为了演示和验证稳定器设计的就地相位补偿法在多机电力系统中的应用,介绍在多机电力系统中,就地补偿设计稳定器的2个应用实例。第1个实例是在多机电力系统中就地补偿设计电力系统稳定器(power system stabilizer,PSS),阻尼电力系统局...为了演示和验证稳定器设计的就地相位补偿法在多机电力系统中的应用,介绍在多机电力系统中,就地补偿设计稳定器的2个应用实例。第1个实例是在多机电力系统中就地补偿设计电力系统稳定器(power system stabilizer,PSS),阻尼电力系统局部模振荡。第2个实例是就地补偿设计附加在静态同步补偿器(static synchronous compensator,STATCOM)上的稳定器,抑制多机电力系统中的区域模振荡,并给出在一个16机电力系统中的应用计算和仿真结果。展开更多
The paper demonstrates the possibility to enhance the damping of inter-area oscillations using Wide Area Measurement (WAM) based adaptive supervisory controller (ASC) which considers the wide-area signal transmission ...The paper demonstrates the possibility to enhance the damping of inter-area oscillations using Wide Area Measurement (WAM) based adaptive supervisory controller (ASC) which considers the wide-area signal transmission delays. The paper uses an LMI-based iterative nonlinear optimization algorithm to establish a method of designing state-feedback controllers for power systems with a time-varying delay. This method is based on the delay-dependent stabilization conditions obtained by the improved free weighting matrix (IFWM) approach. In the stabilization conditions, the upper bound of feedback signal’s transmission delays is taken into consideration. Combining theoriesof state feedback control and state observer, the ASC is designed and time-delay output feedback robust controller is realized for power system. The ASC uses the input information from Phase Measurement Units (PMUs) in the system and dispatches supplementary control signals to the available local controllers. The design of the ASC is explained in detail and its performance validated by time domain simulations on a New England test power system (NETPS).展开更多
The adaptive H_∞ control problem of multi-machine power system in the case of disturbances and uncertain parameters is discussed,based on a Hamiltonian model.Considered the effect of time delay during control and tra...The adaptive H_∞ control problem of multi-machine power system in the case of disturbances and uncertain parameters is discussed,based on a Hamiltonian model.Considered the effect of time delay during control and transmission,a Hamilton model with control time delay is established.Lyapunov-Krasovskii function is selected,and a controller which makes the system asymptotically stable is got.The controller not only achieves the stability control for nonlinear systems with time delay,but also has the ability to suppress the external disturbances and adaptive ability to system parameter perturbation.The simulation results show the effect of the controller.展开更多
This paper describes a stabilization effect after installating an adjustable speed generator (ASG) in a multi machine power system. A personal computer based ASG module has been de veloped for the simulations in...This paper describes a stabilization effect after installating an adjustable speed generator (ASG) in a multi machine power system. A personal computer based ASG module has been de veloped for the simulations in parallel with the analog power system simulator i n the Research Laboratory of the Kyushu Electric Power Co. The three phase ins t antaneous value based ASG model has been developed in the Matlab/Simulink envir onment for its detailed and real time simulations, which have been performed on a digital signal processor (DSP) board with AD and DA conversion interfaces inst alled in a personal computer (PC). Simulational results indicate the hig hly improved overall stability of the multi machine power system after installa ting the ASG.展开更多
This paper presented a novel wide-area nonlinear excitation control strategy for multi-machine power systems.A simple and effective model transformation method was proposed for the system's mathematical model in t...This paper presented a novel wide-area nonlinear excitation control strategy for multi-machine power systems.A simple and effective model transformation method was proposed for the system's mathematical model in the COI(center of inertia)coordinate system.The system was transformed to an uncertain linear one where deviation of generator terminal voltage became one of the new state variables.Then a wide-area nonlinear robust voltage controller was designed utilizing a LMI(linear matrix inequality)based robust control theory.The proposed controller does not rely on any preselected system operating point,adapts to variations of network parameters and system operation conditions,and assures regulation accuracy of generator terminal voltages.Neither rotor angle nor any variable's differentiation needs to be measured for the proposed controller,and only terminal voltages,rotor speeds,active and reactive power outputs of generators are required.In addition,the proposed controller not only takes into account time delays of remote signals,but also eliminates the effect of wide-area information's incompleteness when not all generators are equipped with PMU(phase measurement unit).Detailed tests were conducted by PSCAD/EMTDC for a three-machine and four-machine power systems respectively,and simulation results illustrate high performance of the proposed controller.展开更多
This paper proposes a coordinated switching power system stabilizer(SPSS)to enhance the stability of multimachine power systems.The SPSS switches between a bang-bang power system stabilizer(BPSS)and a conventional pow...This paper proposes a coordinated switching power system stabilizer(SPSS)to enhance the stability of multimachine power systems.The SPSS switches between a bang-bang power system stabilizer(BPSS)and a conventional power system stabilizer(CPSS)based on a state-dependent switching strategy.The BPSS is designed as a bang-bang constant funnel controller(BCFC).It is able to provide fast damping of rotor speed oscillations in a bang-bang manner.The closed-loop stability of the power system controlled by the SPSSs and the CPSSs is analyzed.To verify the control performance of the SPSS,simulation studies are carried out in a 4-generator 11-bus power system and the IEEE 16-generator 68-bus power system.The damping ability of the SPSS is evaluated in aspects of small-signal oscillation damping and transient stability enhancement,respectively.Meanwhile,the coordination between different SPSSs and the coordination between the SPSS and the CPSS are investigated therein.展开更多
This paper proposes a switching structure excitation controller(SSEC)to enhance the transient stability of multimachine power systems.The SSEC switches between a bangbang funnel excitation controller(BFEC)and a conven...This paper proposes a switching structure excitation controller(SSEC)to enhance the transient stability of multimachine power systems.The SSEC switches between a bangbang funnel excitation controller(BFEC)and a conventional excitation controller(CEC),based on an appropriately designed state-dependent switching strategy.Only the tracking error of rotor angle is required to realize the BFEC in a bang-bang manner with two control values.If the feasibility assumptions of the BFEC are satisfied,the tracking error of rotor angle can be regulated within the predefined error funnels.The power system having the SSEC installed can achieve faster convergence performance compared to that having the CEC implemented only.Simulation studies are carried out in the New England 10-generator 39-bus power system.The control performance of the SSEC is evaluated in the cases that three-phase-to-ground fault and transmission line outage occur in the power system,respectively.展开更多
A modified flux-coupling type superconducting fault current limiter(SFCL)is proposed here for suppressing fault currents.The modified SFCL consists of a coupling transformer,an yttrium barium copper oxide(YBCO)pancake...A modified flux-coupling type superconducting fault current limiter(SFCL)is proposed here for suppressing fault currents.The modified SFCL consists of a coupling transformer,an yttrium barium copper oxide(YBCO)pancake coil,and a controlled switch.By flexibly adjusting the controlled switch’s contact states based on the system operational conditions,the coupling transformer’s primary inductance as well as the YBCO coil’s normal-state resistance are incorporated into the main system for current limitation.Because the modified SFCL has the advantages of resistive and inductive SFCLs,it may improve the power system’s transient behavior.Hence,the SFCL’s effect on the transient stability of a multi-machine power system was also theoretically investigated.Further,simulations were conducted for accessing the SFCL’s performance characteristics under different fault conditions.The results show that using the proposed SFCL can effectively restrain the increased fault current and improve the bus voltage sag;meanwhile,the imitated multi-machine system’s power-angle oscillation can be obviously reduced.展开更多
The role of Power System Stabilizer (PSS) in the power system is to provide necessary damping torque to the system in order to suppress the oscillations caused by a variety of disturbances that occur frequently and ma...The role of Power System Stabilizer (PSS) in the power system is to provide necessary damping torque to the system in order to suppress the oscillations caused by a variety of disturbances that occur frequently and maintain the stability of the system. In this paper, a PSS design technique is proposed using Whale Optimization Algorithm (WOA) by considering eigenvalue objective function. Two bench mark multi machine test systems: three- generator nine- bus system, two- area four- generator inter connected system working on various operating conditions are considered as case studies and tested with the proposed technique. Extensive simulation results are obtained and effectiveness of proposed WOA-PSS are compared with well - known PSO and DE based stabilizers under several disturbances.展开更多
This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the compl...This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the complexities,simulation time cost and convergence problems of detailed PV power station models.First,the amplitude–frequency curves of different filter parameters are analyzed.Based on the results,a grouping parameter set for characterizing the external filter characteristics is established.These parameters are further defined as clustering parameters.A single PV inverter model is then established as a prerequisite foundation.The proposed equivalent method combines the global search capability of PSO with the rapid convergence of KMC,effectively overcoming the tendency of KMC to become trapped in local optima.This approach enhances both clustering accuracy and numerical stability when determining equivalence for PV inverter units.Using the proposed clustering method,both a detailed PV power station model and an equivalent model are developed and compared.Simulation and hardwarein-loop(HIL)results based on the equivalent model verify that the equivalent method accurately represents the dynamic characteristics of PVpower stations and adapts well to different operating conditions.The proposed equivalent modeling method provides an effective analysis tool for future renewable energy integration research.展开更多
Space-Based Solar Power(SBSP) presents a promising solution for achieving carbon neutrality and Renewable Electricity 100%(RE100) goals by offering a stable and continuous energy supply. However, its commercialization...Space-Based Solar Power(SBSP) presents a promising solution for achieving carbon neutrality and Renewable Electricity 100%(RE100) goals by offering a stable and continuous energy supply. However, its commercialization faces significant obstacles due to the technical challenges of long-distance microwave Wireless Power Transmission(WPT) from geostationary orbit. Even ground-based kilometer-scale WPT experiments remain difficult because of limited testing infrastructure, high costs, and strict electromagnetic wave regulations. Since the 1975 NASA-Raytheon experiment, which successfully recovered 30 kW of power over 1.55 km, there has been little progress in extending the transmission distance or increasing the retrieved power. This study proposes a cost-effective methodology for conducting long-range WPT experiments in constrained environments by utilizing existing infrastructure. A deep space antenna operating at 2.08 GHz with an output power of 2.3 kW and a gain of 55.3 dBi was used as the transmitter. Two test configurations were implemented: a 1.81 km ground-to-air test using an aerostat to elevate the receiver and a 1.82 km ground-to-ground test using a ladder truck positioned on a plateau. The rectenna consists of a lightweight 3×3 patch antenna array(0.9 m × 0.9 m), accompanied by a steering device and LED indicators to verify power reception. The aerostat-based test achieved a power density of 154.6 mW/m2, which corresponds to approximately 6.2% of the theoretical maximum. The performance gap is primarily attributed to near-field interference, detuning of the patch antenna, rectifier mismatch, and alignment issues. These limitations are expected to be mitigated through improved patch antenna fabrication, a transition from GaN to GaAs rectifiers optimized for lower input power, and the implementation of an automated alignment system. With these enhancements, the recovered power is expected to improve by approximately four to five times. The results demonstrate a practical and scalable framework for long-range WPT experiments under constrained conditions and provide key insights for advancing SBSP technology.展开更多
Generator excitation control plays an important role in improving the dynamic performance and stability of power systems. This paper is concerned with nonlinear decentralized adaptive excitation control for multi-mach...Generator excitation control plays an important role in improving the dynamic performance and stability of power systems. This paper is concerned with nonlinear decentralized adaptive excitation control for multi-machine power systems. Based on a recursive design method, an adaptive excitation control law with L2 disturbance attenuation is constructed. Furthermore, it is verified that the proposed control scheme possesses the property of decentralization and the robustness in the sense of L2-gain. As a consequence, transient stability of a multi-machine power system is guaranteed, regardless of system parameters variation and faults.展开更多
Ensuring reliable power supply in urban distribution networks is a complex and critical task.To address the increased demand during extreme scenarios,this paper proposes an optimal dispatch strategy that considers the...Ensuring reliable power supply in urban distribution networks is a complex and critical task.To address the increased demand during extreme scenarios,this paper proposes an optimal dispatch strategy that considers the coordination with virtual power plants(VPPs).The proposed strategy improves systemflexibility and responsiveness by optimizing the power adjustment of flexible resources.In the proposed strategy,theGaussian Process Regression(GPR)is firstly employed to determine the adjustable range of aggregated power within the VPP,facilitating an assessment of its potential contribution to power supply support.Then,an optimal dispatch model based on a leader-follower game is developed to maximize the benefits of the VPP and flexible resources while guaranteeing the power balance at the same time.To solve the proposed optimal dispatch model efficiently,the constraints of the problem are reformulated and resolved using the Karush-Kuhn-Tucker(KKT)optimality conditions and linear programming duality theorem.The effectiveness of the strategy is illustrated through a detailed case study.展开更多
Modern power systems increasingly depend on interconnected microgrids to enhance reliability and renewable energy utilization.However,the high penetration of intermittent renewable sources often causes frequency devia...Modern power systems increasingly depend on interconnected microgrids to enhance reliability and renewable energy utilization.However,the high penetration of intermittent renewable sources often causes frequency deviations,voltage fluctuations,and poor reactive power coordination,posing serious challenges to grid stability.Conventional Interconnection FlowControllers(IFCs)primarily regulate active power flowand fail to effectively handle dynamic frequency variations or reactive power sharing in multi-microgrid networks.To overcome these limitations,this study proposes an enhanced Interconnection Flow Controller(e-IFC)that integrates frequency response balancing and an Interconnection Reactive Power Flow Controller(IRFC)within a unified adaptive control structure.The proposed e-IFC is implemented and analyzed in DIgSILENT PowerFactory to evaluate its performance under various grid disturbances,including frequency drops,load changes,and reactive power fluctuations.Simulation results reveal that the e-IFC achieves 27.4% higher active power sharing accuracy,19.6% lower reactive power deviation,and 18.2% improved frequency stability compared to the conventional IFC.The adaptive controller ensures seamless transitions between grid-connected and islanded modes and maintains stable operation even under communication delays and data noise.Overall,the proposed e-IFCsignificantly enhances active-reactive power coordination and dynamic stability in renewable-integrated multi-microgrid systems.Future research will focus on coupling the e-IFC with tertiary-level optimization frameworks and conducting hardware-in-the-loop validation to enable its application in large-scale smart microgrid environments.展开更多
In order to address environmental pollution and resource depletion caused by traditional power generation,this paper proposes an adaptive iterative dynamic-balance optimization algorithm that integrates the Improved D...In order to address environmental pollution and resource depletion caused by traditional power generation,this paper proposes an adaptive iterative dynamic-balance optimization algorithm that integrates the Improved Dung Beetle Optimizer(IDBO)with VariationalMode Decomposition(VMD).The IDBO-VMD method is designed to enhance the accuracy and efficiency of wind-speed time-series decomposition and to effectively smooth photovoltaic power fluctuations.This study innovatively improves the traditional variational mode decomposition(VMD)algorithm,and significantly improves the accuracy and adaptive ability of signal decomposition by IDBO selfoptimization of key parameters K and a.On this basis,Fourier transform technology is used to define the boundary point between high frequency and low frequency signals,and a targeted energy distribution strategy is proposed:high frequency fluctuations are allocated to supercapacitors to quickly respond to transient power fluctuations;Lowfrequency components are distributed to lead-carbon batteries,optimizing long-term energy storage and scheduling efficiency.This strategy effectively improves the response speed and stability of the energy storage system.The experimental results demonstrate that the IDBO-VMD algorithm markedly outperforms traditional methods in both decomposition accuracy and computational efficiency.Specifically,it effectively reduces the charge–discharge frequency of the battery,prolongs battery life,and optimizes the operating ranges of the state-of-charge(SOC)for both leadcarbon batteries and supercapacitors.In addition,the energy management strategy based on the algorithm not only improves the overall energy utilization efficiency of the system,but also shows excellent performance in the dynamic management and intelligent scheduling of renewable energy generation.展开更多
Virtual power plant(VPP)integrates a variety of distributed renewable energy and energy storage to participate in electricity market transactions,promote the consumption of renewable energy,and improve economic effici...Virtual power plant(VPP)integrates a variety of distributed renewable energy and energy storage to participate in electricity market transactions,promote the consumption of renewable energy,and improve economic efficiency.In this paper,aiming at the uncertainty of distributed wind power and photovoltaic output,considering the coupling relationship between power,carbon trading,and green cardmarket,the optimal operationmodel and bidding scheme of VPP in spot market,carbon trading market,and green card market are established.On this basis,through the Shapley value and independent risk contribution theory in cooperative game theory,the quantitative analysis of the total income and risk contribution of various distributed resources in the virtual power plant is realized.Moreover,the scheduling strategies of virtual power plants under different risk preferences are systematically compared,and the feasibility and accuracy of the combination of Shapley value and independent risk contribution theory in ensuring fair income distribution and reasonable risk assessment are emphasized.A comprehensive solution for virtual power plants in the multi-market environment is constructed,which integrates operation strategy,income distribution mechanism,and risk control system into a unified analysis framework.Through the simulation of multi-scenario examples,the CPLEXsolver inMATLAB software is used to optimize themodel.The proposed joint optimization scheme can increase the profit of VPP participating in carbon trading and green certificate market by 29%.The total revenue of distributed resources managed by VPP is 9%higher than that of individual participation.展开更多
As a Burundian doctoral student at Nanjing University,my personal journey is closely intertwined with China’s development in the new era and the deepening China-Africa partnership.Recently,my experiences have given m...As a Burundian doctoral student at Nanjing University,my personal journey is closely intertwined with China’s development in the new era and the deepening China-Africa partnership.Recently,my experiences have given me a deeper appreciation of the importance of people-to-people exchanges between China and Africa.展开更多
To enhance power flow regulation in scenarios involving large-scale renewable energy transmission via high-voltage direct current(HVDC)links and multi-infeed DC systems in load-center regions,this paper proposes a hyb...To enhance power flow regulation in scenarios involving large-scale renewable energy transmission via high-voltage direct current(HVDC)links and multi-infeed DC systems in load-center regions,this paper proposes a hybrid modular multilevel converter–capacitor-commutated line-commutated converter(MMC-CLCC)HVDC transmission system and its corresponding control strategy.First,the system topology is constructed,and a submodule configuration method for the MMC—combining full-bridge submodules(FBSMs)and half-bridge submodules(HBSMs)—is proposed to enable direct power flow reversal.Second,a hierarchical control strategy is introduced,includingMMCvoltage control,CLCC current control,and a coordinationmechanism,along with the derivation of the hybrid system’s power flow reversal characteristics.Third,leveraging the CLCC’s fast current regulation and theMMC’s negative voltage control capability,a coordinated power flow reversal control strategy is developed.Finally,an 800 kV MMC-CLCC hybrid HVDC system is modeled in PSCAD/EMTDC to validate the power flow reversal performance under a high proportion of full-bridge submodule configuration.Results demonstrate that the proposed control strategy enables rapid(1-s transition)and smooth switching of bidirectional power flow without modifying the structure of primary equipment:the transient fluctuation ofDC voltage from the rated value(UdcN)to themaximumreverse voltage(-kUdcN)is less than 5%;the DC current strictly follows the preset characteristic curve with a deviation of≤3%;the active power reverses continuously,and the system maintains stable operation throughout the reversal process.展开更多
An advanced nonlinear robust control scheme is proposed for multi-machine power systems equipped with thyristor-controlled series compensation (TCSC). First, a decentralized nonlinear robust control approach based on ...An advanced nonlinear robust control scheme is proposed for multi-machine power systems equipped with thyristor-controlled series compensation (TCSC). First, a decentralized nonlinear robust control approach based on the feedback linearization and H∞ theory is introduced to eliminate the nonlinearities and interconnections of the studied system, and to attenuate the exogenous disturbances that enter die system. Then, a system model is built up, which has considered all the generators’ and TCSC’s dynamics, and the effects of uncertainties such as disturbances. Next, a decentralized nonlinear robust coordinated control law is developed based on this model. Simulation results on a six-machine power system show that the transient stability of the power system is obviously improved and die power transfer capacity of long distance transmission lines is enhanced regardless of fault locations and system operation points. In addition, the control law has engineering practicality since all the variables in the expression of he control strategy can be measured locally.展开更多
文摘为了演示和验证稳定器设计的就地相位补偿法在多机电力系统中的应用,介绍在多机电力系统中,就地补偿设计稳定器的2个应用实例。第1个实例是在多机电力系统中就地补偿设计电力系统稳定器(power system stabilizer,PSS),阻尼电力系统局部模振荡。第2个实例是就地补偿设计附加在静态同步补偿器(static synchronous compensator,STATCOM)上的稳定器,抑制多机电力系统中的区域模振荡,并给出在一个16机电力系统中的应用计算和仿真结果。
文摘The paper demonstrates the possibility to enhance the damping of inter-area oscillations using Wide Area Measurement (WAM) based adaptive supervisory controller (ASC) which considers the wide-area signal transmission delays. The paper uses an LMI-based iterative nonlinear optimization algorithm to establish a method of designing state-feedback controllers for power systems with a time-varying delay. This method is based on the delay-dependent stabilization conditions obtained by the improved free weighting matrix (IFWM) approach. In the stabilization conditions, the upper bound of feedback signal’s transmission delays is taken into consideration. Combining theoriesof state feedback control and state observer, the ASC is designed and time-delay output feedback robust controller is realized for power system. The ASC uses the input information from Phase Measurement Units (PMUs) in the system and dispatches supplementary control signals to the available local controllers. The design of the ASC is explained in detail and its performance validated by time domain simulations on a New England test power system (NETPS).
基金Sponsored by the Natural Science Foundation of Hebei Province,China(Grant No.F2016203006)
文摘The adaptive H_∞ control problem of multi-machine power system in the case of disturbances and uncertain parameters is discussed,based on a Hamiltonian model.Considered the effect of time delay during control and transmission,a Hamilton model with control time delay is established.Lyapunov-Krasovskii function is selected,and a controller which makes the system asymptotically stable is got.The controller not only achieves the stability control for nonlinear systems with time delay,but also has the ability to suppress the external disturbances and adaptive ability to system parameter perturbation.The simulation results show the effect of the controller.
文摘This paper describes a stabilization effect after installating an adjustable speed generator (ASG) in a multi machine power system. A personal computer based ASG module has been de veloped for the simulations in parallel with the analog power system simulator i n the Research Laboratory of the Kyushu Electric Power Co. The three phase ins t antaneous value based ASG model has been developed in the Matlab/Simulink envir onment for its detailed and real time simulations, which have been performed on a digital signal processor (DSP) board with AD and DA conversion interfaces inst alled in a personal computer (PC). Simulational results indicate the hig hly improved overall stability of the multi machine power system after installa ting the ASG.
文摘This paper presented a novel wide-area nonlinear excitation control strategy for multi-machine power systems.A simple and effective model transformation method was proposed for the system's mathematical model in the COI(center of inertia)coordinate system.The system was transformed to an uncertain linear one where deviation of generator terminal voltage became one of the new state variables.Then a wide-area nonlinear robust voltage controller was designed utilizing a LMI(linear matrix inequality)based robust control theory.The proposed controller does not rely on any preselected system operating point,adapts to variations of network parameters and system operation conditions,and assures regulation accuracy of generator terminal voltages.Neither rotor angle nor any variable's differentiation needs to be measured for the proposed controller,and only terminal voltages,rotor speeds,active and reactive power outputs of generators are required.In addition,the proposed controller not only takes into account time delays of remote signals,but also eliminates the effect of wide-area information's incompleteness when not all generators are equipped with PMU(phase measurement unit).Detailed tests were conducted by PSCAD/EMTDC for a three-machine and four-machine power systems respectively,and simulation results illustrate high performance of the proposed controller.
基金funded by State Key Program of National Natural Science of China(No.51437006)Guangdong Innovative Research Team Program(No.201001N0104744201),China.
文摘This paper proposes a coordinated switching power system stabilizer(SPSS)to enhance the stability of multimachine power systems.The SPSS switches between a bang-bang power system stabilizer(BPSS)and a conventional power system stabilizer(CPSS)based on a state-dependent switching strategy.The BPSS is designed as a bang-bang constant funnel controller(BCFC).It is able to provide fast damping of rotor speed oscillations in a bang-bang manner.The closed-loop stability of the power system controlled by the SPSSs and the CPSSs is analyzed.To verify the control performance of the SPSS,simulation studies are carried out in a 4-generator 11-bus power system and the IEEE 16-generator 68-bus power system.The damping ability of the SPSS is evaluated in aspects of small-signal oscillation damping and transient stability enhancement,respectively.Meanwhile,the coordination between different SPSSs and the coordination between the SPSS and the CPSS are investigated therein.
基金funded by State Key Program of National Natural Science of China(NO.51437006)Guangdong Innovative Research Team Program(NO.201001N0104744201),China。
文摘This paper proposes a switching structure excitation controller(SSEC)to enhance the transient stability of multimachine power systems.The SSEC switches between a bangbang funnel excitation controller(BFEC)and a conventional excitation controller(CEC),based on an appropriately designed state-dependent switching strategy.Only the tracking error of rotor angle is required to realize the BFEC in a bang-bang manner with two control values.If the feasibility assumptions of the BFEC are satisfied,the tracking error of rotor angle can be regulated within the predefined error funnels.The power system having the SSEC installed can achieve faster convergence performance compared to that having the CEC implemented only.Simulation studies are carried out in the New England 10-generator 39-bus power system.The control performance of the SSEC is evaluated in the cases that three-phase-to-ground fault and transmission line outage occur in the power system,respectively.
基金Supported by the Fujian Young and Middle-Aged Teachers’Science and Technology Research Project(JAT201101).
文摘A modified flux-coupling type superconducting fault current limiter(SFCL)is proposed here for suppressing fault currents.The modified SFCL consists of a coupling transformer,an yttrium barium copper oxide(YBCO)pancake coil,and a controlled switch.By flexibly adjusting the controlled switch’s contact states based on the system operational conditions,the coupling transformer’s primary inductance as well as the YBCO coil’s normal-state resistance are incorporated into the main system for current limitation.Because the modified SFCL has the advantages of resistive and inductive SFCLs,it may improve the power system’s transient behavior.Hence,the SFCL’s effect on the transient stability of a multi-machine power system was also theoretically investigated.Further,simulations were conducted for accessing the SFCL’s performance characteristics under different fault conditions.The results show that using the proposed SFCL can effectively restrain the increased fault current and improve the bus voltage sag;meanwhile,the imitated multi-machine system’s power-angle oscillation can be obviously reduced.
文摘The role of Power System Stabilizer (PSS) in the power system is to provide necessary damping torque to the system in order to suppress the oscillations caused by a variety of disturbances that occur frequently and maintain the stability of the system. In this paper, a PSS design technique is proposed using Whale Optimization Algorithm (WOA) by considering eigenvalue objective function. Two bench mark multi machine test systems: three- generator nine- bus system, two- area four- generator inter connected system working on various operating conditions are considered as case studies and tested with the proposed technique. Extensive simulation results are obtained and effectiveness of proposed WOA-PSS are compared with well - known PSO and DE based stabilizers under several disturbances.
基金supported by the Research Project of China Southern Power Grid(No.056200KK52222031).
文摘This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the complexities,simulation time cost and convergence problems of detailed PV power station models.First,the amplitude–frequency curves of different filter parameters are analyzed.Based on the results,a grouping parameter set for characterizing the external filter characteristics is established.These parameters are further defined as clustering parameters.A single PV inverter model is then established as a prerequisite foundation.The proposed equivalent method combines the global search capability of PSO with the rapid convergence of KMC,effectively overcoming the tendency of KMC to become trapped in local optima.This approach enhances both clustering accuracy and numerical stability when determining equivalence for PV inverter units.Using the proposed clustering method,both a detailed PV power station model and an equivalent model are developed and compared.Simulation and hardwarein-loop(HIL)results based on the equivalent model verify that the equivalent method accurately represents the dynamic characteristics of PVpower stations and adapts well to different operating conditions.The proposed equivalent modeling method provides an effective analysis tool for future renewable energy integration research.
文摘Space-Based Solar Power(SBSP) presents a promising solution for achieving carbon neutrality and Renewable Electricity 100%(RE100) goals by offering a stable and continuous energy supply. However, its commercialization faces significant obstacles due to the technical challenges of long-distance microwave Wireless Power Transmission(WPT) from geostationary orbit. Even ground-based kilometer-scale WPT experiments remain difficult because of limited testing infrastructure, high costs, and strict electromagnetic wave regulations. Since the 1975 NASA-Raytheon experiment, which successfully recovered 30 kW of power over 1.55 km, there has been little progress in extending the transmission distance or increasing the retrieved power. This study proposes a cost-effective methodology for conducting long-range WPT experiments in constrained environments by utilizing existing infrastructure. A deep space antenna operating at 2.08 GHz with an output power of 2.3 kW and a gain of 55.3 dBi was used as the transmitter. Two test configurations were implemented: a 1.81 km ground-to-air test using an aerostat to elevate the receiver and a 1.82 km ground-to-ground test using a ladder truck positioned on a plateau. The rectenna consists of a lightweight 3×3 patch antenna array(0.9 m × 0.9 m), accompanied by a steering device and LED indicators to verify power reception. The aerostat-based test achieved a power density of 154.6 mW/m2, which corresponds to approximately 6.2% of the theoretical maximum. The performance gap is primarily attributed to near-field interference, detuning of the patch antenna, rectifier mismatch, and alignment issues. These limitations are expected to be mitigated through improved patch antenna fabrication, a transition from GaN to GaAs rectifiers optimized for lower input power, and the implementation of an automated alignment system. With these enhancements, the recovered power is expected to improve by approximately four to five times. The results demonstrate a practical and scalable framework for long-range WPT experiments under constrained conditions and provide key insights for advancing SBSP technology.
基金Supported by the National Natural Science Foundation of China (Nos. 59837270 and 50377018) and the National Key Basic Re-search Special Fund of China (No. G1998020309)
文摘Generator excitation control plays an important role in improving the dynamic performance and stability of power systems. This paper is concerned with nonlinear decentralized adaptive excitation control for multi-machine power systems. Based on a recursive design method, an adaptive excitation control law with L2 disturbance attenuation is constructed. Furthermore, it is verified that the proposed control scheme possesses the property of decentralization and the robustness in the sense of L2-gain. As a consequence, transient stability of a multi-machine power system is guaranteed, regardless of system parameters variation and faults.
基金supported by the Science and Technology Project of Sichuan Electric Power Company“Power Supply Guarantee Strategy for Urban Distribution Networks Considering Coordination with Virtual Power Plant during Extreme Weather Event”(No.521920230003).
文摘Ensuring reliable power supply in urban distribution networks is a complex and critical task.To address the increased demand during extreme scenarios,this paper proposes an optimal dispatch strategy that considers the coordination with virtual power plants(VPPs).The proposed strategy improves systemflexibility and responsiveness by optimizing the power adjustment of flexible resources.In the proposed strategy,theGaussian Process Regression(GPR)is firstly employed to determine the adjustable range of aggregated power within the VPP,facilitating an assessment of its potential contribution to power supply support.Then,an optimal dispatch model based on a leader-follower game is developed to maximize the benefits of the VPP and flexible resources while guaranteeing the power balance at the same time.To solve the proposed optimal dispatch model efficiently,the constraints of the problem are reformulated and resolved using the Karush-Kuhn-Tucker(KKT)optimality conditions and linear programming duality theorem.The effectiveness of the strategy is illustrated through a detailed case study.
基金the Deanship of Scientific Research at Northern Border University,Arar,Saudi Arabia,for funding this research work through the project number“NBU-FFR-2025-3623-11”.
文摘Modern power systems increasingly depend on interconnected microgrids to enhance reliability and renewable energy utilization.However,the high penetration of intermittent renewable sources often causes frequency deviations,voltage fluctuations,and poor reactive power coordination,posing serious challenges to grid stability.Conventional Interconnection FlowControllers(IFCs)primarily regulate active power flowand fail to effectively handle dynamic frequency variations or reactive power sharing in multi-microgrid networks.To overcome these limitations,this study proposes an enhanced Interconnection Flow Controller(e-IFC)that integrates frequency response balancing and an Interconnection Reactive Power Flow Controller(IRFC)within a unified adaptive control structure.The proposed e-IFC is implemented and analyzed in DIgSILENT PowerFactory to evaluate its performance under various grid disturbances,including frequency drops,load changes,and reactive power fluctuations.Simulation results reveal that the e-IFC achieves 27.4% higher active power sharing accuracy,19.6% lower reactive power deviation,and 18.2% improved frequency stability compared to the conventional IFC.The adaptive controller ensures seamless transitions between grid-connected and islanded modes and maintains stable operation even under communication delays and data noise.Overall,the proposed e-IFCsignificantly enhances active-reactive power coordination and dynamic stability in renewable-integrated multi-microgrid systems.Future research will focus on coupling the e-IFC with tertiary-level optimization frameworks and conducting hardware-in-the-loop validation to enable its application in large-scale smart microgrid environments.
基金funded by the Institute of Smart Energy,Huaiyin Institute of Technology,under Grant No.HIT-ISE-2024-07.
文摘In order to address environmental pollution and resource depletion caused by traditional power generation,this paper proposes an adaptive iterative dynamic-balance optimization algorithm that integrates the Improved Dung Beetle Optimizer(IDBO)with VariationalMode Decomposition(VMD).The IDBO-VMD method is designed to enhance the accuracy and efficiency of wind-speed time-series decomposition and to effectively smooth photovoltaic power fluctuations.This study innovatively improves the traditional variational mode decomposition(VMD)algorithm,and significantly improves the accuracy and adaptive ability of signal decomposition by IDBO selfoptimization of key parameters K and a.On this basis,Fourier transform technology is used to define the boundary point between high frequency and low frequency signals,and a targeted energy distribution strategy is proposed:high frequency fluctuations are allocated to supercapacitors to quickly respond to transient power fluctuations;Lowfrequency components are distributed to lead-carbon batteries,optimizing long-term energy storage and scheduling efficiency.This strategy effectively improves the response speed and stability of the energy storage system.The experimental results demonstrate that the IDBO-VMD algorithm markedly outperforms traditional methods in both decomposition accuracy and computational efficiency.Specifically,it effectively reduces the charge–discharge frequency of the battery,prolongs battery life,and optimizes the operating ranges of the state-of-charge(SOC)for both leadcarbon batteries and supercapacitors.In addition,the energy management strategy based on the algorithm not only improves the overall energy utilization efficiency of the system,but also shows excellent performance in the dynamic management and intelligent scheduling of renewable energy generation.
基金funded by the Department of Education of Liaoning Province and was supported by the Basic Scientific Research Project of the Department of Education of Liaoning Province(Grant No.LJ222411632051)and(Grant No.LJKQZ2021085)Natural Science Foundation Project of Liaoning Province(Grant No.2022-BS-222).
文摘Virtual power plant(VPP)integrates a variety of distributed renewable energy and energy storage to participate in electricity market transactions,promote the consumption of renewable energy,and improve economic efficiency.In this paper,aiming at the uncertainty of distributed wind power and photovoltaic output,considering the coupling relationship between power,carbon trading,and green cardmarket,the optimal operationmodel and bidding scheme of VPP in spot market,carbon trading market,and green card market are established.On this basis,through the Shapley value and independent risk contribution theory in cooperative game theory,the quantitative analysis of the total income and risk contribution of various distributed resources in the virtual power plant is realized.Moreover,the scheduling strategies of virtual power plants under different risk preferences are systematically compared,and the feasibility and accuracy of the combination of Shapley value and independent risk contribution theory in ensuring fair income distribution and reasonable risk assessment are emphasized.A comprehensive solution for virtual power plants in the multi-market environment is constructed,which integrates operation strategy,income distribution mechanism,and risk control system into a unified analysis framework.Through the simulation of multi-scenario examples,the CPLEXsolver inMATLAB software is used to optimize themodel.The proposed joint optimization scheme can increase the profit of VPP participating in carbon trading and green certificate market by 29%.The total revenue of distributed resources managed by VPP is 9%higher than that of individual participation.
文摘As a Burundian doctoral student at Nanjing University,my personal journey is closely intertwined with China’s development in the new era and the deepening China-Africa partnership.Recently,my experiences have given me a deeper appreciation of the importance of people-to-people exchanges between China and Africa.
基金supported by Science and Technology Project of the headquarters of the State Grid Corporation of China(No.5500-202324492A-3-2-ZN).
文摘To enhance power flow regulation in scenarios involving large-scale renewable energy transmission via high-voltage direct current(HVDC)links and multi-infeed DC systems in load-center regions,this paper proposes a hybrid modular multilevel converter–capacitor-commutated line-commutated converter(MMC-CLCC)HVDC transmission system and its corresponding control strategy.First,the system topology is constructed,and a submodule configuration method for the MMC—combining full-bridge submodules(FBSMs)and half-bridge submodules(HBSMs)—is proposed to enable direct power flow reversal.Second,a hierarchical control strategy is introduced,includingMMCvoltage control,CLCC current control,and a coordinationmechanism,along with the derivation of the hybrid system’s power flow reversal characteristics.Third,leveraging the CLCC’s fast current regulation and theMMC’s negative voltage control capability,a coordinated power flow reversal control strategy is developed.Finally,an 800 kV MMC-CLCC hybrid HVDC system is modeled in PSCAD/EMTDC to validate the power flow reversal performance under a high proportion of full-bridge submodule configuration.Results demonstrate that the proposed control strategy enables rapid(1-s transition)and smooth switching of bidirectional power flow without modifying the structure of primary equipment:the transient fluctuation ofDC voltage from the rated value(UdcN)to themaximumreverse voltage(-kUdcN)is less than 5%;the DC current strictly follows the preset characteristic curve with a deviation of≤3%;the active power reverses continuously,and the system maintains stable operation throughout the reversal process.
基金Supported by National Natural Science Foundation of China (60674039, 60704004) and Innovation Fund for Outstanding Scholar of Henan Province (084200510009 )
基金This work was supported by Chinese National Natural Science Foundation(No.50377018)Chinese National Key Basic Research Fund(No.G1998020309)by New Energy and Industrial Technology Development Organization of Japan.
文摘An advanced nonlinear robust control scheme is proposed for multi-machine power systems equipped with thyristor-controlled series compensation (TCSC). First, a decentralized nonlinear robust control approach based on the feedback linearization and H∞ theory is introduced to eliminate the nonlinearities and interconnections of the studied system, and to attenuate the exogenous disturbances that enter die system. Then, a system model is built up, which has considered all the generators’ and TCSC’s dynamics, and the effects of uncertainties such as disturbances. Next, a decentralized nonlinear robust coordinated control law is developed based on this model. Simulation results on a six-machine power system show that the transient stability of the power system is obviously improved and die power transfer capacity of long distance transmission lines is enhanced regardless of fault locations and system operation points. In addition, the control law has engineering practicality since all the variables in the expression of he control strategy can be measured locally.