Grid-Forming(GFM)converters are prone to fault-induced overcurrent and power angle instability during grid fault-induced voltage sags.To address this,this paper develops a multi-loop coordinated fault ridethrough(FRT)...Grid-Forming(GFM)converters are prone to fault-induced overcurrent and power angle instability during grid fault-induced voltage sags.To address this,this paper develops a multi-loop coordinated fault ridethrough(FRT)control strategy based on a power outer loop and voltage-current inner loops,aiming to enhance the stability and current-limiting capability of GFM converters during grid fault conditions.During voltage sags,the GFM converter’s voltage source behavior is maintained by dynamically adjusting the reactive power reference to provide voltage support,thereby effectively suppressing the steady-state component of the fault current.To address the active power imbalance induced by voltage sags,a dynamic active power reference correction method based on apparent power is designed to mitigate power angle oscillations and limit transient current.Moreover,an adaptive virtual impedance loop is implemented to enhance dynamic transient current-limiting performance during the fault initiation phase.This approach improves the responsiveness of the inner loop and ensures safe system operation under various fault severities.Under asymmetric fault conditions,a negative-sequence reactive current compensation strategy is incorporated to further suppress negative-sequence voltage and improve voltage symmetry.The proposed control scheme enables coordinated operation of multiple control objectives,including voltage support,current suppression,and power angle stability,across different fault scenarios.Finally,MATLAB/Simulink simulation results validate the effectiveness of the proposed strategy,showcasing its superior performance in current limiting and power angle stability,thereby significantly enhancing the system’s fault ride-through capability.展开更多
Advances in software and hardware technologies have facilitated the production of quadrotor unmanned aerial vehicles(UAVs).Nowadays,people actively use quadrotor UAVs in essential missions such as search and rescue,co...Advances in software and hardware technologies have facilitated the production of quadrotor unmanned aerial vehicles(UAVs).Nowadays,people actively use quadrotor UAVs in essential missions such as search and rescue,counter-terrorism,firefighting,surveillance,and cargo transportation.While performing these tasks,quadrotors must operate in noisy environments.Therefore,a robust controller design that can control the altitude and attitude of the quadrotor in noisy environments is of great importance.Many researchers have focused only on white Gaussian noise in their studies,whereas researchers need to consider the effects of all colored noises during the operation of the quadrotor.This study aims to design a robust controller that is resistant to all colored noises.Firstly,a nonlinear quadrotormodel was created with MATLAB.Then,a backstepping controller resistant to colored noises was designed.Thedesigned backstepping controller was tested under Gaussian white,pink,brown,blue,and purple noises.PID and Lyapunov-based controller designswere also carried out,and their time responses(rise time,overshoot,settling time)were compared with those of the backstepping controller.In the simulations,time was in seconds,altitude was in meters,and roll,pitch,and yaw references were in radians.Rise and settling time values were in seconds,and overshoot value was in percent.When the obtained values are examined,simulations prove that the proposed backstepping controller has the least overshoot and the shortest settling time under all noise types.展开更多
Numerous uncertainties in practical production and operation can seriously affect the drive performance of permanent magnet synchronous machines(PMSMs).Various robust control methods have been developed to mitigate or...Numerous uncertainties in practical production and operation can seriously affect the drive performance of permanent magnet synchronous machines(PMSMs).Various robust control methods have been developed to mitigate or eliminate the effects of these uncertainties.However,the robustness to uncertainties of electrical drive systems has not been clearly defined.No systemic procedures have been proposed to evaluate a control system's robustness(how robust it is).This paper proposes a systemic method for evaluating control systems'robustness to uncertainties.The concept and fundamental theory of robust control are illustrated by considering a simple uncertain feedback control system.The effects of uncertainties on the control performance and stability are analyzed and discussed.The concept of design for six-sigma(a robust design method)is employed to numerically evaluate the robustness levels of control systems.To show the effectiveness of the proposed robustness evaluation method,case studies are conducted for second-order systems,DC motor drive systems,and PMSM drive systems.Besides the conventional predictive control of PMSM drive,three different robust predictive control methods are evaluated in terms of two different parametric uncertainty ranges and three application requirements against parametric uncertainties.展开更多
This paper tackles uncertainties between planning and actual models.It extends the concept of RCI(robust control invariant)tubes,originally a parameterized representation of closed-loop control robustness in tradition...This paper tackles uncertainties between planning and actual models.It extends the concept of RCI(robust control invariant)tubes,originally a parameterized representation of closed-loop control robustness in traditional feedback control,to the domain of motion planning for autonomous vehicles.Thus,closed-loop system uncertainty can be preemptively addressed during vehicle motion planning.This involves selecting collision-free trajectories to minimize the volume of robust invariant tubes.Furthermore,constraints on state and control variables are translated into constraints on the RCI tubes of the closed-loop system,ensuring that motion planning produces a safe and optimal trajectory while maintaining flexibility,rather than solely optimizing for the open-loop nominal model.Additionally,to expedite the solving process,we were inspired by L2gain to parameterize the RCI tubes and developed a parameterized explicit iterative expression for propagating ellipsoidal uncertainty sets within closedloop systems.Furthermore,we applied the pseudospectral orthogonal collocation method to parameterize the optimization problem of transcribing trajectories using high-order Lagrangian polynomials.Finally,under various operating conditions,we incorporate both the kinematic and dynamic models of the vehicle and also conduct simulations and analyses of uncertainties such as heading angle measurement,chassis response,and steering hysteresis.Our proposed robust motion planning framework has been validated to effectively address nearly all bounded uncertainties while anticipating potential tracking errors in control during the planning phase.This ensures fast,closed-loop safety and robustness in vehicle motion planning.展开更多
The electromagnetic levitation system(EMLS)serves as the most important part of any magnetic levitation system.However,its characteristics are defined by its highly nonlinear dynamics and instability.Furthermore,the u...The electromagnetic levitation system(EMLS)serves as the most important part of any magnetic levitation system.However,its characteristics are defined by its highly nonlinear dynamics and instability.Furthermore,the uncertainties in the dynamics of an electromagnetic levitation system make the controller design more difficult.Therefore,it is necessary to design a robust control law that will ensure the system’s stability in the presence of these uncertainties.In this framework,the dynamics of an electromagnetic levitation system are addressed in terms of matched and unmatched uncertainties.The robust control problem is translated into the optimal control problem,where the uncertainties of the electromagnetic levitation system are directly reflected in the cost function.The optimal control method is used to solve the robust control problem.The solution to the optimal control problem for the electromagnetic levitation system is indeed a solution to the robust control problem of the electromagnetic levitation system under matched and unmatched uncertainties.The simulation and experimental results demonstrate the performance of the designed control scheme.The performance indices such as integral absolute error(IAE),integral square error(ISE),integral time absolute error(ITAE),and integral time square error(ITSE)are compared for both uncertainties to showcase the robustness of the designed control scheme.展开更多
Due to errors in vehicle dynamics modeling,uncertainty in model parameters,and disturbances from curvature,the performance of the path tracking controller is poor or even unstable under high-speed and large-curvature ...Due to errors in vehicle dynamics modeling,uncertainty in model parameters,and disturbances from curvature,the performance of the path tracking controller is poor or even unstable under high-speed and large-curvature conditions.Therefore,a path tracking robust control strategy based on force-driven H_(∞)and MPC is proposed.To fully exploit the nonlinear dynamics characteristics of tires,a force-driven state space model of a path tracking system based on a linear time-varying tire model is established;the H_(∞)and MPC methods are used to design a robust controller.Considering disturbance and system state constraints,the robust control constraint model based on LMI is established.Finally,the proposed controller is validated through joint simulations using CarSim and MATLAB.The results show that the maximum lateral deviation is reduced by 17.07%,and the maximum course angle deviation is reduced by 13.04%under large curvature disturbance conditions.The maximum lateral deviation is reduced by 27.85%,and the maximum course angle deviation is reduced by 31.17%under conditions of uncertain road adhesion coefficients.Based on the controller’s performance,the proposed controller effectively mitigates modeling errors,parameter uncertainties,and curvature disturbances.展开更多
This paper highlights the utilization of parallel control and adaptive dynamic programming(ADP) for event-triggered robust parallel optimal consensus control(ETRPOC) of uncertain nonlinear continuous-time multiagent s...This paper highlights the utilization of parallel control and adaptive dynamic programming(ADP) for event-triggered robust parallel optimal consensus control(ETRPOC) of uncertain nonlinear continuous-time multiagent systems(MASs).First, the parallel control system, which consists of a virtual control variable and a specific auxiliary variable obtained from the coupled Hamiltonian, allows general systems to be transformed into affine systems. Of interest is the fact that the parallel control technique's introduction provides an unprecedented perspective on eliminating the negative effects of disturbance. Then, an eventtriggered mechanism is adopted to save communication resources while ensuring the system's stability. The coupled HamiltonJacobi(HJ) equation's solution is approximated using a critic neural network(NN), whose weights are updated in response to events. Furthermore, theoretical analysis reveals that the weight estimation error is uniformly ultimately bounded(UUB). Finally,numerical simulations demonstrate the effectiveness of the developed ETRPOC method.展开更多
Dear Editor,This letter presents a novel approach to the data-driven control of unknown nonlinear systems.By leveraging online sparse identification based on the Koopman operator,a high-dimensional linear system model...Dear Editor,This letter presents a novel approach to the data-driven control of unknown nonlinear systems.By leveraging online sparse identification based on the Koopman operator,a high-dimensional linear system model approximating the actual system is obtained online.The upper bound of the discrepancy between the identified model and the actual system is estimated using real-time prediction error,which is then utilized in the design of a tube-based robust model predictive controller.The effectiveness of the proposed approach is validated by numerical simulation.展开更多
The paper develops a robust control approach for nonaffine nonlinear continuous systems with input constraints and unknown uncertainties. Firstly, this paper constructs an affine augmented system(AAS) within a pre-com...The paper develops a robust control approach for nonaffine nonlinear continuous systems with input constraints and unknown uncertainties. Firstly, this paper constructs an affine augmented system(AAS) within a pre-compensation technique for converting the original nonaffine dynamics into affine dynamics. Secondly, the paper derives a stability criterion linking the original nonaffine system and the auxiliary system, demonstrating that the obtained optimal policies from the auxiliary system can achieve the robust controller of the nonaffine system. Thirdly, an online adaptive dynamic programming(ADP) algorithm is designed for approximating the optimal solution of the Hamilton–Jacobi–Bellman(HJB) equation.Moreover, the gradient descent approach and projection approach are employed for updating the actor-critic neural network(NN) weights, with the algorithm's convergence being proven. Then, the uniformly ultimately bounded stability of state is guaranteed. Finally, in simulation, some examples are offered for validating the effectiveness of this presented approach.展开更多
We present a robust quantum optimal control framework for implementing fast entangling gates on ion-trap quantum processors.The framework leverages tailored laser pulses to drive the multiple vibrational sidebands of ...We present a robust quantum optimal control framework for implementing fast entangling gates on ion-trap quantum processors.The framework leverages tailored laser pulses to drive the multiple vibrational sidebands of the ions to create phonon-mediated entangling gates and,unlike the state of the art,requires neither weakcoupling Lamb-Dicke approximation nor perturbation treatment.With the application of gradient-based optimal control,it enables finding amplitude-and phase-modulated laser control protocols that work without the Lamb-Dicke approximation,promising gate speeds on the order of microseconds comparable to the characteristic trap frequencies.Also,robustness requirements on the temperature of the ions and initial optical phase can be conveniently included to pursue high-quality fast gates against experimental imperfections.Our approach represents a step in speeding up quantum gates to achieve larger quantum circuits for quantum computation and simulation,and thus can find applications in near-future experiments.展开更多
To solve the attitude trajectory tracking problem for hypersonic vehicles in the presence of system constraints and unknown disturbances,this paper designed a nonlinear robust model predictive control(RMPC)scheme,whic...To solve the attitude trajectory tracking problem for hypersonic vehicles in the presence of system constraints and unknown disturbances,this paper designed a nonlinear robust model predictive control(RMPC)scheme,which can produce near-optimal tracking commands.Unlike the existing designs,the proposed scheme is less conservative and successfully prioritizes the solution optimality.The established RMPC follows a dualloop structure.Specifically,in the outer feedback loop,the reference attitude angle profiles are optimally tracked,while in the inner feedback loop,the control moment commands are produced by optimally tracking the desired angular rate trajectories.Besides,an adaptive disturbance observer(ADO)is designed and embedded in the inner and outer RMPC controllers to alleviate the negative effects caused by unknown external disturbances.The recursive feasibility of the optimization process,together with the input-to-state stability of the proposed RMPC,is theoretically guaranteed by introducing a tightened control constraint and terminal region.The derived property reveals that our proposal can steer the tracking error within a small region of convergence.Finally,the effectiveness of the proposed scheme is demonstrated by performing simulation studies.展开更多
A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncer...A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncertainties of renewable energy sources(RESs)is constructed without requiring the full distribution knowledge of the uncertainties.The power balance chance constraint is reformulated within the framework of the distributionally robust optimization(DRO)approach.With the exchange of information and energy flow,each microgrid can achieve its local supply-demand balance.Furthermore,the closed-loop stability and recursive feasibility of the proposed algorithm are proved.The comparative results with other DSMPC methods show that a trade-off between robustness and economy can be achieved.展开更多
Dear Editor,This letter addresses the robust predefined-time control challenge for leaderless optimal formation in networked mobile vehicle(NMV)systems.The aim is to minimize a composite global cost function derived f...Dear Editor,This letter addresses the robust predefined-time control challenge for leaderless optimal formation in networked mobile vehicle(NMV)systems.The aim is to minimize a composite global cost function derived from individual strongly convex functions of each agent,considering both input disturbances and network communication constraints.A novel predefined-time optimal formation control(PTOFC)algorithm is presented,ensuring agent state convergence to optimal formation positions within an adjustable settling time.Through the integration of an integral sliding mode technique,disturbances are effectively countered.A representative numerical example highlights the effectiveness and robustness of the developed approach.展开更多
We propose a new method for robust adaptive backstepping control of nonlinear systems with parametric uncertainties and disturbances in the strict feedback form. The method is called dynamic surface control. Traditio...We propose a new method for robust adaptive backstepping control of nonlinear systems with parametric uncertainties and disturbances in the strict feedback form. The method is called dynamic surface control. Traditional backstepping algorithms require repeated differentiations of the modelled nonlinearities. The addition of n first order low pass filters allows the algorithm to be implemented without differentiating any model nonlinearities, thus ending the complexity arising due to the 'explosion of terms' that makes other methods difficult to implement in practice. The combined robust adaptive backstepping/first order filter system is proved to be semiglobally asymptotically stable for sufficiently fast filters by a singular perturbation approach. The simulation results demonstrate the feasibility and effectiveness of the controller designed by the method.展开更多
Robust stabilization for a class of nonlinear uncertain neutral system with time-varying delay is investigated. By applying the Lyapunov stability theorem, an adaptive sliding mode controller (ADSMC) is developed.Ba...Robust stabilization for a class of nonlinear uncertain neutral system with time-varying delay is investigated. By applying the Lyapunov stability theorem, an adaptive sliding mode controller (ADSMC) is developed.Based on the sliding mode control technique, the controller can drive the system into a pre-specified sliding hyperplane to obtain the desired dynamic performance. Once the system dynamics reaches the sliding plane, the control system is insensitive to uncertainty. The adaptive technique can overcome the unknown upper bound of uncertainty so that the reaching condition can be satisfied. Furthermore, the controller does not include any delayed state,so such an ADSMC is memoryless. Finally, a numerical example is given to verify the validity of the developed memoryless ADSMC and the globally asymptotic stability is guaranteed for the control scheme.展开更多
A robust adaptive control approach is presented to improve the performance of the control scheme proposed in the authors' previous work, aiming at producing a low ripple hybrid stepping motor servo drive for precisio...A robust adaptive control approach is presented to improve the performance of the control scheme proposed in the authors' previous work, aiming at producing a low ripple hybrid stepping motor servo drive for precision profile tracking at a low speed. In order to construct a completely integrated control design philosophy to reduce torque ripple and at the same time to enhance tracking performance, the properties of nonlinear uncertainties in the system dynamics are uncovered, and then incorporated into the design of the controller. The system uncertainties concerned with ripple dynamics and other external disturbances are composed of two categories. The first category of uncertainties with linear parameterization arising from the detention effect is dealt with by the wellknown adaptive control method. A robust adaptive method is used to deal with the second category of uncertainties resulting from the non-sinusoidal flux distribution. The μ-modification scheme is used to cease parameter adaptation by the robust adaptive control law, thus ensuring that the trajectory tracking error asymptotically converges to a pre-specified boundary. Experiments are performed with a typical hybrid stepping motor to test its profile tracking accuracy. Results confirm the proposed control scheme.展开更多
An ultrasonic motor (USM) is difficlt to be mathematically described because of its complex energy conversion and nonlinear parameters from increasing temperature and changing operating conditions. To achieve good p...An ultrasonic motor (USM) is difficlt to be mathematically described because of its complex energy conversion and nonlinear parameters from increasing temperature and changing operating conditions. To achieve good performance of a three-joint robot directly driven by USM, according to the operating characteristics of USM, a new position-velocity feedback control strategy is proposed. In the control strategy, there are a total of 18 controller gains to he tuned. Through a series of "Design of Experiments" by the robust parameter design, an optimal and robust set of proportional integral derivative (PID) controller gains is obtained. Results show that the control strategy can achieve the best performance of the robot and the robust parameter design is effective and convenient to USMs.展开更多
This paper deals with the high performance force control of hydraulic load simulator. Many previous works for hydraulic force control are based on their linearization equations, but hydraulic inherent nonlinear proper...This paper deals with the high performance force control of hydraulic load simulator. Many previous works for hydraulic force control are based on their linearization equations, but hydraulic inherent nonlinear properties and uncertainties make the conven- tional feedback proportional-integral-derivative control not yield to high-performance requirements. In this paper, a nonlinear system model is derived and linear parameterization is made for adaptive control. Then a discontinuous projection-based nonlin- ear adaptive robust force controller is developed for hydraulic load simulator. The proposed controller constructs an asymptoti- cally stable adaptive controller and adaptation laws, which can compensate for the system nonlinearities and uncertain parame- ters. Meanwhile a well-designed robust controller is also developed to cope with the hydraulic system uncertain nonlinearities. The controller achieves a guaranteed transient performance and final tracking accuracy in the presence of both parametric uncer- tainties and uncertain nonlinearities; in the absence of uncertain nonlinearities, the scheme also achieves asymptotic tracking performance. Simulation and experiment comparative results are obtained to verify the high-performance nature of the proposed control strategy and the tracking accuracy is greatly improved.展开更多
This article deals with the disturbance attenuation control of aircraft flying through wind shear via Linear Parameter Varying(LPV) modeling and control method. A Flight Dynamics Model(FDM) with wind shear effects con...This article deals with the disturbance attenuation control of aircraft flying through wind shear via Linear Parameter Varying(LPV) modeling and control method. A Flight Dynamics Model(FDM) with wind shear effects considered was established in wind coordinate system. An LPV FDM was built up based on function substitution whose decomposing function was optimized by Genetic Algorithm(GA). The wind disturbance was explicitly included in the system matrix of LPV FDM. Taking wind disturbance as external uncertainties, robust LPV control method with the LPV FDM was put forward. Based on ride quality and flight safety requirements in wind disturbance, longitudinal and lateral output feedback robust LPV controllers were designed respectively,in which the scheduling flight states in LPV model were actually dependent parameters in LPV control. The results indicate that LPV FDM can reflect the instantaneous dynamics of nonlinear system especially at the boundary of aerodynamic envelope. Furthermore, the LPV FDM also can approach nonlinear FDM’s response in wind disturbance special flight. Compared with a parameter-invariant LQR controller designed with a small-disturbance FDM, the LPV controllers show preferable robustness and stability for disturbance attenuation.展开更多
文摘Grid-Forming(GFM)converters are prone to fault-induced overcurrent and power angle instability during grid fault-induced voltage sags.To address this,this paper develops a multi-loop coordinated fault ridethrough(FRT)control strategy based on a power outer loop and voltage-current inner loops,aiming to enhance the stability and current-limiting capability of GFM converters during grid fault conditions.During voltage sags,the GFM converter’s voltage source behavior is maintained by dynamically adjusting the reactive power reference to provide voltage support,thereby effectively suppressing the steady-state component of the fault current.To address the active power imbalance induced by voltage sags,a dynamic active power reference correction method based on apparent power is designed to mitigate power angle oscillations and limit transient current.Moreover,an adaptive virtual impedance loop is implemented to enhance dynamic transient current-limiting performance during the fault initiation phase.This approach improves the responsiveness of the inner loop and ensures safe system operation under various fault severities.Under asymmetric fault conditions,a negative-sequence reactive current compensation strategy is incorporated to further suppress negative-sequence voltage and improve voltage symmetry.The proposed control scheme enables coordinated operation of multiple control objectives,including voltage support,current suppression,and power angle stability,across different fault scenarios.Finally,MATLAB/Simulink simulation results validate the effectiveness of the proposed strategy,showcasing its superior performance in current limiting and power angle stability,thereby significantly enhancing the system’s fault ride-through capability.
文摘Advances in software and hardware technologies have facilitated the production of quadrotor unmanned aerial vehicles(UAVs).Nowadays,people actively use quadrotor UAVs in essential missions such as search and rescue,counter-terrorism,firefighting,surveillance,and cargo transportation.While performing these tasks,quadrotors must operate in noisy environments.Therefore,a robust controller design that can control the altitude and attitude of the quadrotor in noisy environments is of great importance.Many researchers have focused only on white Gaussian noise in their studies,whereas researchers need to consider the effects of all colored noises during the operation of the quadrotor.This study aims to design a robust controller that is resistant to all colored noises.Firstly,a nonlinear quadrotormodel was created with MATLAB.Then,a backstepping controller resistant to colored noises was designed.Thedesigned backstepping controller was tested under Gaussian white,pink,brown,blue,and purple noises.PID and Lyapunov-based controller designswere also carried out,and their time responses(rise time,overshoot,settling time)were compared with those of the backstepping controller.In the simulations,time was in seconds,altitude was in meters,and roll,pitch,and yaw references were in radians.Rise and settling time values were in seconds,and overshoot value was in percent.When the obtained values are examined,simulations prove that the proposed backstepping controller has the least overshoot and the shortest settling time under all noise types.
文摘Numerous uncertainties in practical production and operation can seriously affect the drive performance of permanent magnet synchronous machines(PMSMs).Various robust control methods have been developed to mitigate or eliminate the effects of these uncertainties.However,the robustness to uncertainties of electrical drive systems has not been clearly defined.No systemic procedures have been proposed to evaluate a control system's robustness(how robust it is).This paper proposes a systemic method for evaluating control systems'robustness to uncertainties.The concept and fundamental theory of robust control are illustrated by considering a simple uncertain feedback control system.The effects of uncertainties on the control performance and stability are analyzed and discussed.The concept of design for six-sigma(a robust design method)is employed to numerically evaluate the robustness levels of control systems.To show the effectiveness of the proposed robustness evaluation method,case studies are conducted for second-order systems,DC motor drive systems,and PMSM drive systems.Besides the conventional predictive control of PMSM drive,three different robust predictive control methods are evaluated in terms of two different parametric uncertainty ranges and three application requirements against parametric uncertainties.
基金Supported by National Natural Science Foundation of China(Grant Nos.52025121,52394263)National Key R&D Plan of China(Grant No.2023YFD2000301)+2 种基金Foundation of State Key Laboratory of Automobile Safety and Energy Saving of China(Grant No.KFZ2201)the Jiangsu Provincial Scientific Research Center of Applied Mathematics under(Grant No.BK20233002)Special Fund of Jiangsu Province for the Transformation of Scientific and Technological Achievements under(Grant No.BA2021023)。
文摘This paper tackles uncertainties between planning and actual models.It extends the concept of RCI(robust control invariant)tubes,originally a parameterized representation of closed-loop control robustness in traditional feedback control,to the domain of motion planning for autonomous vehicles.Thus,closed-loop system uncertainty can be preemptively addressed during vehicle motion planning.This involves selecting collision-free trajectories to minimize the volume of robust invariant tubes.Furthermore,constraints on state and control variables are translated into constraints on the RCI tubes of the closed-loop system,ensuring that motion planning produces a safe and optimal trajectory while maintaining flexibility,rather than solely optimizing for the open-loop nominal model.Additionally,to expedite the solving process,we were inspired by L2gain to parameterize the RCI tubes and developed a parameterized explicit iterative expression for propagating ellipsoidal uncertainty sets within closedloop systems.Furthermore,we applied the pseudospectral orthogonal collocation method to parameterize the optimization problem of transcribing trajectories using high-order Lagrangian polynomials.Finally,under various operating conditions,we incorporate both the kinematic and dynamic models of the vehicle and also conduct simulations and analyses of uncertainties such as heading angle measurement,chassis response,and steering hysteresis.Our proposed robust motion planning framework has been validated to effectively address nearly all bounded uncertainties while anticipating potential tracking errors in control during the planning phase.This ensures fast,closed-loop safety and robustness in vehicle motion planning.
文摘The electromagnetic levitation system(EMLS)serves as the most important part of any magnetic levitation system.However,its characteristics are defined by its highly nonlinear dynamics and instability.Furthermore,the uncertainties in the dynamics of an electromagnetic levitation system make the controller design more difficult.Therefore,it is necessary to design a robust control law that will ensure the system’s stability in the presence of these uncertainties.In this framework,the dynamics of an electromagnetic levitation system are addressed in terms of matched and unmatched uncertainties.The robust control problem is translated into the optimal control problem,where the uncertainties of the electromagnetic levitation system are directly reflected in the cost function.The optimal control method is used to solve the robust control problem.The solution to the optimal control problem for the electromagnetic levitation system is indeed a solution to the robust control problem of the electromagnetic levitation system under matched and unmatched uncertainties.The simulation and experimental results demonstrate the performance of the designed control scheme.The performance indices such as integral absolute error(IAE),integral square error(ISE),integral time absolute error(ITAE),and integral time square error(ITSE)are compared for both uncertainties to showcase the robustness of the designed control scheme.
基金Supported by Qinghai University Youth Research Fund,China(Grant No.2023-QGY-15)。
文摘Due to errors in vehicle dynamics modeling,uncertainty in model parameters,and disturbances from curvature,the performance of the path tracking controller is poor or even unstable under high-speed and large-curvature conditions.Therefore,a path tracking robust control strategy based on force-driven H_(∞)and MPC is proposed.To fully exploit the nonlinear dynamics characteristics of tires,a force-driven state space model of a path tracking system based on a linear time-varying tire model is established;the H_(∞)and MPC methods are used to design a robust controller.Considering disturbance and system state constraints,the robust control constraint model based on LMI is established.Finally,the proposed controller is validated through joint simulations using CarSim and MATLAB.The results show that the maximum lateral deviation is reduced by 17.07%,and the maximum course angle deviation is reduced by 13.04%under large curvature disturbance conditions.The maximum lateral deviation is reduced by 27.85%,and the maximum course angle deviation is reduced by 31.17%under conditions of uncertain road adhesion coefficients.Based on the controller’s performance,the proposed controller effectively mitigates modeling errors,parameter uncertainties,and curvature disturbances.
基金supported in part by the National Key Research and Development Program of China(2021YFE0206100)the National Natural Science Foundation of China(62425310,62073321)+2 种基金the National Defense Basic Scientific Research Program(JCKY2019203C029,JCKY2020130C025)the Science and Technology Development FundMacao SAR(FDCT-22-009-MISE,0060/2021/A2,0015/2020/AMJ)
文摘This paper highlights the utilization of parallel control and adaptive dynamic programming(ADP) for event-triggered robust parallel optimal consensus control(ETRPOC) of uncertain nonlinear continuous-time multiagent systems(MASs).First, the parallel control system, which consists of a virtual control variable and a specific auxiliary variable obtained from the coupled Hamiltonian, allows general systems to be transformed into affine systems. Of interest is the fact that the parallel control technique's introduction provides an unprecedented perspective on eliminating the negative effects of disturbance. Then, an eventtriggered mechanism is adopted to save communication resources while ensuring the system's stability. The coupled HamiltonJacobi(HJ) equation's solution is approximated using a critic neural network(NN), whose weights are updated in response to events. Furthermore, theoretical analysis reveals that the weight estimation error is uniformly ultimately bounded(UUB). Finally,numerical simulations demonstrate the effectiveness of the developed ETRPOC method.
基金supported by the National Natural Science Foundation of China(62473020).
文摘Dear Editor,This letter presents a novel approach to the data-driven control of unknown nonlinear systems.By leveraging online sparse identification based on the Koopman operator,a high-dimensional linear system model approximating the actual system is obtained online.The upper bound of the discrepancy between the identified model and the actual system is estimated using real-time prediction error,which is then utilized in the design of a tube-based robust model predictive controller.The effectiveness of the proposed approach is validated by numerical simulation.
基金Project supported by the National Natural Science Foundation of China (Grant No. 62103408)Beijing Nova Program (Grant No. 20240484516)the Fundamental Research Funds for the Central Universities (Grant No. KG16314701)。
文摘The paper develops a robust control approach for nonaffine nonlinear continuous systems with input constraints and unknown uncertainties. Firstly, this paper constructs an affine augmented system(AAS) within a pre-compensation technique for converting the original nonaffine dynamics into affine dynamics. Secondly, the paper derives a stability criterion linking the original nonaffine system and the auxiliary system, demonstrating that the obtained optimal policies from the auxiliary system can achieve the robust controller of the nonaffine system. Thirdly, an online adaptive dynamic programming(ADP) algorithm is designed for approximating the optimal solution of the Hamilton–Jacobi–Bellman(HJB) equation.Moreover, the gradient descent approach and projection approach are employed for updating the actor-critic neural network(NN) weights, with the algorithm's convergence being proven. Then, the uniformly ultimately bounded stability of state is guaranteed. Finally, in simulation, some examples are offered for validating the effectiveness of this presented approach.
基金supported by the National Natural Science Foundation of China(Grant Nos.12441502,12122506,12204230,and 12404554)the National Science and Technology Major Project of the Ministry of Science and Technology of China(2024ZD0300404)+6 种基金Guangdong Basic and Applied Basic Research Foundation(Grant No.2021B1515020070)Shenzhen Science and Technology Program(Grant No.RCYX20200714114522109)China Postdoctoral Science Foundation(CPSF)(2024M762114)Postdoctoral Fellowship Program of CPSF(GZC20231727)supported by the National Natural Science Foundation of China(Grant Nos.92165206 and 11974330)Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301603)the Fundamental Research Funds for the Central Universities。
文摘We present a robust quantum optimal control framework for implementing fast entangling gates on ion-trap quantum processors.The framework leverages tailored laser pulses to drive the multiple vibrational sidebands of the ions to create phonon-mediated entangling gates and,unlike the state of the art,requires neither weakcoupling Lamb-Dicke approximation nor perturbation treatment.With the application of gradient-based optimal control,it enables finding amplitude-and phase-modulated laser control protocols that work without the Lamb-Dicke approximation,promising gate speeds on the order of microseconds comparable to the characteristic trap frequencies.Also,robustness requirements on the temperature of the ions and initial optical phase can be conveniently included to pursue high-quality fast gates against experimental imperfections.Our approach represents a step in speeding up quantum gates to achieve larger quantum circuits for quantum computation and simulation,and thus can find applications in near-future experiments.
文摘To solve the attitude trajectory tracking problem for hypersonic vehicles in the presence of system constraints and unknown disturbances,this paper designed a nonlinear robust model predictive control(RMPC)scheme,which can produce near-optimal tracking commands.Unlike the existing designs,the proposed scheme is less conservative and successfully prioritizes the solution optimality.The established RMPC follows a dualloop structure.Specifically,in the outer feedback loop,the reference attitude angle profiles are optimally tracked,while in the inner feedback loop,the control moment commands are produced by optimally tracking the desired angular rate trajectories.Besides,an adaptive disturbance observer(ADO)is designed and embedded in the inner and outer RMPC controllers to alleviate the negative effects caused by unknown external disturbances.The recursive feasibility of the optimization process,together with the input-to-state stability of the proposed RMPC,is theoretically guaranteed by introducing a tightened control constraint and terminal region.The derived property reveals that our proposal can steer the tracking error within a small region of convergence.Finally,the effectiveness of the proposed scheme is demonstrated by performing simulation studies.
基金Supported by the National Natural Science Foundation of China(No.U24B20156)the National Defense Basic Scientific Research Program of China(No.JCKY2021204B051)the National Laboratory of Space Intelligent Control of China(Nos.HTKJ2023KL502005 and HTKJ2024KL502007)。
文摘A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncertainties of renewable energy sources(RESs)is constructed without requiring the full distribution knowledge of the uncertainties.The power balance chance constraint is reformulated within the framework of the distributionally robust optimization(DRO)approach.With the exchange of information and energy flow,each microgrid can achieve its local supply-demand balance.Furthermore,the closed-loop stability and recursive feasibility of the proposed algorithm are proved.The comparative results with other DSMPC methods show that a trade-off between robustness and economy can be achieved.
基金supported by the National Natural Science Foundation of China(62373162,U24A20268,624B2055)the Shenzhen Science and Technology Program(JCYJ 20240813114007010)the Knowledge Innovation Program of Wuhan-Basic Research(2023010201010100).
文摘Dear Editor,This letter addresses the robust predefined-time control challenge for leaderless optimal formation in networked mobile vehicle(NMV)systems.The aim is to minimize a composite global cost function derived from individual strongly convex functions of each agent,considering both input disturbances and network communication constraints.A novel predefined-time optimal formation control(PTOFC)algorithm is presented,ensuring agent state convergence to optimal formation positions within an adjustable settling time.Through the integration of an integral sliding mode technique,disturbances are effectively countered.A representative numerical example highlights the effectiveness and robustness of the developed approach.
文摘We propose a new method for robust adaptive backstepping control of nonlinear systems with parametric uncertainties and disturbances in the strict feedback form. The method is called dynamic surface control. Traditional backstepping algorithms require repeated differentiations of the modelled nonlinearities. The addition of n first order low pass filters allows the algorithm to be implemented without differentiating any model nonlinearities, thus ending the complexity arising due to the 'explosion of terms' that makes other methods difficult to implement in practice. The combined robust adaptive backstepping/first order filter system is proved to be semiglobally asymptotically stable for sufficiently fast filters by a singular perturbation approach. The simulation results demonstrate the feasibility and effectiveness of the controller designed by the method.
文摘Robust stabilization for a class of nonlinear uncertain neutral system with time-varying delay is investigated. By applying the Lyapunov stability theorem, an adaptive sliding mode controller (ADSMC) is developed.Based on the sliding mode control technique, the controller can drive the system into a pre-specified sliding hyperplane to obtain the desired dynamic performance. Once the system dynamics reaches the sliding plane, the control system is insensitive to uncertainty. The adaptive technique can overcome the unknown upper bound of uncertainty so that the reaching condition can be satisfied. Furthermore, the controller does not include any delayed state,so such an ADSMC is memoryless. Finally, a numerical example is given to verify the validity of the developed memoryless ADSMC and the globally asymptotic stability is guaranteed for the control scheme.
文摘A robust adaptive control approach is presented to improve the performance of the control scheme proposed in the authors' previous work, aiming at producing a low ripple hybrid stepping motor servo drive for precision profile tracking at a low speed. In order to construct a completely integrated control design philosophy to reduce torque ripple and at the same time to enhance tracking performance, the properties of nonlinear uncertainties in the system dynamics are uncovered, and then incorporated into the design of the controller. The system uncertainties concerned with ripple dynamics and other external disturbances are composed of two categories. The first category of uncertainties with linear parameterization arising from the detention effect is dealt with by the wellknown adaptive control method. A robust adaptive method is used to deal with the second category of uncertainties resulting from the non-sinusoidal flux distribution. The μ-modification scheme is used to cease parameter adaptation by the robust adaptive control law, thus ensuring that the trajectory tracking error asymptotically converges to a pre-specified boundary. Experiments are performed with a typical hybrid stepping motor to test its profile tracking accuracy. Results confirm the proposed control scheme.
基金Supported by the National Natural Science Foundation of China(50675098,50735002)~~
文摘An ultrasonic motor (USM) is difficlt to be mathematically described because of its complex energy conversion and nonlinear parameters from increasing temperature and changing operating conditions. To achieve good performance of a three-joint robot directly driven by USM, according to the operating characteristics of USM, a new position-velocity feedback control strategy is proposed. In the control strategy, there are a total of 18 controller gains to he tuned. Through a series of "Design of Experiments" by the robust parameter design, an optimal and robust set of proportional integral derivative (PID) controller gains is obtained. Results show that the control strategy can achieve the best performance of the robot and the robust parameter design is effective and convenient to USMs.
基金National Natural Science Foundation for Distinguished Young Scholars of China (50825502)
文摘This paper deals with the high performance force control of hydraulic load simulator. Many previous works for hydraulic force control are based on their linearization equations, but hydraulic inherent nonlinear properties and uncertainties make the conven- tional feedback proportional-integral-derivative control not yield to high-performance requirements. In this paper, a nonlinear system model is derived and linear parameterization is made for adaptive control. Then a discontinuous projection-based nonlin- ear adaptive robust force controller is developed for hydraulic load simulator. The proposed controller constructs an asymptoti- cally stable adaptive controller and adaptation laws, which can compensate for the system nonlinearities and uncertain parame- ters. Meanwhile a well-designed robust controller is also developed to cope with the hydraulic system uncertain nonlinearities. The controller achieves a guaranteed transient performance and final tracking accuracy in the presence of both parametric uncer- tainties and uncertain nonlinearities; in the absence of uncertain nonlinearities, the scheme also achieves asymptotic tracking performance. Simulation and experiment comparative results are obtained to verify the high-performance nature of the proposed control strategy and the tracking accuracy is greatly improved.
基金co-supported by the National Natural Science Foundation of China(Nos.U1533120 and U1733122)the Fundamental Research Funds for the Central Universities of China(No.NS2015066)
文摘This article deals with the disturbance attenuation control of aircraft flying through wind shear via Linear Parameter Varying(LPV) modeling and control method. A Flight Dynamics Model(FDM) with wind shear effects considered was established in wind coordinate system. An LPV FDM was built up based on function substitution whose decomposing function was optimized by Genetic Algorithm(GA). The wind disturbance was explicitly included in the system matrix of LPV FDM. Taking wind disturbance as external uncertainties, robust LPV control method with the LPV FDM was put forward. Based on ride quality and flight safety requirements in wind disturbance, longitudinal and lateral output feedback robust LPV controllers were designed respectively,in which the scheduling flight states in LPV model were actually dependent parameters in LPV control. The results indicate that LPV FDM can reflect the instantaneous dynamics of nonlinear system especially at the boundary of aerodynamic envelope. Furthermore, the LPV FDM also can approach nonlinear FDM’s response in wind disturbance special flight. Compared with a parameter-invariant LQR controller designed with a small-disturbance FDM, the LPV controllers show preferable robustness and stability for disturbance attenuation.