In this paper,we propose the decoupling technique of patch antenna array by suppressing near-field magnetic coupling(NFMC) using magnetic metamaterials.To this end,a highly-integrated magnetic metamaterials,the subs...In this paper,we propose the decoupling technique of patch antenna array by suppressing near-field magnetic coupling(NFMC) using magnetic metamaterials.To this end,a highly-integrated magnetic metamaterials,the substrate-integrated split-ring resonator(SI-SRR),is firstly proposed to achieve negative permeability at the antenna operating frequency.By integrating SI-SRR in between two closely spaced antennas,magnetic fields are blocked in the shared substrate due to negative permeability of SI-SRR,reducing NFMC between the two antennas.To verify the technique,a prototype was fabricated and measured.The measured results demonstrated that the isolation can be enhanced by more than 17 dB even when the gap between the two patch antennas is only about 0.067 A.Due to high integration,this technique provides an effective alternative to high-isolation antenna array.展开更多
To improve the low-frequency vibration reduction effect of a steel spring floating slab track(FST),nonlinear quasizero-stiffness(QZS)vibration isolators composed of positive stiffness elements(PSEs)and negative stiffn...To improve the low-frequency vibration reduction effect of a steel spring floating slab track(FST),nonlinear quasizero-stiffness(QZS)vibration isolators composed of positive stiffness elements(PSEs)and negative stiffness elements(NSEs)were used to support the FST.First,considering the mechanical characteristics of the nonlinear QZS vibration isolators and the dynamic displacement limit(3 mm)of the FST,the feasible parameter groups were studied with the nonlinear stiffness variation range and bearing capacity as evaluation indices.A vertical vehicle quasi-zero-stiffness floating slab track(QZS-FST)coupled dynamic model was then established.To obtain a reasonable nonlinear stiffness within a few millimeters,the original length of the NSEs must be analyzed first,because it chiefly determines the stiffness nonlinearity level.The compression length of the NSEs at the equilibrium position must be determined to obtain the low stiffness of the floating slab without vehicle load.Meanwhile,to meet the dynamic displacement limit of the FST,the PSE stiffness must be increased to obtain a higher stiffness at the critical dynamic displacement.Various stiffness groups for the PSEs and NSEs can provide the same dynamic bearing capacity and yet have a significantly different vibration reduction effect.Excessive stiffness nonlinearity levels cannot effectively improve the vibration reduction effect at the natural frequency.Furthermore,they also significantly amplify the vibrations above the natural frequency.In this paper,the vertical vibration acceleration level(VAL)of the floating slab and the supporting force of the FST can be decreased by 6.9 dB and 55%,respectively,at the resonance frequency.展开更多
A novel vibration isolator is constructed by connecting a mechanical spring in parallel with a magnetic spring in order to achieve the property of high-static-low-dynamic stiffness (HSLDS). The HSLDS property of the i...A novel vibration isolator is constructed by connecting a mechanical spring in parallel with a magnetic spring in order to achieve the property of high-static-low-dynamic stiffness (HSLDS). The HSLDS property of the isolator can be tuned off-line or on-line. This study focuses on the characterization of the isolator using a finite element based package. Firstly using the single physics solver, the stiffness behaviours of the mechanical and magnetic springs are determined, respectively. Then using the weakly coupled multi-physics method, the stiffness behaviours of the passive isolator and the semi-active isolator are investigated, respectively. With the found stiffness models, a nonlinear differential equation governing the dynamics of the isolator is solved using the time-dependent solver. The displacement transmissibility ratios of the isolator are obtained. The study confirms that the isolation region of the isolator can be widened through off-line or on-line tuning.展开更多
A planar circuit structure, which is based on three cascaded pairs of coupled lines, an open stub, and an isolation resistor, is proposed in this paper to design a compact dual.band balun with high isolation. This cir...A planar circuit structure, which is based on three cascaded pairs of coupled lines, an open stub, and an isolation resistor, is proposed in this paper to design a compact dual.band balun with high isolation. This circuit features equal power division with out of phase, all ports matching, high isolation between two outputs, compact structure, and inherent impedance transformation. The closedform design equations are derived based on the traditional transmission.line theory and even.(odd.) mode analysis. A practical dual.band balun, which operates at 0.9/1.8GHz, is designed and fabricated to validate the function of equal power division with out of phase and high isolation between two outputs. The consistency between the simulated and measured results verify the design theory.展开更多
A general model of flexible isolation systems which involves both the passive and active control factors is established by inserting actuators into an passive isolation system. And the power flow transmission function...A general model of flexible isolation systems which involves both the passive and active control factors is established by inserting actuators into an passive isolation system. And the power flow transmission function in such a system as with multi disturbance, multi mounts, passive isolators and actuators is deduced. By means of the numerical simulation method, the influence of actuators on power flow transmission characteristic is studied. And as a conclusion, the passive active synthetic control strategy of power flow is summarized.展开更多
A mathematical model was developed for a complex nonlinear coupling isolator for attenuating vibration which coupled quadratic damping, viscous damping, Coulomb damping, and nonlinear spring forces. The approximate an...A mathematical model was developed for a complex nonlinear coupling isolator for attenuating vibration which coupled quadratic damping, viscous damping, Coulomb damping, and nonlinear spring forces. The approximate analytical solution for the dynamic transmissibility of the isolator was deduced by combining Fourier transforms and the harmonic balance method with deterministic excitation. The mathematical characteristics of the dynamic transmissibility were analyzed to illustrate the dynamic performance of the isolator. The analytical results show multiple solutions, especially the low-frequency attenuation characteristics below the resonance frequency. The results provide a theoretical basis for the design of nonlinear isolators.展开更多
Unique coupling reagent, bis-(2-hydroxyethyl methacrylate) phosphate was used to prepare coated and functionalized superparamagnetic nanobeads, leading to a simple, effective method for coating the nanobeads. With th...Unique coupling reagent, bis-(2-hydroxyethyl methacrylate) phosphate was used to prepare coated and functionalized superparamagnetic nanobeads, leading to a simple, effective method for coating the nanobeads. With this method, the thickness of the coating layer and the functional group contents on the nano-beads could be controlled by changing the quantity of the coated monomers. The nanobeads were characterized by means of transmission electron microscopy (TEM) and Fourier transformation infrared spectroscopy (FTIR). The carboxyl-modified magnetic nano-beads were employed to streamline the protocol of isolation of genomic DNA from the human whole blood.展开更多
In order to study the dynamic performance of seismically isolated bridges under the most unfavorable loads in the longitudinal direction, a dynamic equation for vehicle braking in the longitudinal direction is establi...In order to study the dynamic performance of seismically isolated bridges under the most unfavorable loads in the longitudinal direction, a dynamic equation for vehicle braking in the longitudinal direction is established. A four or five- order Runge-Kutta method is adopted to obtain the time-history response of a wheel set under braking force. The quadratic discretization method is then used to transform this time-history into a braking and bending force time-history of a structural fixed node, and a dynamic response analysis of the seismically isolated bridge under the vehicle's braking force is carried out using ANSYS, a universal finite element analysis software. According to the results, seismic isolation design results in a more rational distribution of braking force among piers; the influence of the initial braking velocity on the vehicle braking force is negligible; the location where the first wheel set leaves the bridge is the most unfavorable parking location; a seismic isolation bridge bearing constructed according to typical design methods enters into a yield stage under the braking force, while the shearing force at the bottom of the pier declines as the isolation period is extended; the design requirements can be met when the yield displacement of the seismic isolation bearing is less than 5 mm and the yield strength is greater than the braking force.展开更多
Combining the modified Bethe small holes coupling theory with McDonald thickness theory and field averaging correction factor, it is accurate to design the weak coupling waveguide directional coupler. While the coupli...Combining the modified Bethe small holes coupling theory with McDonald thickness theory and field averaging correction factor, it is accurate to design the weak coupling waveguide directional coupler. While the coupling is tight, the decrease of the field strength in the main waveguide caused by aperture should not be neglected. For a -6 dB directional coupler is described in this article, the theoretical value of coupling is good agree to the simulation value, by simulated and optimized with the professional software computer simulation technology (CST). In the designed waveband, the error of coupling between theoretical value and simulating one is less than 0.25 dB. The error of coupling between simulation value and designed value is less than 0.5 dB. To improve the isolation, some spaces between two adjacent holes are turned from the traditional 1/4 centre guided wavelength. The performance of isolation has 5 dB improvement, and length of the coupling area is only 51.06 mm.展开更多
Commonly,the classical formulas are suitable for designing the TE21-mode coupler for the operating frequency under Ka-band by ignoring the wall thickness.However,in practice,for the one operated in the Ka-band,such cl...Commonly,the classical formulas are suitable for designing the TE21-mode coupler for the operating frequency under Ka-band by ignoring the wall thickness.However,in practice,for the one operated in the Ka-band,such classical formulas are not valid and the effect of wall thicknesses should be considered.Herein,we propose a design method for the Ka-band TE21-mode coupler via computer simulations,taking into account the wall thickness.The experimental results show that using the linear twice-weighted algorithm to optimize the coupling hole size can improve the coupler performance.And the bandwidth of such coupler increases by 10%with lower coupling loss(<0.5 dB)and higher isolation(>40 dB).展开更多
基金Project supported in part by the National Natural Science Foundation of China(Grant Nos.61331005,61471388,61501503,61501502,61501497,51575524,61302023,and 11304393)the Natural Science Foundation of Shaanxi Province,China(Grant Nos.2015JM6300 and 2015JM6277)
文摘In this paper,we propose the decoupling technique of patch antenna array by suppressing near-field magnetic coupling(NFMC) using magnetic metamaterials.To this end,a highly-integrated magnetic metamaterials,the substrate-integrated split-ring resonator(SI-SRR),is firstly proposed to achieve negative permeability at the antenna operating frequency.By integrating SI-SRR in between two closely spaced antennas,magnetic fields are blocked in the shared substrate due to negative permeability of SI-SRR,reducing NFMC between the two antennas.To verify the technique,a prototype was fabricated and measured.The measured results demonstrated that the isolation can be enhanced by more than 17 dB even when the gap between the two patch antennas is only about 0.067 A.Due to high integration,this technique provides an effective alternative to high-isolation antenna array.
基金Project supported by the National Natural Science Foundation of China(Nos.5197858351425804+2 种基金51578468and 51608460)the Open Foundation of State Key Laboratory for Track Technology of High-speed Railway(No.2018YJ180)。
文摘To improve the low-frequency vibration reduction effect of a steel spring floating slab track(FST),nonlinear quasizero-stiffness(QZS)vibration isolators composed of positive stiffness elements(PSEs)and negative stiffness elements(NSEs)were used to support the FST.First,considering the mechanical characteristics of the nonlinear QZS vibration isolators and the dynamic displacement limit(3 mm)of the FST,the feasible parameter groups were studied with the nonlinear stiffness variation range and bearing capacity as evaluation indices.A vertical vehicle quasi-zero-stiffness floating slab track(QZS-FST)coupled dynamic model was then established.To obtain a reasonable nonlinear stiffness within a few millimeters,the original length of the NSEs must be analyzed first,because it chiefly determines the stiffness nonlinearity level.The compression length of the NSEs at the equilibrium position must be determined to obtain the low stiffness of the floating slab without vehicle load.Meanwhile,to meet the dynamic displacement limit of the FST,the PSE stiffness must be increased to obtain a higher stiffness at the critical dynamic displacement.Various stiffness groups for the PSEs and NSEs can provide the same dynamic bearing capacity and yet have a significantly different vibration reduction effect.Excessive stiffness nonlinearity levels cannot effectively improve the vibration reduction effect at the natural frequency.Furthermore,they also significantly amplify the vibrations above the natural frequency.In this paper,the vertical vibration acceleration level(VAL)of the floating slab and the supporting force of the FST can be decreased by 6.9 dB and 55%,respectively,at the resonance frequency.
文摘A novel vibration isolator is constructed by connecting a mechanical spring in parallel with a magnetic spring in order to achieve the property of high-static-low-dynamic stiffness (HSLDS). The HSLDS property of the isolator can be tuned off-line or on-line. This study focuses on the characterization of the isolator using a finite element based package. Firstly using the single physics solver, the stiffness behaviours of the mechanical and magnetic springs are determined, respectively. Then using the weakly coupled multi-physics method, the stiffness behaviours of the passive isolator and the semi-active isolator are investigated, respectively. With the found stiffness models, a nonlinear differential equation governing the dynamics of the isolator is solved using the time-dependent solver. The displacement transmissibility ratios of the isolator are obtained. The study confirms that the isolation region of the isolator can be widened through off-line or on-line tuning.
基金supported by National Natural Science Foundations of China (No.61422103, and No.61671084)National Key Basic Research Program of China (973 Program) (No.2014CB339900)BUPT Excellent Ph.D. Students Foundation (CX2016303)
文摘A planar circuit structure, which is based on three cascaded pairs of coupled lines, an open stub, and an isolation resistor, is proposed in this paper to design a compact dual.band balun with high isolation. This circuit features equal power division with out of phase, all ports matching, high isolation between two outputs, compact structure, and inherent impedance transformation. The closedform design equations are derived based on the traditional transmission.line theory and even.(odd.) mode analysis. A practical dual.band balun, which operates at 0.9/1.8GHz, is designed and fabricated to validate the function of equal power division with out of phase and high isolation between two outputs. The consistency between the simulated and measured results verify the design theory.
文摘A general model of flexible isolation systems which involves both the passive and active control factors is established by inserting actuators into an passive isolation system. And the power flow transmission function in such a system as with multi disturbance, multi mounts, passive isolators and actuators is deduced. By means of the numerical simulation method, the influence of actuators on power flow transmission characteristic is studied. And as a conclusion, the passive active synthetic control strategy of power flow is summarized.
基金Supported by the National Defense Science Foundation of China (No. 00J16.2.5.DZ0502), the Natural Science Foundation for Qualified Personnel of Jiangsu University (No. 04JDG027), and the Natural Science Foundation of Guangxi Zhuang Autonomous Region (Nos. 0339037 and 0141042)
文摘A mathematical model was developed for a complex nonlinear coupling isolator for attenuating vibration which coupled quadratic damping, viscous damping, Coulomb damping, and nonlinear spring forces. The approximate analytical solution for the dynamic transmissibility of the isolator was deduced by combining Fourier transforms and the harmonic balance method with deterministic excitation. The mathematical characteristics of the dynamic transmissibility were analyzed to illustrate the dynamic performance of the isolator. The analytical results show multiple solutions, especially the low-frequency attenuation characteristics below the resonance frequency. The results provide a theoretical basis for the design of nonlinear isolators.
文摘Unique coupling reagent, bis-(2-hydroxyethyl methacrylate) phosphate was used to prepare coated and functionalized superparamagnetic nanobeads, leading to a simple, effective method for coating the nanobeads. With this method, the thickness of the coating layer and the functional group contents on the nano-beads could be controlled by changing the quantity of the coated monomers. The nanobeads were characterized by means of transmission electron microscopy (TEM) and Fourier transformation infrared spectroscopy (FTIR). The carboxyl-modified magnetic nano-beads were employed to streamline the protocol of isolation of genomic DNA from the human whole blood.
文摘In order to study the dynamic performance of seismically isolated bridges under the most unfavorable loads in the longitudinal direction, a dynamic equation for vehicle braking in the longitudinal direction is established. A four or five- order Runge-Kutta method is adopted to obtain the time-history response of a wheel set under braking force. The quadratic discretization method is then used to transform this time-history into a braking and bending force time-history of a structural fixed node, and a dynamic response analysis of the seismically isolated bridge under the vehicle's braking force is carried out using ANSYS, a universal finite element analysis software. According to the results, seismic isolation design results in a more rational distribution of braking force among piers; the influence of the initial braking velocity on the vehicle braking force is negligible; the location where the first wheel set leaves the bridge is the most unfavorable parking location; a seismic isolation bridge bearing constructed according to typical design methods enters into a yield stage under the braking force, while the shearing force at the bottom of the pier declines as the isolation period is extended; the design requirements can be met when the yield displacement of the seismic isolation bearing is less than 5 mm and the yield strength is greater than the braking force.
基金Project supported by the Characteristics of Millimeter-Wave Absorbing Paint Detection Technology (Grant No.9140100117X)
文摘Combining the modified Bethe small holes coupling theory with McDonald thickness theory and field averaging correction factor, it is accurate to design the weak coupling waveguide directional coupler. While the coupling is tight, the decrease of the field strength in the main waveguide caused by aperture should not be neglected. For a -6 dB directional coupler is described in this article, the theoretical value of coupling is good agree to the simulation value, by simulated and optimized with the professional software computer simulation technology (CST). In the designed waveband, the error of coupling between theoretical value and simulating one is less than 0.25 dB. The error of coupling between simulation value and designed value is less than 0.5 dB. To improve the isolation, some spaces between two adjacent holes are turned from the traditional 1/4 centre guided wavelength. The performance of isolation has 5 dB improvement, and length of the coupling area is only 51.06 mm.
基金the National Natural Science Foundation of China under Grant.No.61627817.
文摘Commonly,the classical formulas are suitable for designing the TE21-mode coupler for the operating frequency under Ka-band by ignoring the wall thickness.However,in practice,for the one operated in the Ka-band,such classical formulas are not valid and the effect of wall thicknesses should be considered.Herein,we propose a design method for the Ka-band TE21-mode coupler via computer simulations,taking into account the wall thickness.The experimental results show that using the linear twice-weighted algorithm to optimize the coupling hole size can improve the coupler performance.And the bandwidth of such coupler increases by 10%with lower coupling loss(<0.5 dB)and higher isolation(>40 dB).