missing entities or relations in multi-modal knowledge graphs,thereby discovering more previously unknown triples.Due to the continuous growth of data and knowledge and the limitations of data sources,the visual knowledge within the knowledge graphs is generally of low quality,and some entities suffer from the issue of missing visual modality.Nevertheless,previous studies of MMKGC have primarily focused on how to facilitate modality interaction and fusion while neglecting the problems of low modality quality and modality missing.In this case,mainstream MMKGC models only use pre-trained visual encoders to extract features and transfer the semantic information to the joint embeddings through modal fusion,which inevitably suffers from problems such as error propagation and increased uncertainty.To address these problems,we propose a Multi-modal knowledge graph Completion model based on Super-resolution and Detailed Description Generation(MMCSD).Specifically,we leverage a pre-trained residual network to enhance the resolution and improve the quality of the visual modality.Moreover,we design multi-level visual semantic extraction and entity description generation,thereby further extracting entity semantics from structural triples and visual images.Meanwhile,we train a variational multi-modal auto-encoder and utilize a pre-trained multi-modal language model to complement the missing visual features.We conducted experiments on FB15K-237 and DB13K,and the results showed that MMCSD can effectively perform MMKGC and achieve state-of-the-art performance. 展开更多
关键词 multi-modal knowledge graph knowledge graph completion multi-modal fusion
在线阅读 下载PDF
Transformers for Multi-Modal Image Analysis in Healthcare
14
作者 Sameera V Mohd Sagheer Meghana K H +2 位作者 P M Ameer Muneer Parayangat Mohamed Abbas 《Computers, Materials & Continua》 2025年第9期4259-4297,共39页
Integrating multiple medical imaging techniques,including Magnetic Resonance Imaging(MRI),Computed Tomography,Positron Emission Tomography(PET),and ultrasound,provides a comprehensive view of the patient health status... Integrating multiple medical imaging techniques,including Magnetic Resonance Imaging(MRI),Computed Tomography,Positron Emission Tomography(PET),and ultrasound,provides a comprehensive view of the patient health status.Each of these methods contributes unique diagnostic insights,enhancing the overall assessment of patient condition.Nevertheless,the amalgamation of data from multiple modalities presents difficulties due to disparities in resolution,data collection methods,and noise levels.While traditional models like Convolutional Neural Networks(CNNs)excel in single-modality tasks,they struggle to handle multi-modal complexities,lacking the capacity to model global relationships.This research presents a novel approach for examining multi-modal medical imagery using a transformer-based system.The framework employs self-attention and cross-attention mechanisms to synchronize and integrate features across various modalities.Additionally,it shows resilience to variations in noise and image quality,making it adaptable for real-time clinical use.To address the computational hurdles linked to transformer models,particularly in real-time clinical applications in resource-constrained environments,several optimization techniques have been integrated to boost scalability and efficiency.Initially,a streamlined transformer architecture was adopted to minimize the computational load while maintaining model effectiveness.Methods such as model pruning,quantization,and knowledge distillation have been applied to reduce the parameter count and enhance the inference speed.Furthermore,efficient attention mechanisms such as linear or sparse attention were employed to alleviate the substantial memory and processing requirements of traditional self-attention operations.For further deployment optimization,researchers have implemented hardware-aware acceleration strategies,including the use of TensorRT and ONNX-based model compression,to ensure efficient execution on edge devices.These optimizations allow the approach to function effectively in real-time clinical settings,ensuring viability even in environments with limited resources.Future research directions include integrating non-imaging data to facilitate personalized treatment and enhancing computational efficiency for implementation in resource-limited environments.This study highlights the transformative potential of transformer models in multi-modal medical imaging,offering improvements in diagnostic accuracy and patient care outcomes. 展开更多
关键词 multi-modal image analysis medical imaging deep learning image segmentation disease detection multi-modal fusion Vision Transformers(ViTs) precision medicine clinical decision support
在线阅读 下载PDF
Ensemble Deep Learning Approaches in Health Care:A Review
15
作者 Aziz Alotaibi 《Computers, Materials & Continua》 2025年第3期3741-3771,共31页
Deep learning algorithms have been rapidly incorporated into many different applications due to the increase in computational power and the availability of massive amounts of data.Recently,both deep learning and ensem... Deep learning algorithms have been rapidly incorporated into many different applications due to the increase in computational power and the availability of massive amounts of data.Recently,both deep learning and ensemble learning have been used to recognize underlying structures and patterns from high-level features to make predictions/decisions.With the growth in popularity of deep learning and ensemble learning algorithms,they have received significant attention from both scientists and the industrial community due to their superior ability to learn features from big data.Ensemble deep learning has exhibited significant performance in enhancing learning generalization through the use of multiple deep learning algorithms.Although ensemble deep learning has large quantities of training parameters,which results in time and space overheads,it performs much better than traditional ensemble learning.Ensemble deep learning has been successfully used in several areas,such as bioinformatics,finance,and health care.In this paper,we review and investigate recent ensemble deep learning algorithms and techniques in health care domains,medical imaging,health care data analytics,genomics,diagnosis,disease prevention,and drug discovery.We cover several widely used deep learning algorithms along with their architectures,including deep neural networks(DNNs),convolutional neural networks(CNNs),recurrent neural networks(RNNs),and generative adversarial networks(GANs).Common healthcare tasks,such as medical imaging,electronic health records,and genomics,are also demonstrated.Furthermore,in this review,the challenges inherent in reducing the burden on the healthcare system are discussed and explored.Finally,future directions and opportunities for enhancing healthcare model performance are discussed. 展开更多
关键词 Deep learning ensemble learning deep ensemble learning deep learning approaches for health care health care
在线阅读 下载PDF
Multi-Modal Pre-Synergistic Fusion Entity Alignment Based on Mutual Information Strategy Optimization
16
作者 Huayu Li Xinxin Chen +3 位作者 Lizhuang Tan Konstantin I.Kostromitin Athanasios V.Vasilakos Peiying Zhang 《Computers, Materials & Continua》 2025年第11期4133-4153,共21页
To address the challenge of missing modal information in entity alignment and to mitigate information loss or bias arising frommodal heterogeneity during fusion,while also capturing shared information acrossmodalities... To address the challenge of missing modal information in entity alignment and to mitigate information loss or bias arising frommodal heterogeneity during fusion,while also capturing shared information acrossmodalities,this paper proposes a Multi-modal Pre-synergistic Entity Alignmentmodel based on Cross-modalMutual Information Strategy Optimization(MPSEA).The model first employs independent encoders to process multi-modal features,including text,images,and numerical values.Next,a multi-modal pre-synergistic fusion mechanism integrates graph structural and visual modal features into the textual modality as preparatory information.This pre-fusion strategy enables unified perception of heterogeneous modalities at the model’s initial stage,reducing discrepancies during the fusion process.Finally,using cross-modal deep perception reinforcement learning,the model achieves adaptive multilevel feature fusion between modalities,supporting learningmore effective alignment strategies.Extensive experiments on multiple public datasets show that the MPSEA method achieves gains of up to 7% in Hits@1 and 8.2% in MRR on the FBDB15K dataset,and up to 9.1% in Hits@1 and 7.7% in MRR on the FBYG15K dataset,compared to existing state-of-the-art methods.These results confirm the effectiveness of the proposed model. 展开更多
关键词 Knowledge graph multi-modal entity alignment feature fusion pre-synergistic fusion
在线阅读 下载PDF
TCM network pharmacology:new perspective integrating network target with artificial intelligence and multi-modal multi-omics technologies
17
作者 Ziyi Wang Tingyu Zhang +1 位作者 Boyang Wang Shao Li 《Chinese Journal of Natural Medicines》 2025年第11期1425-1434,共10页
Traditional Chinese medicine(TCM)demonstrates distinctive advantages in disease prevention and treatment.However,analyzing its biological mechanisms through the modern medical research paradigm of“single drug,single ... Traditional Chinese medicine(TCM)demonstrates distinctive advantages in disease prevention and treatment.However,analyzing its biological mechanisms through the modern medical research paradigm of“single drug,single target”presents significant challenges due to its holistic approach.Network pharmacology and its core theory of network targets connect drugs and diseases from a holistic and systematic perspective based on biological networks,overcoming the limitations of reductionist research models and showing considerable value in TCM research.Recent integration of network target computational and experimental methods with artificial intelligence(AI)and multi-modal multi-omics technologies has substantially enhanced network pharmacology methodology.The advancement in computational and experimental techniques provides complementary support for network target theory in decoding TCM principles.This review,centered on network targets,examines the progress of network target methods combined with AI in predicting disease molecular mechanisms and drug-target relationships,alongside the application of multi-modal multi-omics technologies in analyzing TCM formulae,syndromes,and toxicity.Looking forward,network target theory is expected to incorporate emerging technologies while developing novel approaches aligned with its unique characteristics,potentially leading to significant breakthroughs in TCM research and advancing scientific understanding and innovation in TCM. 展开更多
关键词 Network pharmacology Traditional Chinese medicine Network target Artificial intelligence multi-modal Multi-omics
原文传递
Research Progress on Multi-Modal Fusion Object Detection Algorithms for Autonomous Driving:A Review
18
作者 Peicheng Shi Li Yang +2 位作者 Xinlong Dong Heng Qi Aixi Yang 《Computers, Materials & Continua》 2025年第6期3877-3917,共41页
As the number and complexity of sensors in autonomous vehicles continue to rise,multimodal fusionbased object detection algorithms are increasingly being used to detect 3D environmental information,significantly advan... As the number and complexity of sensors in autonomous vehicles continue to rise,multimodal fusionbased object detection algorithms are increasingly being used to detect 3D environmental information,significantly advancing the development of perception technology in autonomous driving.To further promote the development of fusion algorithms and improve detection performance,this paper discusses the advantages and recent advancements of multimodal fusion-based object detection algorithms.Starting fromsingle-modal sensor detection,the paper provides a detailed overview of typical sensors used in autonomous driving and introduces object detection methods based on images and point clouds.For image-based detection methods,they are categorized into monocular detection and binocular detection based on different input types.For point cloud-based detection methods,they are classified into projection-based,voxel-based,point cluster-based,pillar-based,and graph structure-based approaches based on the technical pathways for processing point cloud features.Additionally,multimodal fusion algorithms are divided into Camera-LiDAR fusion,Camera-Radar fusion,Camera-LiDAR-Radar fusion,and other sensor fusion methods based on the types of sensors involved.Furthermore,the paper identifies five key future research directions in this field,aiming to provide insights for researchers engaged in multimodal fusion-based object detection algorithms and to encourage broader attention to the research and application of multimodal fusion-based object detection. 展开更多
关键词 multi-modal fusion 3D object detection deep learning autonomous driving
在线阅读 下载PDF
A multi-modal hierarchical approach for Chinese spelling correction using multi-head attention and residual connections
19
作者 SHAO Qing DU Yiwei 《High Technology Letters》 2025年第3期309-320,共12页
The primary objective of Chinese spelling correction(CSC)is to detect and correct erroneous characters in Chinese text,which can result from various factors,such as inaccuracies in pinyin representation,character rese... The primary objective of Chinese spelling correction(CSC)is to detect and correct erroneous characters in Chinese text,which can result from various factors,such as inaccuracies in pinyin representation,character resemblance,and semantic discrepancies.However,existing methods often struggle to fully address these types of errors,impacting the overall correction accuracy.This paper introduces a multi-modal feature encoder designed to efficiently extract features from three distinct modalities:pinyin,semantics,and character morphology.Unlike previous methods that rely on direct fusion or fixed-weight summation to integrate multi-modal information,our approach employs a multi-head attention mechanism to focuse more on relevant modal information while dis-regarding less pertinent data.To prevent issues such as gradient explosion or vanishing,the model incorporates a residual connection of the original text vector for fine-tuning.This approach ensures robust model performance by maintaining essential linguistic details throughout the correction process.Experimental evaluations on the SIGHAN benchmark dataset demonstrate that the pro-posed model outperforms baseline approaches across various metrics and datasets,confirming its effectiveness and feasibility. 展开更多
关键词 Chinese spelling correction multiple-headed attention multi-modal fusion resid-ual connection pinyin encoder
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部