期刊文献+
共找到90,035篇文章
< 1 2 250 >
每页显示 20 50 100
MMGC-Net: Deep neural network for classification of mineral grains using multi-modal polarization images
1
作者 Jun Shu Xiaohai He +3 位作者 Qizhi Teng Pengcheng Yan Haibo He Honggang Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3894-3909,共16页
The multi-modal characteristics of mineral particles play a pivotal role in enhancing the classification accuracy,which is critical for obtaining a profound understanding of the Earth's composition and ensuring ef... The multi-modal characteristics of mineral particles play a pivotal role in enhancing the classification accuracy,which is critical for obtaining a profound understanding of the Earth's composition and ensuring effective exploitation utilization of its resources.However,the existing methods for classifying mineral particles do not fully utilize these multi-modal features,thereby limiting the classification accuracy.Furthermore,when conventional multi-modal image classification methods are applied to planepolarized and cross-polarized sequence images of mineral particles,they encounter issues such as information loss,misaligned features,and challenges in spatiotemporal feature extraction.To address these challenges,we propose a multi-modal mineral particle polarization image classification network(MMGC-Net)for precise mineral particle classification.Initially,MMGC-Net employs a two-dimensional(2D)backbone network with shared parameters to extract features from two types of polarized images to ensure feature alignment.Subsequently,a cross-polarized intra-modal feature fusion module is designed to refine the spatiotemporal features from the extracted features of the cross-polarized sequence images.Ultimately,the inter-modal feature fusion module integrates the two types of modal features to enhance the classification precision.Quantitative and qualitative experimental results indicate that when compared with the current state-of-the-art multi-modal image classification methods,MMGC-Net demonstrates marked superiority in terms of mineral particle multi-modal feature learning and four classification evaluation metrics.It also demonstrates better stability than the existing models. 展开更多
关键词 Mineral particles multi-modal image classification Shared parameters Feature fusion Spatiotemporal feature
暂未订购
Taxonomic classification of 80 near-Earth asteroids
2
作者 Fan Mo Bin Li +9 位作者 HaiBin Zhao Jian Chen Yan Jin MengHui Tang Igor Molotov A.M.Abdelaziz A.Takey S.K.Tealib Ahmed.Shokry JianYang Li 《Earth and Planetary Physics》 2026年第1期196-204,共9页
Near-Earth objects are important not only in studying the early formation of the Solar System,but also because they pose a serious hazard to humanity when they make close approaches to the Earth.Study of their physica... Near-Earth objects are important not only in studying the early formation of the Solar System,but also because they pose a serious hazard to humanity when they make close approaches to the Earth.Study of their physical properties can provide useful information on their origin,evolution,and hazard to human beings.However,it remains challenging to investigate small,newly discovered,near-Earth objects because of our limited observational window.This investigation seeks to determine the visible colors of near-Earth asteroids(NEAs),perform an initial taxonomic classification based on visible colors and analyze possible correlations between the distribution of taxonomic classification and asteroid size or orbital parameters.Observations were performed in the broadband BVRI Johnson−Cousins photometric system,applied to images from the Yaoan High Precision Telescope and the 1.88 m telescope at the Kottamia Astronomical Observatory.We present new photometric observations of 84 near-Earth asteroids,and classify 80 of them taxonomically,based on their photometric colors.We find that nearly half(46.3%)of the objects in our sample can be classified as S-complex,26.3%as C-complex,6%as D-complex,and 15.0%as X-complex;the remaining belong to the A-or V-types.Additionally,we identify three P-type NEAs in our sample,according to the Tholen scheme.The fractional abundances of the C/X-complex members with absolute magnitude H≥17.0 were more than twice as large as those with H<17.0.However,the fractions of C-and S-complex members with diameters≤1 km and>1 km are nearly equal,while X-complex members tend to have sub-kilometer diameters.In our sample,the C/D-complex objects are predominant among those with a Jovian Tisserand parameter of T_(J)<3.1.These bodies could have a cometary origin.C-and S-complex members account for a considerable proportion of the asteroids that are potentially hazardous. 展开更多
关键词 near-Earth asteroids optical telescope photometric observation taxonomic classification
在线阅读 下载PDF
A Novel Unsupervised Structural Attack and Defense for Graph Classification
3
作者 Yadong Wang Zhiwei Zhang +2 位作者 Pengpeng Qiao Ye Yuan Guoren Wang 《Computers, Materials & Continua》 2026年第1期1761-1782,共22页
Graph Neural Networks(GNNs)have proven highly effective for graph classification across diverse fields such as social networks,bioinformatics,and finance,due to their capability to learn complex graph structures.Howev... Graph Neural Networks(GNNs)have proven highly effective for graph classification across diverse fields such as social networks,bioinformatics,and finance,due to their capability to learn complex graph structures.However,despite their success,GNNs remain vulnerable to adversarial attacks that can significantly degrade their classification accuracy.Existing adversarial attack strategies primarily rely on label information to guide the attacks,which limits their applicability in scenarios where such information is scarce or unavailable.This paper introduces an innovative unsupervised attack method for graph classification,which operates without relying on label information,thereby enhancing its applicability in a broad range of scenarios.Specifically,our method first leverages a graph contrastive learning loss to learn high-quality graph embeddings by comparing different stochastic augmented views of the graphs.To effectively perturb the graphs,we then introduce an implicit estimator that measures the impact of various modifications on graph structures.The proposed strategy identifies and flips edges with the top-K highest scores,determined by the estimator,to maximize the degradation of the model’s performance.In addition,to defend against such attack,we propose a lightweight regularization-based defense mechanism that is specifically tailored to mitigate the structural perturbations introduced by our attack strategy.It enhances model robustness by enforcing embedding consistency and edge-level smoothness during training.We conduct experiments on six public TU graph classification datasets:NCI1,NCI109,Mutagenicity,ENZYMES,COLLAB,and DBLP_v1,to evaluate the effectiveness of our attack and defense strategies.Under an attack budget of 3,the maximum reduction in model accuracy reaches 6.67%on the Graph Convolutional Network(GCN)and 11.67%on the Graph Attention Network(GAT)across different datasets,indicating that our unsupervised method induces degradation comparable to state-of-the-art supervised attacks.Meanwhile,our defense achieves the highest accuracy recovery of 3.89%(GCN)and 5.00%(GAT),demonstrating improved robustness against structural perturbations. 展开更多
关键词 Graph classification graph neural networks adversarial attack
在线阅读 下载PDF
Graph Attention Networks for Skin Lesion Classification with CNN-Driven Node Features
4
作者 Ghadah Naif Alwakid Samabia Tehsin +3 位作者 Mamoona Humayun Asad Farooq Ibrahim Alrashdi Amjad Alsirhani 《Computers, Materials & Continua》 2026年第1期1964-1984,共21页
Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and ... Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and severe class imbalance,and occasional imaging artifacts can create ambiguity for state-of-the-art convolutional neural networks(CNNs).We frame skin lesion recognition as graph-based reasoning and,to ensure fair evaluation and avoid data leakage,adopt a strict lesion-level partitioning strategy.Each image is first over-segmented using SLIC(Simple Linear Iterative Clustering)to produce perceptually homogeneous superpixels.These superpixels form the nodes of a region-adjacency graph whose edges encode spatial continuity.Node attributes are 1280-dimensional embeddings extracted with a lightweight yet expressive EfficientNet-B0 backbone,providing strong representational power at modest computational cost.The resulting graphs are processed by a five-layer Graph Attention Network(GAT)that learns to weight inter-node relationships dynamically and aggregates multi-hop context before classifying lesions into seven classes with a log-softmax output.Extensive experiments on the DermaMNIST benchmark show the proposed pipeline achieves 88.35%accuracy and 98.04%AUC,outperforming contemporary CNNs,AutoML approaches,and alternative graph neural networks.An ablation study indicates EfficientNet-B0 produces superior node descriptors compared with ResNet-18 and DenseNet,and that roughly five GAT layers strike a good balance between being too shallow and over-deep while avoiding oversmoothing.The method requires no data augmentation or external metadata,making it a drop-in upgrade for clinical computer-aided diagnosis systems. 展开更多
关键词 Graph neural network image classification DermaMNIST dataset graph representation
在线阅读 下载PDF
Deep Learning for Brain Tumor Segmentation and Classification: A Systematic Review of Methods and Trends
5
作者 Ameer Hamza Robertas Damaševicius 《Computers, Materials & Continua》 2026年第1期132-172,共41页
This systematic review aims to comprehensively examine and compare deep learning methods for brain tumor segmentation and classification using MRI and other imaging modalities,focusing on recent trends from 2022 to 20... This systematic review aims to comprehensively examine and compare deep learning methods for brain tumor segmentation and classification using MRI and other imaging modalities,focusing on recent trends from 2022 to 2025.The primary objective is to evaluate methodological advancements,model performance,dataset usage,and existing challenges in developing clinically robust AI systems.We included peer-reviewed journal articles and highimpact conference papers published between 2022 and 2025,written in English,that proposed or evaluated deep learning methods for brain tumor segmentation and/or classification.Excluded were non-open-access publications,books,and non-English articles.A structured search was conducted across Scopus,Google Scholar,Wiley,and Taylor&Francis,with the last search performed in August 2025.Risk of bias was not formally quantified but considered during full-text screening based on dataset diversity,validation methods,and availability of performance metrics.We used narrative synthesis and tabular benchmarking to compare performance metrics(e.g.,accuracy,Dice score)across model types(CNN,Transformer,Hybrid),imaging modalities,and datasets.A total of 49 studies were included(43 journal articles and 6 conference papers).These studies spanned over 9 public datasets(e.g.,BraTS,Figshare,REMBRANDT,MOLAB)and utilized a range of imaging modalities,predominantly MRI.Hybrid models,especially ResViT and UNetFormer,consistently achieved high performance,with classification accuracy exceeding 98%and segmentation Dice scores above 0.90 across multiple studies.Transformers and hybrid architectures showed increasing adoption post2023.Many studies lacked external validation and were evaluated only on a few benchmark datasets,raising concerns about generalizability and dataset bias.Few studies addressed clinical interpretability or uncertainty quantification.Despite promising results,particularly for hybrid deep learning models,widespread clinical adoption remains limited due to lack of validation,interpretability concerns,and real-world deployment barriers. 展开更多
关键词 Brain tumor segmentation brain tumor classification deep learning vision transformers hybrid models
在线阅读 下载PDF
HCL Net: Deep Learning for Accurate Classification of Honeycombing Lung and Ground Glass Opacity in CT Images
6
作者 Hairul Aysa Abdul Halim Sithiq Liyana Shuib +1 位作者 Muneer Ahmad Chermaine Deepa Antony 《Computers, Materials & Continua》 2026年第1期999-1023,共25页
Honeycombing Lung(HCL)is a chronic lung condition marked by advanced fibrosis,resulting in enlarged air spaces with thick fibrotic walls,which are visible on Computed Tomography(CT)scans.Differentiating between normal... Honeycombing Lung(HCL)is a chronic lung condition marked by advanced fibrosis,resulting in enlarged air spaces with thick fibrotic walls,which are visible on Computed Tomography(CT)scans.Differentiating between normal lung tissue,honeycombing lungs,and Ground Glass Opacity(GGO)in CT images is often challenging for radiologists and may lead to misinterpretations.Although earlier studies have proposed models to detect and classify HCL,many faced limitations such as high computational demands,lower accuracy,and difficulty distinguishing between HCL and GGO.CT images are highly effective for lung classification due to their high resolution,3D visualization,and sensitivity to tissue density variations.This study introduces Honeycombing Lungs Network(HCL Net),a novel classification algorithm inspired by ResNet50V2 and enhanced to overcome the shortcomings of previous approaches.HCL Net incorporates additional residual blocks,refined preprocessing techniques,and selective parameter tuning to improve classification performance.The dataset,sourced from the University Malaya Medical Centre(UMMC)and verified by expert radiologists,consists of CT images of normal,honeycombing,and GGO lungs.Experimental evaluations across five assessments demonstrated that HCL Net achieved an outstanding classification accuracy of approximately 99.97%.It also recorded strong performance in other metrics,achieving 93%precision,100%sensitivity,89%specificity,and an AUC-ROC score of 97%.Comparative analysis with baseline feature engineering methods confirmed the superior efficacy of HCL Net.The model significantly reduces misclassification,particularly between honeycombing and GGO lungs,enhancing diagnostic precision and reliability in lung image analysis. 展开更多
关键词 Deep learning honeycombing lung ground glass opacity Resnet50v2 multiclass classification
在线阅读 下载PDF
An Improved Forest Fire Detection Model Using Audio Classification and Machine Learning
7
作者 Kemahyanto Exaudi Deris Stiawan +4 位作者 Bhakti Yudho Suprapto Hanif Fakhrurroja MohdYazid Idris Tami AAlghamdi Rahmat Budiarto 《Computers, Materials & Continua》 2026年第1期2062-2085,共24页
Sudden wildfires cause significant global ecological damage.While satellite imagery has advanced early fire detection and mitigation,image-based systems face limitations including high false alarm rates,visual obstruc... Sudden wildfires cause significant global ecological damage.While satellite imagery has advanced early fire detection and mitigation,image-based systems face limitations including high false alarm rates,visual obstructions,and substantial computational demands,especially in complex forest terrains.To address these challenges,this study proposes a novel forest fire detection model utilizing audio classification and machine learning.We developed an audio-based pipeline using real-world environmental sound recordings.Sounds were converted into Mel-spectrograms and classified via a Convolutional Neural Network(CNN),enabling the capture of distinctive fire acoustic signatures(e.g.,crackling,roaring)that are minimally impacted by visual or weather conditions.Internet of Things(IoT)sound sensors were crucial for generating complex environmental parameters to optimize feature extraction.The CNN model achieved high performance in stratified 5-fold cross-validation(92.4%±1.6 accuracy,91.2%±1.8 F1-score)and on test data(94.93%accuracy,93.04%F1-score),with 98.44%precision and 88.32%recall,demonstrating reliability across environmental conditions.These results indicate that the audio-based approach not only improves detection reliability but also markedly reduces computational overhead compared to traditional image-based methods.The findings suggest that acoustic sensing integrated with machine learning offers a powerful,low-cost,and efficient solution for real-time forest fire monitoring in complex,dynamic environments. 展开更多
关键词 Audio classification convolutional neural network(CNN) environmental science forest fire detection machine learning spectrogram analysis IOT
在线阅读 下载PDF
A Hybrid Deep Learning Multi-Class Classification Model for Alzheimer’s Disease Using Enhanced MRI Images
8
作者 Ghadah Naif Alwakid 《Computers, Materials & Continua》 2026年第1期797-821,共25页
Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often stru... Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often struggle with low-contrast MRI images,class imbalance,and suboptimal feature extraction.This paper develops a Hybrid DL system that unites MobileNetV2 with adaptive classification methods to boost Alzheimer’s diagnosis by processing MRI scans.Image enhancement is done using Contrast-Limited Adaptive Histogram Equalization(CLAHE)and Enhanced Super-Resolution Generative Adversarial Networks(ESRGAN).A classification robustness enhancement system integrates class weighting techniques and a Matthews Correlation Coefficient(MCC)-based evaluation method into the design.The trained and validated model gives a 98.88%accuracy rate and 0.9614 MCC score.We also performed a 10-fold cross-validation experiment with an average accuracy of 96.52%(±1.51),a loss of 0.1671,and an MCC score of 0.9429 across folds.The proposed framework outperforms the state-of-the-art models with a 98%weighted F1-score while decreasing misdiagnosis results for every AD stage.The model demonstrates apparent separation abilities between AD progression stages according to the results of the confusion matrix analysis.These results validate the effectiveness of hybrid DL models with adaptive preprocessing for early and reliable Alzheimer’s diagnosis,contributing to improved computer-aided diagnosis(CAD)systems in clinical practice. 展开更多
关键词 Alzheimer’s disease deep learning MRI images MobileNetV2 contrast-limited adaptive histogram equalization(CLAHE) enhanced super-resolution generative adversarial networks(ESRGAN) multi-class classification
在线阅读 下载PDF
PowerDetector:Malicious PowerShell Script Family Classification Based on Multi-Modal Semantic Fusion and Deep Learning 被引量:8
9
作者 Xiuzhang Yang Guojun Peng +2 位作者 Dongni Zhang Yuhang Gao Chenguang Li 《China Communications》 SCIE CSCD 2023年第11期202-224,共23页
Power Shell has been widely deployed in fileless malware and advanced persistent threat(APT)attacks due to its high stealthiness and live-off-theland technique.However,existing works mainly focus on deobfuscation and ... Power Shell has been widely deployed in fileless malware and advanced persistent threat(APT)attacks due to its high stealthiness and live-off-theland technique.However,existing works mainly focus on deobfuscation and malicious detection,lacking the malicious Power Shell families classification and behavior analysis.Moreover,the state-of-the-art methods fail to capture fine-grained features and semantic relationships,resulting in low robustness and accuracy.To this end,we propose Power Detector,a novel malicious Power Shell script detector based on multimodal semantic fusion and deep learning.Specifically,we design four feature extraction methods to extract key features from character,token,abstract syntax tree(AST),and semantic knowledge graph.Then,we intelligently design four embeddings(i.e.,Char2Vec,Token2Vec,AST2Vec,and Rela2Vec) and construct a multi-modal fusion algorithm to concatenate feature vectors from different views.Finally,we propose a combined model based on transformer and CNN-Bi LSTM to implement Power Shell family detection.Our experiments with five types of Power Shell attacks show that PowerDetector can accurately detect various obfuscated and stealth PowerShell scripts,with a 0.9402 precision,a 0.9358 recall,and a 0.9374 F1-score.Furthermore,through singlemodal and multi-modal comparison experiments,we demonstrate that PowerDetector’s multi-modal embedding and deep learning model can achieve better accuracy and even identify more unknown attacks. 展开更多
关键词 deep learning malicious family detection multi-modal semantic fusion POWERSHELL
在线阅读 下载PDF
Learning Multi-Modality Features for Scene Classification of High-Resolution Remote Sensing Images 被引量:1
10
作者 Feng’an Zhao Xiongmei Zhang +2 位作者 Xiaodong Mu Zhaoxiang Yi Zhou Yang 《Journal of Computer and Communications》 2018年第11期185-193,共9页
Scene classification of high-resolution remote sensing (HRRS) image is an important research topic and has been applied broadly in many fields. Deep learning method has shown its high potential to in this domain, owin... Scene classification of high-resolution remote sensing (HRRS) image is an important research topic and has been applied broadly in many fields. Deep learning method has shown its high potential to in this domain, owing to its powerful learning ability of characterizing complex patterns. However the deep learning methods omit some global and local information of the HRRS image. To this end, in this article we show efforts to adopt explicit global and local information to provide complementary information to deep models. Specifically, we use a patch based MS-CLBP method to acquire global and local representations, and then we consider a pretrained CNN model as a feature extractor and extract deep hierarchical features from full-connection layers. After fisher vector (FV) encoding, we obtain the holistic visual representation of the scene image. We view the scene classification as a reconstruction procedure and train several class-specific stack denoising autoencoders (SDAEs) of corresponding class, i.e., one SDAE per class, and classify the test image according to the reconstruction error. Experimental results show that our combination method outperforms the state-of-the-art deep learning classification methods without employing fine-tuning. 展开更多
关键词 FEATURE Fusion Multiple FEATURES SCENE classification STACK DENOISING Autoencoder
在线阅读 下载PDF
M^(2)LC-Net: A Multi-Modal Multi-Disease Long-Tailed Classification Network for Real Clinical Scenes
11
作者 Zhonghong Ou Wenjun Chai +9 位作者 Lifei Wang Ruru Zhang Jiawen He Meina Song Lifei Yuan Shengjuan Zhang Yanhui Wang Huan Li Xin Jia Rujian Huang 《China Communications》 SCIE CSCD 2021年第9期210-220,共11页
Leveraging deep learning-based techniques to classify diseases has attracted extensive research interest in recent years.Nevertheless,most of the current studies only consider single-modal medical images,and the numbe... Leveraging deep learning-based techniques to classify diseases has attracted extensive research interest in recent years.Nevertheless,most of the current studies only consider single-modal medical images,and the number of ophthalmic diseases that can be classified is relatively small.Moreover,imbalanced data distribution of different ophthalmic diseases is not taken into consideration,which limits the application of deep learning techniques in realistic clinical scenes.In this paper,we propose a Multimodal Multi-disease Long-tailed Classification Network(M^(2)LC-Net)in response to the challenges mentioned above.M^(2)LC-Net leverages ResNet18-CBAM to extract features from fundus images and Optical Coherence Tomography(OCT)images,respectively,and conduct feature fusion to classify 11 common ophthalmic diseases.Moreover,Class Activation Mapping(CAM)is employed to visualize each mode to improve interpretability of M^(2)LC-Net.We conduct comprehensive experiments on realistic dataset collected from a Grade III Level A ophthalmology hospital in China,including 34,396 images of 11 disease labels.Experimental results demonstrate effectiveness of our proposed model M^(2)LC-Net.Compared with the stateof-the-art,various performance metrics have been improved significantly.Specifically,Cohen’s kappa coefficient κ has been improved by 3.21%,which is a remarkable improvement. 展开更多
关键词 deep learning multi modal long-tail ophthalmic disease classification
在线阅读 下载PDF
Osteoporotic Vertebral Fracture Classification in X-rays Based on a Multi-modal Semantic Consistency Network
12
作者 Yuzhao Wang Tian Bai +1 位作者 Tong Li Lan Huang 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第6期1816-1829,共14页
Osteoporotic Vertebral Fracture(OVFs)is a common lumbar spine disorder that severely affects the health of patients.With a clear bone blocks boundary,CT images have gained obvious advantages in OVFs diagnosis.Compared... Osteoporotic Vertebral Fracture(OVFs)is a common lumbar spine disorder that severely affects the health of patients.With a clear bone blocks boundary,CT images have gained obvious advantages in OVFs diagnosis.Compared with CT images,X-rays are faster and more inexpensive but often leads to misdiagnosis and miss-diagnosis because of the overlapping shadows.Considering how to transfer CT imaging advantages to achieve OVFs classification in X-rays is meaningful.For this purpose,we propose a multi-modal semantic consistency network which could do well X-ray OVFs classification by transferring CT semantic consistency features.Different from existing methods,we introduce a feature-level mix-up module to get the domain soft labels which helps the network reduce the domain offsets between CT and X-ray.In the meanwhile,the network uses a self-rotation pretext task on both CT and X-ray domains to enhance learning the high-level semantic invariant features.We employ five evaluation metrics to compare the proposed method with the state-of-the-art methods.The final results show that our method improves the best value of AUC from 86.32 to 92.16%.The results indicate that multi-modal semantic consistency method could use CT imaging features to improve osteoporotic vertebral fracture classification in X-rays effectively. 展开更多
关键词 Osteoporotic vertebral fracture classification Cross-modality Unsupervised domain adaptation Transfer learning Convolutional neural network Computer-aided diagnosis
在线阅读 下载PDF
Signal classification method based on data mining formulti-mode radar 被引量:10
13
作者 qiang guo pulong nan jian wan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第5期1010-1017,共8页
For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to p... For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to process intercepted signals,which has a negative effect on signal classification. A classificationmethod based on spatial data mining is presented to address theabove challenge. Inspired by the idea of spatial data mining, theclassification method applies nuclear field to depicting the distributioninformation of pulse samples in feature space, and digs out thehidden cluster information by analyzing distribution characteristics.In addition, a membership-degree criterion to quantify the correlationamong all classes is established, which ensures classificationaccuracy of signal samples. Numerical experiments show that thepresented method can effectively prevent different working statesof multi-mode emitter from being classified as several emitters,and achieve higher classification accuracy. 展开更多
关键词 multi-mode radar signal classification data mining nuclear field cloud model membership.
在线阅读 下载PDF
Urban tree species classification based on multispectral airborne LiDAR 被引量:1
14
作者 HU Pei-Lun CHEN Yu-Wei +3 位作者 Mohammad Imangholiloo Markus Holopainen WANG Yi-Cheng Juha Hyyppä 《红外与毫米波学报》 北大核心 2025年第2期211-216,共6页
Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services... Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services is influenced by species diversity,tree health,and the distribution and the composition of trees.Traditionally,data on urban trees has been collected through field surveys and manual interpretation of remote sensing images.In this study,we evaluated the effectiveness of multispectral airborne laser scanning(ALS)data in classifying 24 common urban roadside tree species in Espoo,Finland.Tree crown structure information,intensity features,and spectral data were used for classification.Eight different machine learning algorithms were tested,with the extra trees(ET)algorithm performing the best,achieving an overall accuracy of 71.7%using multispectral LiDAR data.This result highlights that integrating structural and spectral information within a single framework can improve the classification accuracy.Future research will focus on identifying the most important features for species classification and developing algorithms with greater efficiency and accuracy. 展开更多
关键词 multispectral airborne LiDAR machine learning tree species classification
在线阅读 下载PDF
Construction and evaluation of a predictive model for the degree of coronary artery occlusion based on adaptive weighted multi-modal fusion of traditional Chinese and western medicine data 被引量:2
15
作者 Jiyu ZHANG Jiatuo XU +1 位作者 Liping TU Hongyuan FU 《Digital Chinese Medicine》 2025年第2期163-173,共11页
Objective To develop a non-invasive predictive model for coronary artery stenosis severity based on adaptive multi-modal integration of traditional Chinese and western medicine data.Methods Clinical indicators,echocar... Objective To develop a non-invasive predictive model for coronary artery stenosis severity based on adaptive multi-modal integration of traditional Chinese and western medicine data.Methods Clinical indicators,echocardiographic data,traditional Chinese medicine(TCM)tongue manifestations,and facial features were collected from patients who underwent coro-nary computed tomography angiography(CTA)in the Cardiac Care Unit(CCU)of Shanghai Tenth People's Hospital between May 1,2023 and May 1,2024.An adaptive weighted multi-modal data fusion(AWMDF)model based on deep learning was constructed to predict the severity of coronary artery stenosis.The model was evaluated using metrics including accura-cy,precision,recall,F1 score,and the area under the receiver operating characteristic(ROC)curve(AUC).Further performance assessment was conducted through comparisons with six ensemble machine learning methods,data ablation,model component ablation,and various decision-level fusion strategies.Results A total of 158 patients were included in the study.The AWMDF model achieved ex-cellent predictive performance(AUC=0.973,accuracy=0.937,precision=0.937,recall=0.929,and F1 score=0.933).Compared with model ablation,data ablation experiments,and various traditional machine learning models,the AWMDF model demonstrated superior per-formance.Moreover,the adaptive weighting strategy outperformed alternative approaches,including simple weighting,averaging,voting,and fixed-weight schemes.Conclusion The AWMDF model demonstrates potential clinical value in the non-invasive prediction of coronary artery disease and could serve as a tool for clinical decision support. 展开更多
关键词 Coronary artery disease Deep learning multi-modal Clinical prediction Traditional Chinese medicine diagnosis
暂未订购
TCM network pharmacology:new perspective integrating network target with artificial intelligence and multi-modal multi-omics technologies 被引量:1
16
作者 Ziyi Wang Tingyu Zhang +1 位作者 Boyang Wang Shao Li 《Chinese Journal of Natural Medicines》 2025年第11期1425-1434,共10页
Traditional Chinese medicine(TCM)demonstrates distinctive advantages in disease prevention and treatment.However,analyzing its biological mechanisms through the modern medical research paradigm of“single drug,single ... Traditional Chinese medicine(TCM)demonstrates distinctive advantages in disease prevention and treatment.However,analyzing its biological mechanisms through the modern medical research paradigm of“single drug,single target”presents significant challenges due to its holistic approach.Network pharmacology and its core theory of network targets connect drugs and diseases from a holistic and systematic perspective based on biological networks,overcoming the limitations of reductionist research models and showing considerable value in TCM research.Recent integration of network target computational and experimental methods with artificial intelligence(AI)and multi-modal multi-omics technologies has substantially enhanced network pharmacology methodology.The advancement in computational and experimental techniques provides complementary support for network target theory in decoding TCM principles.This review,centered on network targets,examines the progress of network target methods combined with AI in predicting disease molecular mechanisms and drug-target relationships,alongside the application of multi-modal multi-omics technologies in analyzing TCM formulae,syndromes,and toxicity.Looking forward,network target theory is expected to incorporate emerging technologies while developing novel approaches aligned with its unique characteristics,potentially leading to significant breakthroughs in TCM research and advancing scientific understanding and innovation in TCM. 展开更多
关键词 Network pharmacology Traditional Chinese medicine Network target Artificial intelligence multi-modal Multi-omics
原文传递
Multi-modal intelligent situation awareness in real-time air traffic control: Control intent understanding and flight trajectory prediction 被引量:1
17
作者 Dongyue GUO Jianwei ZHANG +1 位作者 Bo YANG Yi LIN 《Chinese Journal of Aeronautics》 2025年第6期41-57,共17页
With the advent of the next-generation Air Traffic Control(ATC)system,there is growing interest in using Artificial Intelligence(AI)techniques to enhance Situation Awareness(SA)for ATC Controllers(ATCOs),i.e.,Intellig... With the advent of the next-generation Air Traffic Control(ATC)system,there is growing interest in using Artificial Intelligence(AI)techniques to enhance Situation Awareness(SA)for ATC Controllers(ATCOs),i.e.,Intelligent SA(ISA).However,the existing AI-based SA approaches often rely on unimodal data and lack a comprehensive description and benchmark of the ISA tasks utilizing multi-modal data for real-time ATC environments.To address this gap,by analyzing the situation awareness procedure of the ATCOs,the ISA task is refined to the processing of the two primary elements,i.e.,spoken instructions and flight trajectories.Subsequently,the ISA is further formulated into Controlling Intent Understanding(CIU)and Flight Trajectory Prediction(FTP)tasks.For the CIU task,an innovative automatic speech recognition and understanding framework is designed to extract the controlling intent from unstructured and continuous ATC communications.For the FTP task,the single-and multi-horizon FTP approaches are investigated to support the high-precision prediction of the situation evolution.A total of 32 unimodal/multi-modal advanced methods with extensive evaluation metrics are introduced to conduct the benchmarks on the real-world multi-modal ATC situation dataset.Experimental results demonstrate the effectiveness of AI-based techniques in enhancing ISA for the ATC environment. 展开更多
关键词 Airtraffic control Automatic speechrecognition and understanding Flight trajectory prediction multi-modal Situationawareness
原文传递
Impact of classification granularity on interdisciplinary performance assessment of research institutes and organizations 被引量:1
18
作者 Jiandong Zhang Sonia Gruber Rainer Frietsch 《Journal of Data and Information Science》 2025年第2期61-79,共19页
Purpose:Interdisciplinary research has become a critical approach to addressing complex societal,economic,technological,and environmental challenges,driving innovation and integrating scientific knowledge.While interd... Purpose:Interdisciplinary research has become a critical approach to addressing complex societal,economic,technological,and environmental challenges,driving innovation and integrating scientific knowledge.While interdisciplinarity indicators are widely used to evaluate research performance,the impact of classification granularity on these assessments remains underexplored.Design/methodology/approach:This study investigates how different levels of classification granularity-macro,meso,and micro-affect the evaluation of interdisciplinarity in research institutes.Using a dataset of 262 institutes from four major German non-university organizations(FHG,HGF,MPG,WGL)from 2018 to 2022,we examine inconsistencies in interdisciplinarity across levels,analyze ranking changes,and explore the influence of institutional fields and research focus(applied vs.basic).Findings:Our findings reveal significant inconsistencies in interdisciplinarity across classification levels,with rankings varying substantially.Notably,the Fraunhofer Society(FHG),which performs well at the macro level,experiences significant ranking declines at meso and micro levels.Normalizing interdisciplinarity by research field confirmed that these declines persist.The research focus of institutes,whether applied,basic,or mixed,does not significantly explain the observed ranking dynamics.Research limitations:This study has only considered the publication-based dimension of institutional interdisciplinarity and has not explored other aspects.Practical implications:The findings provide insights for policymakers,research managers,and scholars to better interpret interdisciplinarity metrics and support interdisciplinary research effectively.Originality/value:This study underscores the critical role of classification granularity in interdisciplinarity assessment and emphasizes the need for standardized approaches to ensure robust and fair evaluations. 展开更多
关键词 Interdisciplinarity Paper-level classification system Organization evaluation
在线阅读 下载PDF
Personal Style Guided Outfit Recommendation with Multi-Modal Fashion Compatibility Modeling 被引量:1
19
作者 WANG Kexin ZHANG Jie +3 位作者 ZHANG Peng SUN Kexin ZHAN Jiamei WEI Meng 《Journal of Donghua University(English Edition)》 2025年第2期156-167,共12页
A personalized outfit recommendation has emerged as a hot research topic in the fashion domain.However,existing recommendations do not fully exploit user style preferences.Typically,users prefer particular styles such... A personalized outfit recommendation has emerged as a hot research topic in the fashion domain.However,existing recommendations do not fully exploit user style preferences.Typically,users prefer particular styles such as casual and athletic styles,and consider attributes like color and texture when selecting outfits.To achieve personalized outfit recommendations in line with user style preferences,this paper proposes a personal style guided outfit recommendation with multi-modal fashion compatibility modeling,termed as PSGNet.Firstly,a style classifier is designed to categorize fashion images of various clothing types and attributes into distinct style categories.Secondly,a personal style prediction module extracts user style preferences by analyzing historical data.Then,to address the limitations of single-modal representations and enhance fashion compatibility,both fashion images and text data are leveraged to extract multi-modal features.Finally,PSGNet integrates these components through Bayesian personalized ranking(BPR)to unify the personal style and fashion compatibility,where the former is used as personal style features and guides the output of the personalized outfit recommendation tailored to the target user.Extensive experiments on large-scale datasets demonstrate that the proposed model is efficient on the personalized outfit recommendation. 展开更多
关键词 personalized outfit recommendation fashion compatibility modeling style preference multi-modal representation Bayesian personalized ranking(BPR) style classifier
暂未订购
YOLOCSP-PEST for Crops Pest Localization and Classification 被引量:1
20
作者 Farooq Ali Huma Qayyum +2 位作者 Kashif Saleem Iftikhar Ahmad Muhammad Javed Iqbal 《Computers, Materials & Continua》 2025年第2期2373-2388,共16页
Preservation of the crops depends on early and accurate detection of pests on crops as they cause several diseases decreasing crop production and quality. Several deep-learning techniques have been applied to overcome... Preservation of the crops depends on early and accurate detection of pests on crops as they cause several diseases decreasing crop production and quality. Several deep-learning techniques have been applied to overcome the issue of pest detection on crops. We have developed the YOLOCSP-PEST model for Pest localization and classification. With the Cross Stage Partial Network (CSPNET) backbone, the proposed model is a modified version of You Only Look Once Version 7 (YOLOv7) that is intended primarily for pest localization and classification. Our proposed model gives exceptionally good results under conditions that are very challenging for any other comparable models especially conditions where we have issues with the luminance and the orientation of the images. It helps farmers working out on their crops in distant areas to determine any infestation quickly and accurately on their crops which helps in the quality and quantity of the production yield. The model has been trained and tested on 2 datasets namely the IP102 data set and a local crop data set on both of which it has shown exceptional results. It gave us a mean average precision (mAP) of 88.40% along with a precision of 85.55% and a recall of 84.25% on the IP102 dataset meanwhile giving a mAP of 97.18% on the local data set along with a recall of 94.88% and a precision of 97.50%. These findings demonstrate that the proposed model is very effective in detecting real-life scenarios and can help in the production of crops improving the yield quality and quantity at the same time. 展开更多
关键词 Deep learning classification of pests YOLOCSP-PEST pest detection
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部