期刊文献+
共找到353篇文章
< 1 2 18 >
每页显示 20 50 100
Tomato Growth Height Prediction Method by Phenotypic Feature Extraction Using Multi-modal Data
1
作者 GONG Yu WANG Ling +3 位作者 ZHAO Rongqiang YOU Haibo ZHOU Mo LIU Jie 《智慧农业(中英文)》 2025年第1期97-110,共14页
[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-base... [Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-based models that utilize either images data or environmental data.These methods fail to fully leverage multi-modal data to capture the diverse aspects of plant growth comprehensively.[Methods]To address this limitation,a two-stage phenotypic feature extraction(PFE)model based on deep learning algorithm of recurrent neural network(RNN)and long short-term memory(LSTM)was developed.The model integrated environment and plant information to provide a holistic understanding of the growth process,emploied phenotypic and temporal feature extractors to comprehensively capture both types of features,enabled a deeper understanding of the interaction between tomato plants and their environment,ultimately leading to highly accurate predictions of growth height.[Results and Discussions]The experimental results showed the model's ef‐fectiveness:When predicting the next two days based on the past five days,the PFE-based RNN and LSTM models achieved mean absolute percentage error(MAPE)of 0.81%and 0.40%,respectively,which were significantly lower than the 8.00%MAPE of the large language model(LLM)and 6.72%MAPE of the Transformer-based model.In longer-term predictions,the 10-day prediction for 4 days ahead and the 30-day prediction for 12 days ahead,the PFE-RNN model continued to outperform the other two baseline models,with MAPE of 2.66%and 14.05%,respectively.[Conclusions]The proposed method,which leverages phenotypic-temporal collaboration,shows great potential for intelligent,data-driven management of tomato cultivation,making it a promising approach for enhancing the efficiency and precision of smart tomato planting management. 展开更多
关键词 tomato growth prediction deep learning phenotypic feature extraction multi-modal data recurrent neural net‐work long short-term memory large language model
在线阅读 下载PDF
Signal classification method based on data mining formulti-mode radar 被引量:10
2
作者 qiang guo pulong nan jian wan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第5期1010-1017,共8页
For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to p... For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to process intercepted signals,which has a negative effect on signal classification. A classificationmethod based on spatial data mining is presented to address theabove challenge. Inspired by the idea of spatial data mining, theclassification method applies nuclear field to depicting the distributioninformation of pulse samples in feature space, and digs out thehidden cluster information by analyzing distribution characteristics.In addition, a membership-degree criterion to quantify the correlationamong all classes is established, which ensures classificationaccuracy of signal samples. Numerical experiments show that thepresented method can effectively prevent different working statesof multi-mode emitter from being classified as several emitters,and achieve higher classification accuracy. 展开更多
关键词 multi-mode radar signal classification data mining nuclear field cloud model membership.
在线阅读 下载PDF
Multi-mode process monitoring based on a novel weighted local standardization strategy and support vector data description 被引量:9
3
作者 赵付洲 宋冰 侍洪波 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2896-2905,共10页
There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because the... There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring. 展开更多
关键词 multiple operating modes weighted local standardization support vector data description multi-mode monitoring
在线阅读 下载PDF
Multi-dimension and multi-modal rolling mill vibration prediction model based on multi-level network fusion
4
作者 CHEN Shu-zong LIU Yun-xiao +3 位作者 WANG Yun-long QIAN Cheng HUA Chang-chun SUN Jie 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3329-3348,共20页
Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction mode... Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction models do not consider the features contained in the data,resulting in limited improvement of model accuracy.To address these challenges,this paper proposes a multi-dimensional multi-modal cold rolling vibration time series prediction model(MDMMVPM)based on the deep fusion of multi-level networks.In the model,the long-term and short-term modal features of multi-dimensional data are considered,and the appropriate prediction algorithms are selected for different data features.Based on the established prediction model,the effects of tension and rolling force on mill vibration are analyzed.Taking the 5th stand of a cold mill in a steel mill as the research object,the innovative model is applied to predict the mill vibration for the first time.The experimental results show that the correlation coefficient(R^(2))of the model proposed in this paper is 92.5%,and the root-mean-square error(RMSE)is 0.0011,which significantly improves the modeling accuracy compared with the existing models.The proposed model is also suitable for the hot rolling process,which provides a new method for the prediction of strip rolling vibration. 展开更多
关键词 rolling mill vibration multi-dimension data multi-modal data convolutional neural network time series prediction
在线阅读 下载PDF
Adaptive multi-modal feature fusion for far and hard object detection
5
作者 LI Yang GE Hongwei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第2期232-241,共10页
In order to solve difficult detection of far and hard objects due to the sparseness and insufficient semantic information of LiDAR point cloud,a 3D object detection network with multi-modal data adaptive fusion is pro... In order to solve difficult detection of far and hard objects due to the sparseness and insufficient semantic information of LiDAR point cloud,a 3D object detection network with multi-modal data adaptive fusion is proposed,which makes use of multi-neighborhood information of voxel and image information.Firstly,design an improved ResNet that maintains the structure information of far and hard objects in low-resolution feature maps,which is more suitable for detection task.Meanwhile,semantema of each image feature map is enhanced by semantic information from all subsequent feature maps.Secondly,extract multi-neighborhood context information with different receptive field sizes to make up for the defect of sparseness of point cloud which improves the ability of voxel features to represent the spatial structure and semantic information of objects.Finally,propose a multi-modal feature adaptive fusion strategy which uses learnable weights to express the contribution of different modal features to the detection task,and voxel attention further enhances the fused feature expression of effective target objects.The experimental results on the KITTI benchmark show that this method outperforms VoxelNet with remarkable margins,i.e.increasing the AP by 8.78%and 5.49%on medium and hard difficulty levels.Meanwhile,our method achieves greater detection performance compared with many mainstream multi-modal methods,i.e.outperforming the AP by 1%compared with that of MVX-Net on medium and hard difficulty levels. 展开更多
关键词 3D object detection adaptive fusion multi-modal data fusion attention mechanism multi-neighborhood features
在线阅读 下载PDF
Method of Multi-Mode Sensor Data Fusion with an Adaptive Deep Coupling Convolutional Auto-Encoder
6
作者 Xiaoxiong Feng Jianhua Liu 《Journal of Sensor Technology》 2023年第4期69-85,共17页
To address the difficulties in fusing multi-mode sensor data for complex industrial machinery, an adaptive deep coupling convolutional auto-encoder (ADCCAE) fusion method was proposed. First, the multi-mode features e... To address the difficulties in fusing multi-mode sensor data for complex industrial machinery, an adaptive deep coupling convolutional auto-encoder (ADCCAE) fusion method was proposed. First, the multi-mode features extracted synchronously by the CCAE were stacked and fed to the multi-channel convolution layers for fusion. Then, the fused data was passed to all connection layers for compression and fed to the Softmax module for classification. Finally, the coupling loss function coefficients and the network parameters were optimized through an adaptive approach using the gray wolf optimization (GWO) algorithm. Experimental comparisons showed that the proposed ADCCAE fusion model was superior to existing models for multi-mode data fusion. 展开更多
关键词 multi-mode data Fusion Coupling Convolutional Auto-Encoder Adaptive Optimization Deep Learning
在线阅读 下载PDF
A Traffic Scheduling Strategy in SDN Data Center Based on Fibonacci Tree Optimization Algorithm
7
作者 Wang Yaomin Hu Ping +3 位作者 Zeng Jing Li Donghong Yuan Lu Long Hua 《China Communications》 2025年第11期176-191,共16页
To improve the traffic scheduling capability in operator data center networks,an analysis prediction and online scheduling mechanism(APOS)is designed,considering both the network structure and the network traffic in t... To improve the traffic scheduling capability in operator data center networks,an analysis prediction and online scheduling mechanism(APOS)is designed,considering both the network structure and the network traffic in the operator data center.Fibonacci tree optimization algorithm(FTO)is embedded into the analysis prediction and the online scheduling stages,the FTO traffic scheduling strategy is proposed.By taking the global optimal and the multi-modal optimization advantage of FTO,the traffic scheduling optimal solution and many suboptimal solutions can be obtained.The experiment results show that the FTO traffic scheduling strategy can schedule traffic in data center networks reasonably,and improve the load balancing in the operator data center network effectively. 展开更多
关键词 Fibonacci tree optimization algorithm(FTO) multi-modal optimization SDN data center traffic scheduling
在线阅读 下载PDF
Data-Centric AI
8
作者 鄂维南 汤林鹏 张文涛 《计算》 2025年第4期6-15,共10页
本文系统阐述了人工智能正从模型为中心(Model-centric AI,MCAI)向数据为中心(Data-centric AI,DCAI)转型的趋势,并提出了面向DCAI的数据基础设施体系,包括支持多模态数据统一管理的AI数据库;DataFlow数据准备与动态训练工具。该体系突... 本文系统阐述了人工智能正从模型为中心(Model-centric AI,MCAI)向数据为中心(Data-centric AI,DCAI)转型的趋势,并提出了面向DCAI的数据基础设施体系,包括支持多模态数据统一管理的AI数据库;DataFlow数据准备与动态训练工具。该体系突破了传统数据湖和数据处理工具的局限,实现了数据与模型的高效协同。通过大模型预训练、企业知识库构建等创新应用验证,展示了DCAI基础设施在提升模型性能、降低开发门槛方面的突破性价值,为人工智能向智能化计算新范式演进提供了系统解决方案。 展开更多
关键词 数据为中心的人工智能 数据基础设施 AI数据库 多模态数据管理 数据准备 动态训练 智能计算
在线阅读 下载PDF
智慧电厂人工智能算法支撑平台的研究
9
作者 张超 崔小军 +1 位作者 绳鹏鹏 柳宁 《机械设计与制造工程》 2025年第10期27-31,共5页
当前智慧电厂中使用的支撑平台,忽略了模型压缩问题,使得支撑平台的算法开发耗时较长。为此提出一种新型智慧电厂人工智能算法支撑平台,并进行应用分析。根据数据使用需求建立一个数据导入模块,获取多源智慧电厂数据集。设计针对人工智... 当前智慧电厂中使用的支撑平台,忽略了模型压缩问题,使得支撑平台的算法开发耗时较长。为此提出一种新型智慧电厂人工智能算法支撑平台,并进行应用分析。根据数据使用需求建立一个数据导入模块,获取多源智慧电厂数据集。设计针对人工智能算法的建模策略,结合网络结构分解方法得到优化后的算法模型。依托对抗策略搭建算法模型蒸馏架构,对人工智能算法模型进行训练和改进。最后提出基于梯度剪枝原理的模型压缩部署方案,支撑复杂场景下智慧电厂人工智能算法的快速开发。应用结果表明:通过所提支撑平台进行人工智能算法开发,耗费的总时间为18.6 min,极大缩短了算法开发时间。 展开更多
关键词 智慧电厂 人工智能算法 支撑平台 模型蒸馏 数据准备
在线阅读 下载PDF
三轴压缩试验成果影响因素分析
10
作者 周礼红 杨柳 《江苏建筑》 2025年第1期72-76,共5页
土体三轴压缩试验是测定土体力学特性的关键试验之一,尤其在地基承载力评估、路基稳定性分析及地下结构设计中占据重要地位,试验结果的准确性直接关系到工程设计的安全性与经济性。文章在阐述三轴压缩试验的原理及方法的基础上深入分析... 土体三轴压缩试验是测定土体力学特性的关键试验之一,尤其在地基承载力评估、路基稳定性分析及地下结构设计中占据重要地位,试验结果的准确性直接关系到工程设计的安全性与经济性。文章在阐述三轴压缩试验的原理及方法的基础上深入分析了取样质量、制样过程、仪器设备参数设置,试验操作过程中的技能要求以及数据处理方法等因素对试验结果的影响,提出了一系列提高试验结果准确性和可靠性的建议,包括优化取样与制样技术、严格试验操作规程和采用先进的数据分析方法等,为工程实践中合理利用三轴压缩试验结果提供了理论依据和实践指导。 展开更多
关键词 三轴压缩试验 土体力学特性 试验结果影响因素 取样质量 制样误差 数据处理
在线阅读 下载PDF
中药制剂质量均一性研究现状与发展趋势
11
作者 刘杏健 齐娅汝 +5 位作者 伍振峰 王学成 朱雯婷 徐焕华 李远辉 杨明 《中草药》 北大核心 2025年第19期7211-7221,共11页
中药制剂质量的均一、稳定是保障其发挥临床疗效的关键,也是患者安全用药的前提。然而,由于中药材质量的波动、制剂制造工序繁多、工艺影响因素复杂,中药制剂质量均一稳定性易受到影响。基于传统中医药理论与现代研究进展,聚焦于中药制... 中药制剂质量的均一、稳定是保障其发挥临床疗效的关键,也是患者安全用药的前提。然而,由于中药材质量的波动、制剂制造工序繁多、工艺影响因素复杂,中药制剂质量均一稳定性易受到影响。基于传统中医药理论与现代研究进展,聚焦于中药制剂质量均一性“控什么”及“如何控”2点,思考总结中药质量均一性评价指标、均一性调控策略与技术,并探讨未来的研究发展趋势,为提高中药制剂质量均一性提供研究思路。 展开更多
关键词 中药制剂 制剂制造 质量均一性 发展趋势 数据驱动
原文传递
In-service aircraft engines turbine blades life prediction based on multi-modal operation and maintenance data 被引量:5
12
作者 He Liu Jianzhong Sun +1 位作者 Shiying Lei Shungang Ning 《Propulsion and Power Research》 SCIE 2021年第4期360-373,共14页
The in-service life of turbine blades directly affects the on-wing lifetime and operating cost of aircraft engines.It would be essential to accurately evaluate the remaining useful life of turbine blades for safe engi... The in-service life of turbine blades directly affects the on-wing lifetime and operating cost of aircraft engines.It would be essential to accurately evaluate the remaining useful life of turbine blades for safe engine operation and reasonable maintenance decision-making.In this paper,a machine learning-based mechanism with multiple information fusion is proposed to predict the remaining useful life of high-pressure turbine blades.The developed method takes account of the in-service operating factors such as the high-pressure rotor speed and exhaust gas temperature,as well as the engine operating environments and performance degradation.The effectiveness of this method is demonstrated on simulated test cases generated by an integrated blade creep-life assessment model,which comprises engine performance,blade stress,thermal,and creep life estimation models.The results show that the proposed method provides a prospective result for in-service life evaluation of turbine blades and is of significance to evaluating the engine on-wing lifetime and making a reasonable maintenance plan. 展开更多
关键词 multi-modal operating data fusion High pressure turbine blade Remaining useful life prediction Operating condition Creep life
原文传递
基于数据挖掘探讨含雄黄成方制剂相关不良反应的特点与用药规律
13
作者 张田 徐文峰 +3 位作者 郭思瑞 李婷 王月 金鹏飞 《中国医院用药评价与分析》 2025年第7期791-794,800,共5页
目的:通过数据挖掘,分析含雄黄成方制剂的用药规律及其药品不良反应/事件(ADR/ADE)特征,为临床药物警戒和合理用药提供参考。方法:梳理2020年版《中华人民共和国药典(一部)》(以下简称“《中国药典》”)中含雄黄成方制剂的品种、剂型、... 目的:通过数据挖掘,分析含雄黄成方制剂的用药规律及其药品不良反应/事件(ADR/ADE)特征,为临床药物警戒和合理用药提供参考。方法:梳理2020年版《中华人民共和国药典(一部)》(以下简称“《中国药典》”)中含雄黄成方制剂的品种、剂型、成分和用量等信息,结合中英文文献数据库中的ADR/ADE个案报道,探讨含雄黄成方制剂相关不良反应的特点。运用关联规则分析法,评估不同药物组合与不良反应的相关性。结果:《中国药典》共收录含雄黄成方制剂38种,共涉及中药163味,其中24味毒性中药。42.11%(16种)的制剂中,雄黄日摄入量超过《中国药典》推荐的0.1 g上限。共检索出112例ADR/ADE案例,涉及12种中成药,因果关系明确。患者年龄为11 d至82岁,68.75%(77例)的患者在用药5 d内出现不良反应,38.39%(43例)的患者用药剂量超出药品说明书推荐范围。不良反应主要表现为皮肤及其附件、神经系统和消化系统的症状,绝大多数患者预后良好。在有不良反应报道的制剂中,除雄黄外,朱砂-麝香和牛黄-冰片配伍组合支持度较高;在未有不良反应报道的制剂中,冰片-朱砂/人工牛黄/黄芩/甘草/大黄、朱砂-黄芩等组合支持度较高,可能与降低雄黄的潜在毒性相关。进一步分析发现,不同配伍组合在不良反应累及系统/器官方面略有差异。结论:本研究强调了含雄黄成方制剂在临床中超说明书剂量使用的主要隐患,特别提醒关注儿童和老年患者的安全。同时,应加强公众用药安全教育,避免滥用。 展开更多
关键词 雄黄 成方制剂 不良反应 用药规律 数据挖掘
暂未订购
一体式袜机花型制版系统的设计
14
作者 费凯翔 胡旭东 +1 位作者 未印 宋可佳 《针织工业》 北大核心 2025年第4期18-21,共4页
为了解决国内市场一体式袜机配套花型制版系统缺乏的问题,设计一套针对一体式袜机花型和链条动作的制版系统,介绍一体式袜机机械结构和工作原理,分析各子系统功能和工作流程。这个系统以面向对象的设计思想为指导,给出系统的总体框架,... 为了解决国内市场一体式袜机配套花型制版系统缺乏的问题,设计一套针对一体式袜机花型和链条动作的制版系统,介绍一体式袜机机械结构和工作原理,分析各子系统功能和工作流程。这个系统以面向对象的设计思想为指导,给出系统的总体框架,并设计各子系统的一系列数据结构,使系统易于维护和扩展。一体式袜机花型制版系统所编译生成的工艺文件经现场上机测试,数据解析速度快,安全可靠,可以精准控制袜机的成形编织。 展开更多
关键词 一体式袜机 编织工艺 花型准备系统 面向对象 数据结构
原文传递
基于R语言数据挖掘探讨内服中药治疗重症肺炎的用药规律 被引量:1
15
作者 孙妍 许飚 +3 位作者 朱桂松 刘然 邹子萌 李卫芬 《中医临床研究》 2025年第4期35-41,共7页
目的:基于数据挖掘技术探讨内服中药治疗重症肺炎的用药规律。方法:通过全面检索中国知网、万方、维普、中国生物医学文献数据库、PubMed、Web of Science等数据库中的文献,收集自建库至2024年3月15日符合内服中药治疗重症肺炎的相关文... 目的:基于数据挖掘技术探讨内服中药治疗重症肺炎的用药规律。方法:通过全面检索中国知网、万方、维普、中国生物医学文献数据库、PubMed、Web of Science等数据库中的文献,收集自建库至2024年3月15日符合内服中药治疗重症肺炎的相关文献,用Excel软件记录所有中药处方,并进行性味、归经和功效分析,运用R语言进行频次、关联规则和聚类分析,从而探讨内服中药治疗重症肺炎的用药规律。结果:共筛选出中药处方172首,涉及中药173味。进行频次分析,居于前10位的中药依次为甘草、黄芩、苦杏仁、石膏、大黄、茯苓、半夏、桑白皮、桔梗、陈皮。中药四气以寒为主,其次是温、平,五味以甘、苦为主,其次是辛,归经以肺经为主,其次是胃经、脾经。按功效分类居于前3位的依次为化痰止咳平喘药、清热药和补虚药。通过关联规则分析可知,浙贝母–黄芩为支持度最高的药物组合。通过聚类分析,得到5个中药组合。结论:中医学认为,重症肺炎为本虚标实之证,治疗以扶正祛邪为准则。临床多见痰热壅肺证,治以清热解毒、宣肺化痰,辅以补气活血、通腑等。临床用药多为化痰止咳平喘药、清热药和补虚药。 展开更多
关键词 重症肺炎 数据挖掘 R语言 中医 中药 中成药 用药规律
暂未订购
基于DMOA-BP神经网络的催化裂化装置汽油产率预测研究
16
作者 王学深 潘艳秋 +1 位作者 王成宇 孙延吉 《石油炼制与化工》 北大核心 2025年第9期82-88,共7页
催化裂化是石油炼制过程中重油轻质化的重要工艺,建立催化裂化装置产品预测模型有利于优化工艺过程和建立智能化炼油厂。针对国内某炼油厂智能化建设的需求,构建了一种基于优化的BP神经网络的催化裂化装置汽油产率预测模型。通过数据清... 催化裂化是石油炼制过程中重油轻质化的重要工艺,建立催化裂化装置产品预测模型有利于优化工艺过程和建立智能化炼油厂。针对国内某炼油厂智能化建设的需求,构建了一种基于优化的BP神经网络的催化裂化装置汽油产率预测模型。通过数据清洗和最大信息系数相关性分析,从30个初始输入变量中筛选出与汽油产率关联性较强的12个输入变量,降维率达到60%。在此基础上,采用6种智能优化算法对12-8-1结构的BP神经网络的初始权重与阈值进行优化,并比较不同优化算法下的模型预测性能。结果表明,矮猫鼬算法优化的BP神经网络(DMOA-BP)预测效果最佳,其平均绝对误差、均方误差、平均绝对百分比误差均显著低于其他算法,且4次交叉验证的平均决定系数R^(2)为0.9889,因此选择DMOA-BP作为催化裂化装置汽油产率预测模型。该模型为炼油厂智能化生产提供了高精度、低复杂度的预测工具,对催化裂化装置优化运行具有指导意义。 展开更多
关键词 催化裂化 相关性分析 BP神经网络 矮猫鼬算法 非线性 数据预处理
在线阅读 下载PDF
Dynamic GNN-based multimodal anomaly detection for spatial crowdsourcing drone services
17
作者 Junaid Akram Walayat Hussain +2 位作者 Rutvij HJhaveri Rajkumar Singh Rathore Ali Anaissi 《Digital Communications and Networks》 2025年第5期1639-1656,共18页
We introduce a pioneering anomaly detection framework within spatial crowdsourcing Internet of Drone Things(IoDT),specifically designed to improve bushfire management in Australia’s expanding urban areas.This framewo... We introduce a pioneering anomaly detection framework within spatial crowdsourcing Internet of Drone Things(IoDT),specifically designed to improve bushfire management in Australia’s expanding urban areas.This framework innovatively combines Graph Neural Networks(GNN)and advanced data fusion techniques to enhance IoDT capabilities.Through spatial crowdsourcing,drones collectively gather diverse,real-time data across multiple locations,creating a rich dataset for analysis.This method integrates spatial,temporal,and various data modalities,facilitating early bushfire detection by identifying subtle environmental and operational changes.Utilizing a complex GNN architecture,our model effectively processes the intricacies of spatially crowdsourced data,significantly increasing anomaly detection accuracy.It incorporates modules for temporal pattern recognition and spatial analysis of environmental impacts,leveraging multimodal data to detect a wide range of anomalies,from temperature shifts to humidity variations.Our approach has been empirically validated,achieving an F1 score of 0.885,highlighting its superior anomaly detection performance.This integration of spatial crowdsourcing with IoDT not only establishes a new standard for environmental monitoring but also contributes significantly to disaster management and urban sustainability. 展开更多
关键词 Anomaly detection multi-modal data GNN IoDT data fusion
在线阅读 下载PDF
智能化管理平台在七元选煤厂的应用 被引量:1
18
作者 邓涵博 张鹏升 《煤炭加工与综合利用》 2025年第8期26-29,共4页
为提升生产管理效率与智能化水平,七元选煤厂引入智能化管理平台。平台系统采用Kepserver进行设备数据融合采集,依托SQL Server构建生产数据库,结合C#后端服务与Vue前端框架搭建Web可视化平台。平台功能模块涵盖实时工况监测、停送电控... 为提升生产管理效率与智能化水平,七元选煤厂引入智能化管理平台。平台系统采用Kepserver进行设备数据融合采集,依托SQL Server构建生产数据库,结合C#后端服务与Vue前端框架搭建Web可视化平台。平台功能模块涵盖实时工况监测、停送电控制、物资出入库管理、隐患巡检管理、能耗动态分析、实时报警监控及生产报表自动生成等功能模块,为选煤厂智能化升级提供了可复用的技术路径。 展开更多
关键词 选煤厂智能化 数据可视化 实时监测
在线阅读 下载PDF
智能化选煤厂数字化转型——标准数据平台体系的探索与实践 被引量:1
19
作者 荣东 《煤炭加工与综合利用》 2025年第3期18-22,共5页
为应对选煤厂生产数据的统一标准缺失、数据采集与处理的不规范,以及数据安全意识的薄弱等问题,设计了选煤厂智能化标准数据平台体系,覆盖数据标准制定、采集、协议转换、存储、结构化及接口标准化,确保全流程标准化处理。该体系打破数... 为应对选煤厂生产数据的统一标准缺失、数据采集与处理的不规范,以及数据安全意识的薄弱等问题,设计了选煤厂智能化标准数据平台体系,覆盖数据标准制定、采集、协议转换、存储、结构化及接口标准化,确保全流程标准化处理。该体系打破数据孤岛,促进数据协同共享,提升生产效率、优化成本控制、提高产品质量与资源利用,带来经济效益,为选煤厂智能化建设提供坚实支撑,推动煤炭洗选行业智能化、高效化发展。 展开更多
关键词 标准数据平台 智能化选煤厂 数字化转型
在线阅读 下载PDF
TIDS: Tensor Based Intrusion Detection System (IDS) and Its Application in Large Scale DDoS Attack Detection
20
作者 Hanqing Sun Xue Li +1 位作者 Qiyuan Fan Puming Wang 《Computers, Materials & Continua》 2025年第7期1659-1679,共21页
The era of big data brings new challenges for information network systems(INS),simultaneously offering unprecedented opportunities for advancing intelligent intrusion detection systems.In this work,we propose a data-d... The era of big data brings new challenges for information network systems(INS),simultaneously offering unprecedented opportunities for advancing intelligent intrusion detection systems.In this work,we propose a data-driven intrusion detection system for Distributed Denial of Service(DDoS)attack detection.The system focuses on intrusion detection from a big data perceptive.As intelligent information processing methods,big data and artificial intelligence have been widely used in information systems.The INS system is an important information system in cyberspace.In advanced INS systems,the network architectures have become more complex.And the smart devices in INS systems collect a large scale of network data.How to improve the performance of a complex intrusion detection system with big data and artificial intelligence is a big challenge.To address the problem,we design a novel intrusion detection system(IDS)from a big data perspective.The IDS system uses tensors to represent large-scale and complex multi-source network data in a unified tensor.Then,a novel tensor decomposition(TD)method is developed to complete big data mining.The TD method seamlessly collaborates with the XGBoost(eXtreme Gradient Boosting)method to complete the intrusion detection.To verify the proposed IDS system,a series of experiments is conducted on two real network datasets.The results revealed that the proposed IDS system attained an impressive accuracy rate over 98%.Additionally,by altering the scale of the datasets,the proposed IDS system still maintains excellent detection performance,which demonstrates the proposed IDS system’s robustness. 展开更多
关键词 Intrusion detection system big data tensor decomposition multi-modal feature DDOS
在线阅读 下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部